植物生态学报 ›› 2020, Vol. 44 ›› Issue (1): 22-32.DOI: 10.17521/cjpe.2019.0260
所属专题: 生物多样性
王玉冰1,2,孙毅寒1,2,丁威3,张恩涛1,2,李文怀1,迟永刚4,*(),郑淑霞1,*()
收稿日期:
2019-10-01
修回日期:
2020-01-09
出版日期:
2020-01-20
发布日期:
2020-02-24
通讯作者:
迟永刚,郑淑霞
基金资助:
WANG Yu-Bing1,2,SUN Yi-Han1,2,DING Wei3,ZHANG En-Tao1,2,LI Wen-Huai1,CHI Yong-Gang4,*(),ZHENG Shu-Xia1,*()
Received:
2019-10-01
Revised:
2020-01-09
Online:
2020-01-20
Published:
2020-02-24
Contact:
CHI Yong-Gang,ZHENG Shu-Xia
Supported by:
摘要:
氮(N)沉降对陆地生态系统的结构和功能已产生了重要的影响, N也是中国北方草原植物生长和初级生产力的主要限制性元素。物种多样性和功能多样性是揭示生物多样性对生态系统功能维持机制的关键指标, 然而, 关于长期N添加下草原物种多样性与功能多样性的关系, 及其对初级生产力的影响途径及机制, 尚不十分清楚。为此, 该研究依托在内蒙古典型草原建立的长期N添加实验平台, 实验处理包括1个完全对照(不添加任何肥料)和6个N添加水平(0、1.75、5.25、10.50、17.50和28.00 g·m-2·a-1), 研究了长期N添加对典型草原物种多样性、功能多样性和初级生产力的影响大小及途径。结果表明: 1) N添加显著降低了典型草原的物种丰富度和Shannon-Wiener指数, 但对功能多样性(包括功能性状多样性指数和群落加权性状值)无显著的影响。2)结构方程模型分析表明, 功能多样性主要受物种丰富度的影响, 但是物种多样性减少并没有导致功能多样性降低, 其原因主要是功能群组成发生了改变, 即群落内多年生根茎禾草所占比例显著增加, 以致群落加权性状值变化不大。3) N通过影响物种丰富度和功能群组成, 间接影响群落加权性状值, 进而影响群落净初级生产力。其中, 群落加权性状值是最重要的影响因子, 可解释48%的初级生产力变化, 表明初级生产力主要是由群落内优势物种的生物量及功能性状所决定, 因此该研究的结果很好地支持了质量比假说。
王玉冰,孙毅寒,丁威,张恩涛,李文怀,迟永刚,郑淑霞. 长期氮添加对典型草原植物多样性与初级生产力的影响及途径. 植物生态学报, 2020, 44(1): 22-32. DOI: 10.17521/cjpe.2019.0260
WANG Yu-Bing,SUN Yi-Han,DING Wei,ZHANG En-Tao,LI Wen-Huai,CHI Yong-Gang,ZHENG Shu-Xia. Effects and pathways of long-term nitrogen addition on plant diversity and primary productivity in a typical steppe. Chinese Journal of Plant Ecology, 2020, 44(1): 22-32. DOI: 10.17521/cjpe.2019.0260
图1 氮添加对典型草原物种丰富度(A)和Shannon-Wiener指数(B)的影响(平均值+标准误差)。Control, 完全对照, 不添加任何肥料。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 1 Effects of N addition on species richness (A) and Shannon-Wiener index (B) in a typical steppe (mean + SE). Control, absolute control, no fertilizer added. Different lowercase letters indicate significant difference among treatments (p < 0.05).
图2 氮添加对典型草原群落功能性状多样性(FAD)的影响(平均值+标准误差)。A 株丛性状多样性, 以株高、株丛生物量和茎叶比计算。B 叶片性状多样性, 以比叶面积、叶片干物质含量和叶片N含量计算。C 整株性状多样性, 以株丛性状和叶片性状共6个指标计算。Control, 完全对照, 不添加任何肥料。各处理间差异不显著(p > 0.05)。
Fig. 2 Effect of N addition on functional attribute diversity (FAD) in a typical steppe (mean + SE). A, Plant trait functional diversity, calculated by plant height (PH), individual biomass (PB) and stem:leaf biomass ratio (SLR). B, Leaf trait functional diversity, calculated by specific leaf area (SLA), leaf dry mass content (LDMC), and leaf N content (LNC). C, Whole-plant trait functional diversity, calculated by six indices of plant and leaf traits. Control, absolute control, no fertilizer added. No significant difference among treatments (p > 0.05).
图3 氮添加对典型草原群落加权性状的影响(平均值+标准误差)。群落性状加权值: PHCWM, 株高; PBCWM, 株丛生物量; SLRCWM, 茎叶比; SLACWM, 比叶面积; LDMCCWM, 叶片干物质含量; LNCCWM, 叶片氮含量。Control, 完全对照, 不添加任何肥料。各处理间差异不显著(p > 0.05)。
Fig. 3 Effects of N addition on community-weighted mean traits in a typical steppe (mean + SE). Community-weighted mean traits included community-weighted plant height (PHCWM), individual biomass (PBCWM), stem:leaf biomass ratio (SLRCWM), specific leaf area (SLACWM), leaf dry mass content (LDMCCWM), and leaf N content (LNCCWM). Control, absolute control, no fertilizer added. No significant difference among treatments (p > 0.05).
图4 氮添加对典型草原6个优势物种相对生物量(RAB)的影响(平均值±标准误差)。PR, 多年生根茎禾草; PB, 多年生丛生禾草; PF, 多年生杂类草。Control, 完全对照, 不添加任何肥料。
Fig. 4 Effects of N addition on the relative aboveground biomass (RAB) of six dominant species in a typical steppe (mean ± SE). PR, perennial rhizome grasses; PB, perennial bunch grasses; PF, perennial forbs. Control, absolute control, no fertilizer added.
图5 氮添加对典型草原群落初级生产力(ANPP)的影响(平均值+标准误差)。Control, 完全对照, 不添加任何肥料。各处理间差异不显著(p > 0.05)
Fig. 5 Effect of N addition on aboveground net primary productivity (ANPP) in a typical steppe (mean + SE). Control, absolute control, no fertilizer added. No significant difference among treatments (p > 0.05).
图6 氮添加对典型草原净初级生产力(ANPP)影响途径的结构方程模型(SEM)分析结果。c2 = 3.611, p = 0.89, df = 8, n = 13, RMSEA < 0.001, AIC = 29.61, CFI = 1.000。实线和虚线分别表示变量之间作用关系显著(p < 0.05)和不显著(p > 0.05)。正负数值表示标准化回归系数(β); *, p < 0.05; **, p < 0.01; ***, p < 0.001; r2值表示某一变量被其他变量的方差解释量。
Fig. 6 Structural equation model (SEM) analyses of pathways of N addition on aboveground net primary productivity (ANPP). Results of SEM fitting: c2 = 3.611, p = 0.89, df = 8, n = 13, RMSEA < 0.001, AIC = 29.61, CFI = 1.000. ANPP, aboveground net primary productivity; CWM, community-weighted mean traits; FAD, functional attribute diversity; PR/PB, biomass ratio of perennial rhizome grass to perennial bunchgrass, indicating a shift in functional group composition. Solid and dashed arrows indicate significant (p < 0.05) and non-significant (p > 0.05) effects, respectively. Values associated with solid arrows represent standardized path coefficients (β); *, p < 0.05; **, p < 0.01; ***, p < 0.001. r2 values associated with response variables indicate the proportion of variation explained by relationships with other variables.
[1] |
Bai YF, Wu JG, Clark CM, Naeem S, Pan QM, Huang JH, Zhang LX, Han XG (2010). Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia grasslands. Global Change Biology, 16, 358-372.
DOI URL |
[2] | Bennett JA, Riibak K, Tamme R, Lewis RJ, Pärtel M (2016). The reciprocal relationship between competition and intraspecific trait variation. Journal of Ecology, 104, 1410-1420. |
[3] | Bernhardt-Römermann M, Römermann C, Pillar VD, Kudernatsch T, Fischer A (2010). High functional diversity is related to high nitrogen availability in a deciduous forest—Evidence from a functional trait approach. Folia Geobotanica, 45, 111-124. |
[4] |
Brym ZT, Lake JK, Allen D, Ostling A (2011). Plant functional traits suggest novel ecological strategy for an invasive shrub in an understorey woody plant community. Journal of Applied Ecology, 48, 1098-1106.
DOI URL |
[5] | Cadotte MW (2017). Functional traits explain ecosystem function through opposing mechanisms. Ecology Letters, 20, 989-996. |
[6] | Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Loreau M, Weis JJ (2007). Impacts of plant diversity on biomass production increase through time because of species complementarity. Proceedings of the National Academy of Sciences of the United States of America, 104, 18123-18128. |
[7] | Chen DM, Xing W, Lan ZC, Saleem M, Wu Y, Hu SJ, Bai YF (2019). Direct and indirect effects of nitrogen enrichment on soil organisms and carbon and nitrogen mineralization in a semi-arid grassland. Functional Ecology, 33, 175-187. |
[8] | Clark CM, Tilman D (2008). Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature, 451, 712-715. |
[9] | de Bello F, Lepš J, Sebastià MT (2006). Variations in species and functional plant diversity along climatic and grazing gradients. Ecography, 29, 801-810. |
[10] | Duprè C, Stevens CJ, Ranke T, Bleeker A, Peppler-Lisbach C, Gowing DJG, Dise NB, Dorland E, Bobbink R, Diekmann M (2010). Changes in species richness and composition in European acidic grasslands over the past 70 years: The contribution of cumulative atmospheric nitrogen deposition. Global Change Biology, 16, 344-357. |
[11] | Finegan B, Peña-Claros M, de Oliveira A, Ascarrunz N, Bret-Harte MS, Carreño-Rocabado G, Casanoves F, Díaz S, Eguiguren Velepucha P, Fernandez F, Licona JC, Lorenzo L, Salgado Negret B, Vaz M, Poorter L (2015). Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. Journal of Ecology, 103, 191-201. |
[12] | Gagic V, Bartomeus I, Jonsson T, Taylor A, Winqvist C, Fischer C, Slade EM, Steffan-Dewenter I, Emmerson M, Potts SG, Tscharntke T, Weisser W, Bommarco R (2015). Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proceedings of the Royal Society B, 282, 20142620. DOI: 10.1098/rspb.2014.2620. |
[13] | Grime JP (1998). Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. Journal of Ecology, 86, 902-910. |
[14] | Gross N, Kunstler G, Liancourt P, de Bello F, Suding KN, Lavorel S (2009). Linking individual response to biotic interactions with community structure: A trait-based framework. Functional Ecology, 23, 1167-1178. |
[15] | Hooper DU, Chapin III FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005). Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs, 75, 3-35. |
[16] | Hooper DU, Vitousek PM (1998). Effects of plant composition and diversity on nutrient cycling. Ecological Monographs, 68, 121-149. |
[17] | Kardol P, Wardle DA (2010). How understanding aboveground-belowground linkages can assist restoration ecology. Trends in Ecology & Evolution, 25, 670-679. |
[18] | Knops JM, Reinhart K (2000). Specific leaf area along a nitrogen fertilization gradient. The American Midland Naturalist, 144, 265-272. |
[19] | Kraft NJB, Godoy O, Levine JM (2015). Plant functional traits and the multidimensional nature of species coexistence. Proceedings of the National Academy of Sciences of the United States of America, 112, 797-802. |
[20] | Kunstler G, Falster D, Coomes DA, Hui F, Kooyman RM, Laughlin DC, Poorter L, Vanderwel M, Vieilledent G, Wright SJ, Aiba M, Baraloto C, Caspersen J, Cornelissen JHC, Gourlet-Fleury S, Hanewinkel M, Herault B, Kattge J, Kurokawa H, Onoda Y, Peñuelas J, Poorter H, Uriarte M, Richardson S, Ruiz-Benito P, Sun IF, Ståhl G, Swenson NG, Thompson J, Westerlund B, Wirth C, Zavala MA, Zeng HC, Zimmerman JK, Zimmermann NE, Westoby M (2016). Plant functional traits have globally consistent effects on competition. Nature, 529, 204-207. |
[21] | Lan ZC, Bai YF (2012). Testing mechanisms of N-enrichment-induced species loss in a semiarid Inner Mongolia grassland: Critical thresholds and implications for long-term ecosystem responses. Philosophical Transactions of the Royal Society B-Biological Sciences, 367, 3125-3134. |
[22] | Lan ZC, Jenerette GD, Zhan SX, Li WH, Zheng SX, Bai YF (2015). Testing the scaling effects and mechanisms of N-induced biodiversity loss: Evidence from a decade-long grassland experiment. Journal of Ecology, 103, 750-760. |
[23] | Laughlin DC (2014). Applying trait-based models to achieve functional targets for theory-driven ecological restoration. Ecology Letters, 17, 771-784. |
[24] | Lavorel S, Grigulis K, McIntyre S, Williams NSG, Garden D, Dorrough J, Berman S, Quétier F, Thébault A, Bonis A (2008). Assessing functional diversity in the field—Methodology matters! Functional Ecology, 22, 134-147. |
[25] | Li W, Cheng JM, Yu KL, Epstein HE, Guo L, Jing GH, Zhao J, Du GZ (2015). Plant functional diversity can be independent of species diversity: Observations based on the impact of 4-yrs of nitrogen and phosphorus additions in an alpine meadow. PLOS ONE, 10, e0136040. DOI: 10.1371/journal.pone.0136040. |
[26] | Li XG, Zhu ZH, Zhou XS, Yuan FR, Fan RJ, Xu ML (2011). Effects of clipping, fertilizing and watering on the relationship between species diversity, functional diversity and primary productivity in alpine meadow of China. Chinese Journal of Plant Ecology, 35, 1136-1147. |
[ 李晓刚, 朱志红, 周晓松, 袁芙蓉, 樊瑞俭, 许曼丽 (2011). 刈割、施肥和浇水对高寒草甸物种多样性、功能多样性与初级生产力关系的影响. 植物生态学报, 35, 1136-1147.] | |
[27] | Maire V, Gross N, Börger L, Proulx R, Wirth C, da Silveira Pontes L, Soussana JF, Louault F (2012). Habitat filtering and niche differentiation jointly explain species relative abundance within grassland communities along fertility and disturbance gradients. New Phytologist, 196, 497-509. |
[28] | Mokany K, Ash J, Roxburgh S (2008). Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. Journal of Ecology, 96, 884-893. |
[29] | Mouchet MA, Villéger S, Mason NWH, Mouillot D (2010). Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 24, 867-876. |
[30] |
Naeem S, Wright JP (2003). Disentangling biodiversity effects on ecosystem functioning: Deriving solutions to a seemingly insurmountable problem. Ecology Letters, 6, 567-579.
DOI URL |
[31] | Orwin KH, Buckland SM, Johnson D, Turner BL, Smart S, Oakley S, Bardgett RD (2010). Linkages of plant traits to soil properties and the functioning of temperate grassland. Journal of Ecology, 98, 1074-1083. |
[32] | Pan QM, Bai YF, Wu JG, Han XG (2011). Hierarchical plant responses and diversity loss after nitrogen addition: Testing three functionally-based hypotheses in the Inner Mongolia grassland. PLOS ONE, 6, e20078. DOI: 10.1371/journal.pone.0020078. |
[33] | Pardo LH, Fenn ME, Goodale CL, Geiser LH, Driscoll CT, Allen EB, Baron JS, Bobbink R, Bowman WD, Clark CM, Emmett B, Gilliam FS, Greaver TL, Hall SJ, Lilleskov EA, Liu LL, Lynch JA, Nadelhoffer KJ, Perakis SS, Robin-Abbott MJ, Stoddard JL, Weathers KC, Dennis RL (2011). Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States. Ecological Applications, 21, 3049-3082. |
[34] | Payne RJ, Dise NB, Field CD, Dore AJ, Caporn SJ, Stevens CJ (2017). Nitrogen deposition and plant biodiversity: Past, present, and future. Frontiers in Ecology and the Environment, 15, 431-436. |
[35] | Pérez-Ramos IM, Díaz-Delgado R, de la Riva EG, Villar R, Lloret F, Marañón T (2017). Climate variability and community stability in Mediterranean shrublands: The role of functional diversity and soil environment. Journal of Ecology, 105, 1335-1346. |
[36] | Petchey OL, Gaston KJ (2002). Functional diversity (FD), species richness and community composition. Ecology Letters, 5, 402-411. |
[37] |
Prado-Junior JA, Schiavini I, Vale VS, Arantes CS, van der Sande MT, Lohbeck M, Poorter L (2016). Conservative species drive biomass productivity in tropical dry forests. Journal of Ecology, 104, 817-827.
DOI URL |
[38] | Spasojevic MJ, Suding KN (2012). Inferring community assembly mechanisms from functional diversity patterns: The importance of multiple assembly processes. Journal of Ecology, 100, 652-661. |
[39] | Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S (2005). Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proceedings of the National Academy of Sciences of the United States of America, 102, 4387-4392. |
[40] | Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008). Global change and species interactions in terrestrial ecosystems. Ecology Letters, 11, 1351-1363. |
[41] | Valencia E, Maestre FT, Le Bagousse-Pinguet Y, Quero JL, Tamme R, Börger L, García-Gómez M, Gross N (2015). Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands. New Phytologist, 206, 660-671. |
[42] |
Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892.
DOI URL |
[43] | Walker B, Kinzig A, Langridge J (1999). Original articles: Plant attribute diversity, resilience, and ecosystem function: The nature and significance of dominant and minor species. Ecosystems, 2, 95-113. |
[44] | Wan HW, Yang Y, Bai SQ, Xu YH, Bai YF (2008). Variations in leaf functional traits of six species along a nitrogen addition gradient in Leymus chinensis steppe in Inner Mongolia. Journal of Plant Ecology (Chinese version), 32, 611-621. |
[ 万宏伟, 杨阳, 白世勤, 徐云虎, 白永飞 (2008). 羊草草原群落6种植物叶片功能特性对氮素添加的响应. 植物生态学报, 32, 611-621.] | |
[45] | Xu ZW, Li MH, Zimmermann NE, Li SP, Li H, Ren HY, Sun H, Han XG, Jiang Y, Jiang L (2018). Plant functional diversity modulates global environmental change effects on grassland productivity. Journal of Ecology, 106, 1941-1951. |
[46] | Yang HJ, Li Y, Wu MY, Zhang Z, Li LH, Wan SQ (2011). Plant community responses to nitrogen addition and increased precipitation: The importance of water availability and species traits. Global Change Biology, 17, 2936-2944. |
[1] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[2] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[3] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[4] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[5] | 杨鑫, 任明迅. 环南海区域红树物种多样性分布格局及其形成机制[J]. 植物生态学报, 2023, 47(8): 1105-1115. |
[6] | 于笑, 纪若璇, 任天梦, 夏新莉, 尹伟伦, 刘超. 中国北方蒙古莸群落的分布、特征和分类[J]. 植物生态学报, 2023, 47(8): 1182-1192. |
[7] | 张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能[J]. 植物生态学报, 2023, 47(7): 895-911. |
[8] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[9] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[10] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[11] | 冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2023, 47(4): 584-596. |
[12] | 朱华, 谭运洪. 中国热带雨林的群落特征、研究现状及问题[J]. 植物生态学报, 2023, 47(4): 447-468. |
[13] | 李耀琪, 王志恒. 植物功能生物地理学的研究进展与展望[J]. 植物生态学报, 2023, 47(2): 145-169. |
[14] | 汤璐瑶, 方菁, 钱海蓉, 张博纳, 上官方京, 叶琳峰, 李姝雯, 童金莲, 谢江波. 落羽杉和池杉功能性状随高度的变异与协同[J]. 植物生态学报, 2023, 47(11): 1561-1575. |
[15] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19