植物生态学报 ›› 2017, Vol. 41 ›› Issue (2): 196-208.DOI: 10.17521/cjpe.2016.0128
翟占伟1, 龚吉蕊1,*(), 罗亲普1, 潘琰1, 宝音陶格涛2, 徐沙1, 刘敏1, 杨丽丽1
收稿日期:
2016-04-07
接受日期:
2016-12-25
出版日期:
2017-02-10
发布日期:
2017-03-16
通讯作者:
龚吉蕊
作者简介:
* 通信作者Author for correspondence (E-mail:基金资助:
Zhan-Wei ZHAI1, Ji-Rui GONG1,*(), Qin-Pu LUO1, Yan PAN1, Taogetao BAOYIN2, Sha XU1, Min LIU1, Li-Li YANG1
Received:
2016-04-07
Accepted:
2016-12-25
Online:
2017-02-10
Published:
2017-03-16
Contact:
Ji-Rui GONG
About author:
KANG Jing-yao(1991-), E-mail: 摘要:
受人类活动和气候变化的影响, 大气氮(N)沉降日益加剧, 使得草地生态系统正从自然N限制转向富营养化甚至饱和, 进而影响了草地的生长。然而, 关于优势种植物在N添加下的光合生理潜在机制的研究仍然不足。该研究以内蒙古温带典型草原优势种植物为研究对象, 通过不同水平的N养分添加实验, 探讨优势种羊草(Leymus chinensis)对N添加的光合生理响应机制。结果表明: 地上生物量随着N添加先增加后降低, 以10 g N·m-2·a?1处理增加最多。尽管25 g N·m-2·a?1处理出现下降趋势, 但与对照相比仍然显著增加了地上生物量。低N时, 植物通过把较少的N分配给羧化系统, 并降低比叶质量(LMA)使叶片获得更多的光能来适应低N生境。适量的N添加通过增加总叶绿素(Chl)的含量, 降低Chl a/b的比值来捕获更多光能; 同时增加LMA、羧化效率、最大羧化速率(Vcmax)、最大电子传递速率(Jmax), 并降低Jmax/Vcmax, 把更多的N分配给羧化系统, 提高羧化能力; 通过增加实际光化学效率、电子传递效率和光化学猝灭系数, 提高了光系统II (PSII)的光化学活性。过量的N添加对羊草的生理指标有一定抑制作用, 羧化能力降低, 导致净光合速率有所降低, 在一定程度上抑制PSII的光化学活性, 而非光化学猝灭系数以及类胡萝卜素增加起到了耗散过剩激发能的作用。N添加对羊草光合特性的影响总体表现为“适量促进, 过量抑制”。该地区羊草最适的N添加范围是5-10 g N·m-2·a?1。
翟占伟, 龚吉蕊, 罗亲普, 潘琰, 宝音陶格涛, 徐沙, 刘敏, 杨丽丽. 氮添加对内蒙古温带草原羊草光合特性的影响. 植物生态学报, 2017, 41(2): 196-208. DOI: 10.17521/cjpe.2016.0128
Zhan-Wei ZHAI, Ji-Rui GONG, Qin-Pu LUO, Yan PAN, Taogetao BAOYIN, Sha XU, Min LIU, Li-Li YANG. Effects of nitrogen addition on photosynthetic characteristics of Leymus chinensis in the temperate grassland of Nei Mongol, China. Chinese Journal of Plant Ecology, 2017, 41(2): 196-208. DOI: 10.17521/cjpe.2016.0128
全氮 TN (g·kg-1) | 全磷 TP (g·kg-1) | 全碳 TC (g·kg-1) | 全钾 TK (g·kg-1) | 全硫 TS (g·kg-1) |
---|---|---|---|---|
1.43 ± 0.03 | 0.36 ± 0.01 | 21.65 ± 0.53 | 22.71 ± 0.39 | 0.24 ± 0.01 |
表1 样地的土壤特性(平均值±标准误差, n = 6)
Table 1 Soil properties of plots (mean ± SE, n = 6)
全氮 TN (g·kg-1) | 全磷 TP (g·kg-1) | 全碳 TC (g·kg-1) | 全钾 TK (g·kg-1) | 全硫 TS (g·kg-1) |
---|---|---|---|---|
1.43 ± 0.03 | 0.36 ± 0.01 | 21.65 ± 0.53 | 22.71 ± 0.39 | 0.24 ± 0.01 |
氮处理 N treatment | CK | N1 | N2 | N3 | N4 | N5 |
---|---|---|---|---|---|---|
W (%) | 12.73 ± 0.41a | 12.83 ± 0.27a | 10.92 ± 1.67bc | 10.01 ± 0.53b | 9.61 ± 0.92bc | 9.11 ± 0.34c |
表2 不同施氮水平下样地的土壤含水量(W) (平均值±标准误差, n = 6)
Table 2 Soil water content (W) of plots under different nitrogen (N) addition levels (mean ± SE, n = 6)
氮处理 N treatment | CK | N1 | N2 | N3 | N4 | N5 |
---|---|---|---|---|---|---|
W (%) | 12.73 ± 0.41a | 12.83 ± 0.27a | 10.92 ± 1.67bc | 10.01 ± 0.53b | 9.61 ± 0.92bc | 9.11 ± 0.34c |
图1 不同施氮水平羊草的地上生物量、叶片氮含量和叶片形态特性(平均值±标准误差)。不同小写字母表示处理间差异显著(p < 0.05)。处理同表2。
Fig. 1 The aboveground biomass, leaf nitrogen content, and leaf morphological traits of Leymus chinensis under different nitrogen addition levels (mean ± SE). Different lowercase letters indicate significant differences among treatments (p < 0.05). Treatment see Table 2.
图2 不同施氮水平羊草主要叶片气体交换参数(平均值±标准误差)。不同小写字母表示处理间差异显著(p < 0.05)。处理同表2。
Fig. 2 The main leaf gas exchange parameters of Leymus chinensis under different nitrogen addition levels (mean ± SE). Different lowercase letters indicate significant differences among treatments (p < 0.05). Pn, net photosynthetic rate; Gs, stomatal conductance; Ci, intercellular CO2 concentration; Tr, transpiration rate; WUE, water use efficiency. Treatment see Table 2.
图3 不同施氮水平羊草的净光合速率(Pn)和叶片氮含量的关系。A, 净光合速率和叶片氮含量的关系。B, 净光合速率和叶片氮含量(N5处理除外)的关系。
Fig. 3 Relationships between net photosynthetic rate (Pn) and leaf nitrogen (N) content of Leymus chinensis across treatments (A) or across all nitrogen with an exception of the highest N addition (B).
图4 不同施氮水平羊草叶片色素参数(平均值±标准误差)。不同小写字母表示处理间差异显著(p < 0.05)。处理同表2。
Fig. 4 The leaf pigment parameters of Leymus chinensis under different nitrogen addition levels (mean ± SE). Different lowercase letters indicate significant differences among treatments (p < 0.05). Chl, chlorophyll; Car, carotenoids. Treatment see Table 2.
氮处理 N treatment | 最大光化学量子产量 Fv/Fm | 实际光化学量子产量 ФPSII | 电子传递速率 ETR (μmol·m-2·s-1) | 光化学淬灭系数 qP | 非光化学淬灭系数 NPQ |
---|---|---|---|---|---|
CK | 0.81 ± 0.002c | 0.23 ± 0.001a | 153.0 ± 0.82a | 0.54 ± 0.002b | 2.63 ± 0.05c |
N1 | 0.80 ± 0.001c | 0.23 ± 0.003a | 156.9 ± 2.02a | 0.55 ± 0.003ab | 3.08 ± 0.05a |
N2 | 0.82 ± 0.002a | 0.23 ± 0.004a | 157.0 ± 2.80a | 0.59 ± 0.010a | 3.11 ± 0.05a |
N3 | 0.82 ± 0.002ab | 0.24 ± 0.009a | 161.9 ± 6.18a | 0.54 ± 0.008b | 2.82 ± 0.05b |
N4 | 0.81 ± 0.004c | 0.19 ± 0.010b | 127.3 ± 6.77b | 0.46 ± 0.016c | 2.74 ± 0.09bc |
N5 | 0.81 ± 0.003abc | 0.17 ± 0.003b | 117.0 ± 1.62b | 0.44 ± 0.004c | 2.79 ± 0.05bc |
表3 不同施氮水平下羊草叶绿素荧光特性(平均值±标准误差)
Table 3 Chlorophyll a fluorescence characteristics of Leymus chinensis under different nitrogen addition levels (mean ± SE)
氮处理 N treatment | 最大光化学量子产量 Fv/Fm | 实际光化学量子产量 ФPSII | 电子传递速率 ETR (μmol·m-2·s-1) | 光化学淬灭系数 qP | 非光化学淬灭系数 NPQ |
---|---|---|---|---|---|
CK | 0.81 ± 0.002c | 0.23 ± 0.001a | 153.0 ± 0.82a | 0.54 ± 0.002b | 2.63 ± 0.05c |
N1 | 0.80 ± 0.001c | 0.23 ± 0.003a | 156.9 ± 2.02a | 0.55 ± 0.003ab | 3.08 ± 0.05a |
N2 | 0.82 ± 0.002a | 0.23 ± 0.004a | 157.0 ± 2.80a | 0.59 ± 0.010a | 3.11 ± 0.05a |
N3 | 0.82 ± 0.002ab | 0.24 ± 0.009a | 161.9 ± 6.18a | 0.54 ± 0.008b | 2.82 ± 0.05b |
N4 | 0.81 ± 0.004c | 0.19 ± 0.010b | 127.3 ± 6.77b | 0.46 ± 0.016c | 2.74 ± 0.09bc |
N5 | 0.81 ± 0.003abc | 0.17 ± 0.003b | 117.0 ± 1.62b | 0.44 ± 0.004c | 2.79 ± 0.05bc |
氮处理 N treatment | 初始羧化效率 CE (mol·m-2·s-1) | 最大羧化速率 Vcmax (μmol·m-2·s-1) | 最大电子传递速率 Jmax (μmol·m-2·s-1) | Jmax/Vcmax |
---|---|---|---|---|
CK | 0.005 ± 0.000 2f | 16.83 ± 0.49e | 16.48 ± 0.48e | 0.98 ± 0.03b |
N1 | 0.015 ± 0.000 4d | 26.14 ± 0.75d | 26.79 ± 0.77d | 1.02 ± 0.03ab |
N2 | 0.018 ± 0.000 5c | 22.98 ± 0.66d | 24.79 ± 0.72d | 1.08 ± 0.03a |
N3 | 0.045 ± 0.001 3a | 54.79 ± 1.58a | 47.80 ± 1.38a | 0.87 ± 0.03c |
N4 | 0.030 ± 0.000 9b | 40.18 ± 1.16c | 31.69 ± 0.91c | 0.79 ± 0.02d |
N5 | 0.010 ± 0.000 3e | 47.73 ± 1.38b | 36.80 ± 1.06b | 0.77 ± 0.02d |
表4 不同施氮水平下羊草叶片光合能力特性(平均值±标准误差)
Table 4 Photosynthetic capacity characteristics of Leymus chinensis under different nitrogen addition levels (mean ± SE)
氮处理 N treatment | 初始羧化效率 CE (mol·m-2·s-1) | 最大羧化速率 Vcmax (μmol·m-2·s-1) | 最大电子传递速率 Jmax (μmol·m-2·s-1) | Jmax/Vcmax |
---|---|---|---|---|
CK | 0.005 ± 0.000 2f | 16.83 ± 0.49e | 16.48 ± 0.48e | 0.98 ± 0.03b |
N1 | 0.015 ± 0.000 4d | 26.14 ± 0.75d | 26.79 ± 0.77d | 1.02 ± 0.03ab |
N2 | 0.018 ± 0.000 5c | 22.98 ± 0.66d | 24.79 ± 0.72d | 1.08 ± 0.03a |
N3 | 0.045 ± 0.001 3a | 54.79 ± 1.58a | 47.80 ± 1.38a | 0.87 ± 0.03c |
N4 | 0.030 ± 0.000 9b | 40.18 ± 1.16c | 31.69 ± 0.91c | 0.79 ± 0.02d |
N5 | 0.010 ± 0.000 3e | 47.73 ± 1.38b | 36.80 ± 1.06b | 0.77 ± 0.02d |
[1] | Aber JD, Goodale CL, Ollinger SV, Smith ML, Magill AH, Martin ME (2003). Is nitrogen deposition altering the nitrogen status of northern forests?Revista Me?dica De Chile, 53, 158-167. |
[2] | Anderson TM, Dong Y, Mcnaughton SJ (2006). Nutrient acquisition and physiological responses of dominant Serengeti grasses to variation in soil texture and grazing.Journal of Ecology, 94, 1164-1175. |
[3] | Bai WM, Wang ZW, Chen QS, Zhang WH, Li LH (2008). Spatial and temporal effects of nitrogen addition on root life span of Leymus chinensis in a typical steppe of Inner Mongolia.Functional Ecology, 22, 583-591. |
[4] | Bai X, Cheng JH, Zheng SX, Zhan SX, Bai YF (2014). Ecophysiological responses of Leymus chinensis to nitrogen and phosphorus additions in a typical steppe.Chinese Journal of Plant Ecology, 38, 103-115. (in Chinese with English abstract)[白雪, 程军回, 郑淑霞, 詹书侠, 白永飞 (2014). 典型草原建群种羊草对氮磷添加的生理生态响应. 植物生态学报, 38, 103-115.] |
[5] | Bai YF, Wu JG, Clark CM, Naeem S, Pan QM, Huang JH, Zhang LX, Han XG (2009). Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia grasslands.Global Change Biology, 16, 358-372. |
[6] | Boussadia O, Mariem FB, Mechri B, Braham W, Braham M, Hadj SBE (2008). Response to drought of two olive tree cultivars (cv Koroneki and Meski).Scientia Horticulturae, 116, 388-393. |
[7] | Bubier JL, Smith R, Juutinen S, Moore TR, Minocha R, Long S, Minocha S (2011). Effects of nutrient addition on leaf chemistry, morphology, and photosynthetic capacity of three bog shrubs.Oecologia, 167, 355-368. |
[8] | Cao CL, LI SX, Miao F (1999). The Research situation about effects of nitrogen on certain physiological and biochemical process in plants.The Journal of Northwestern Agricultural University, 20(4), 99-104. (in Chinese with English abstract)[曹翠玲, 李生秀, 苗芳 (1999). 氮素对植物某些生理生化过程影响的研究进展. 西北农业大学学报, 20(4), 99-104.] |
[9] | Chen H, Li DJ, Gurmesa GA, Yu GR, Li LH, Zhang W, Fang HJ, Mo JM (2015). Effects of nitrogen deposition on car- bon cycle in terrestrial ecosystems of China: A meta- analysis.Environmental Pollution, 206, 352-360. |
[10] | Chen SP, Bai YF, Zhang L, Han X (2005). Comparing physiological responses of two dominant grass species to nitrogen addition in Xilin River Basin of China.Environmental & Experimental Botany, 53, 65-75. |
[11] | Chen ZZ, Wang SP (2000). The Typical Grassland Ecosystem in China. Science Press, Beijing. (in Chinese)[陈佐忠, 汪诗平 (2000). 中国典型草原生态系统. 科学出版社, 北京.] |
[12] | Clark CM, Tilman D (2008). Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands.Nature, 451, 712-715. |
[13] | Demmig-Adams B, William W (1996). The role of xanthophyll cycle carotenoids in the protection of photosynthesis.Trends in Plant Science, 1, 21-26. |
[14] | Ding XH, Luo SZ, Liu JW, Li K, Liu GH (2012). Longitude gradient changes on plant community and soil stoichiometry characteristics of grassland in Hulunbeir. Acta Ecologica Sinica, 11, 3467-3476. (in Chinese with English abstract)[丁小慧, 罗淑政, 刘金巍, 李魁, 刘国华 (2012). 呼伦贝尔草地植物群落与土壤化学计量学特征沿经度梯度变化. 生态学报, 11, 3467-3476.] |
[15] | Du E, Liu X, Fang J (2014). Effects of nitrogen additions on biomass, stoichiometry and nutrient pools of moss Rhytidium rugosum in a boreal forest in Northeast China.Environmental Pollution, 188, 166-171. |
[16] | Du J, Shu S, Shao Q, An Y, Zhou H, Guo S, Sun J (2016). Mitigative effects of spermidine on photosynthesis and carbon-nitrogen balance of Cucumber seedlings under Ca(NO3)2 stress.Journal of Plant Research, 129, 1-13. |
[17] | González JA, Gallardo MG, Boero C, Cruz ML, Prado FE (2007). Altitudinal and seasonal variation of protective and photosynthetic pigments in leaves of the world’s highest elevation trees Polylepis tarapacana (Rosaceae). Acta Oecologica, 32, 36-41. |
[18] | Grassi G, Meir P, Cromer R, Tompkins D, Jarvis PG (2002). Photosynthetic parameters in seedlings of Eucalyptus grandis as affected by rate of nitrogen supply.Plant, Cell & Environment, 25, 1677-1688. |
[19] | Guo CA, Liu F, Xu XM (2006). Chlorophyll-b deficient and photosynthesis in plants.Plant Physiology Communications, 42, 967-973. (in Chinese with English abstract)[郭春爱, 刘芳, 许晓明 (2006). 叶绿素b缺失与植物的光合作用. 植物生理学通讯, 42, 967-973.] |
[20] | Guo EH, Hu D, Tian CY, Hu Y, Wang CY, Yu YY (2008). Study on the effects of soil nitrogen and moisture on plant photosynthetic physiological ecology.Journal of Anhui Agriculture Sciences, 26, 11211-11213. (in Chinese with English abstract)[郭二辉, 胡聃, 田朝阳, 胡颖, 王从彦, 于盈盈 (2008). 土壤氮素与水分对植物光合生理生态的影响研究. 安徽农业科学, 26, 11211-11213.] |
[21] | Guo TC, Feng W, Zhao HJ, Xue GD, Wang HC, Wang YH, Yao ZJ (2004). Photosynthetic characteristics of flag leaves and nitrogen effects in two winter wheat cultivars with different spike type.Acta Agronomica Sinica, 30(2), 115-121. (in Chinese with English abstract)[郭天财, 冯伟, 赵会杰, 薛国典, 王化岑, 王永华, 姚战军 (2004). 两种穗型冬小麦品种旗叶光合特性及氮素调控效应. 作物学报, 30(2), 115-121.] |
[22] | Guo X, Wang RQ, Chang RY, Liang XQ, Wang CD, Luo Y, Guo W (2014). Effects of nitrogen addition on growth and photosynthetic characteristics of Acer truncatum seedlings.Dendrobiology, 72, 151-161. |
[23] | Kitaoka S, Watanabe Y, Koike T (2009). The effects of cleared larch canopy and nitrogen supply on gas exchange and leaf traits in deciduous broad-leaved tree seedlings.Tree Physiology, 29, 1503-1511. |
[24] | Krause K, Cherubini P, Bugmann H, Schleppi P (2012). Growth enhancement of Picea abies trees under long-term, low-dose N addition is due to morphological more than to physiological changes.Tree Physiology, 32, 1471-1481. |
[25] | Lambers H, Poorter H (1992). Inherent variation in growth rate between higher plants: A search for physiological causes and ecological consequences.Advances in Ecological Research, 23, 187-261. |
[26] | Li DJ, Mo JM, Fang YT, Cai XA, Xue JH, Xu GL (2004). Effects of simulated nitrogen deposition on growth and photosynthesis of Schima superba, Castanopsis chinensis and Cryptocarya concinna seedlings.Acta Ecologica Sinica, 24, 876-882. (in Chinese with English abstract)[李德军, 莫江明, 方运霆, 蔡锡安, 薛璟花, 徐国良 (2004). 模拟氮沉降对三种南亚热带树苗生长和光合作用的影响. 生态学报, 24, 876-882.] |
[27] | Li L, Li XY, Lin LS, Wang YJ, Xue W (2011). Comparison of chlorophyll content and fluorescence parameters of six pasture species in two habitats in China.Chinese Journal of Plant Ecology, 35, 672-680. (in Chinese with English abstract)[李磊, 李向义, 林丽莎, 王迎菊, 薛伟 (2011). 两种生境条件下6种牧草叶绿素含量及荧光参数的比较. 植物生态学报, 35, 672-680.] |
[28] | Li LJ, Zeng DH, Mao R, Yu ZY (2012). Nitrogen and phosphorus resorption of Artemisia scoparia, Chenopodium acuminatum, Cannabis sativa, and Phragmites communis under nitrogen and phosphorus additions in a semiarid grassland, China.Plant, Soil & Environment, 58, 446-451. |
[29] | Li X, Feng W, Zeng XC (2006). Advances in chlorophyll fluorescence analysis and its uses.Acta Botanica Boreali- Occidentalia Sinica, 10, 2186-2196. (in Chinese with English abstract)[李晓, 冯伟, 曾晓春 (2006). 叶绿素荧光分析技术及应用进展. 西北植物学报, 10, 2186-2196.] |
[30] | Li YY, Lü XT, Wang ZW, Zhou C, Han XG (2014). Linking relative growth rates to biomass allocation: The responses of the grass Leymus chinensis to nitrogen addition.Phyton, 83, 283-289. |
[31] | Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z, Vitousek P, Erisman J, Goulding K, Christie P, Fangmeier A, Zhang F (2013). Enhanced nitrogen deposition over China.Nature, 494, 459-462. |
[32] | Liu XJ, Duan L, Mo JM, Du EZ, Shen JL, Lu XK, Zhang Y, Zhou XB, He CN, Zhang FS (2011). Nitrogen deposition and its ecological impact in China: An overview.Environmental Pollution, 159, 2251-2264. |
[33] | Liu YS, Pan QM, Zheng SX, Bai YF, Han XG (2012). Intra-seasonal precipitation amount and pattern differentially affect primary production of two dominant species of Inner Mongolia grassland.Acta Oecologica, 44, 2-10. |
[34] | Long SP, Bernacchi CJ (2003). Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error.Journal of Experimental Botany, 54, 2393-2401. |
[35] | Makhnev AK, Makhneva NE (2010). Landscape-ecological and population aspects of the strategy of restoration of disturbed lands.Contemporary Problems of Ecology, 3, 318-322. |
[36] | Mariotte P, Buttler A, Johnson D, Thébault A, Vandenberghe C (2012). Exclusion of root competition increases competitive abilities of subordinate plant species through root-shoot interactions.Journal of Vegetation Science, 23, 1148-1158. |
[37] | Moon M, Kang KS, Park IK, Kim T, Kim HS (2015). Effects of leaf nitrogen allocation on the photosynthetic nitrogen-use efficiency of seedlings of three tropical species in Indonesia.Journal of the Korean Society for Applied Biological Chemistry, 58, 1-9. |
[38] | Nicodemus MA, Salifu FK, Jacobs DF (2008). Growth, nutrition, and photosynthetic response of black walnut to varying nitrogen sources and rates.Journal of Plant Nutrition, 31, 1917-1936. |
[39] | Onoda Y, Hikosaka K, Hirose T (2004). Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency.Functional Ecology, 18, 419-425. |
[40] | Pan QM, Bai YF, Han XG, Yang JC (2005). Effects of nitrogen addition on a Leymus chinensis population in typical steppe of Inner Mongolia.Acta Phytoecologica Sinica, 29, 311-317. (in Chinese with English abstract)[潘庆民, 白永飞, 韩兴国, 杨景成 (2005). 氮素对内蒙古典型草原羊草种群的影响. 植物生态学报, 29, 311-317.] |
[41] | Peng Q, Qi YC, Dong YS, He YT, Xiao SS (2014). Litter decomposition and the C and N dynamics as affected by N additions in a semi-arid temperate steppe, Inner Mongolia of China. Journal of Arid Land, 6, 432-444. |
[42] | Schreiber U, Bilger W, Neubauer C (1995). Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. Ecological Studies Analysis & Synthesis, 100, 49-70. |
[43] | Sun L, Dong YS, Qi YC, He YT, Peng Q, Liu XC, Jia JQ, Guo SF, Cao CC (2014). Intra- and inter-annual variation of soil microbial and enzymatic response to water and nitrogen addition in a Chinese semi-arid steppe.Journal of Pure and Applied Microbiology, 8, 1339-1351. |
[44] | Thomas RQ, Canham CD, Weathers KC, Goodale CL (2010). Increased tree carbon storage in response to nitrogen deposition in the US.Nature Geoscience, 3, 13-17. |
[45] | Ülo N, Kull K (2003). Leaf structure vs. nutrient relationships vary with soil conditions in temperate shrubs and trees.Acta Oecologica, 24, 209-219. |
[46] | Wallace ZP, Lovett GM, Hart JE, Machona B (2007). Effects of nitrogen saturation on tree growth and death in a mixed-oak forest.Forest Ecology & Management, 243, 210-218. |
[47] | Wang G, Liu F (2014). Carbon allocation of Chinese pine seedlings along a nitrogen addition gradient.Forest Ecology & Management, 334, 114-121. |
[48] | Wang HZ, Han L, Xu YL, Niu JL (2014). Photosynthetic responses of the heteromorphic leaves in Populus euphratica to light intensity and CO2 concentration.Chinese Journal of Plant Ecology, 38, 1099-1109. (in Chinese with English abstract)[王海珍, 韩路, 徐雅丽, 牛建龙 (2014). 胡杨异形叶光合作用对光强与CO2浓度的响应. 植物生态学报, 38, 1099-1109.] |
[49] | Wang RZ (1997). The niche breadths and niche overlaps of main plant populations in Leymus chinensis grassland for grazing.Acta Phytoecologica Sinica, 21, 9-16. (in Chinese with English abstract)[王仁忠 (1997). 放牧影响下羊草草地主要植物种群生态位宽度与生态位重叠的研究. 植物生态学报, 21, 9-16.] |
[50] | Wang XK (2006). Principle and Technology of Plant Physiological and Biochemical Experiments. Higher Education Press, Beijing. 134-136. (in Chinese)[王学奎 (2006).植物生理生化实验原理和技术. 高等教育出版社, 北京. 134-136.] |
[51] | Wang YH, He XY, Zhou GS (2002). Study on the responses of Leymus chinensis steppe to grazing in Songnen Plain.Acta Agrestia Sinica, 10, 45-49. (in Chinese with English abstract)[王玉辉, 何兴元, 周广胜 (2002). 放牧强度对羊草草原的影响. 草地学报, 10, 45-49.] |
[52] | Warren CR, Adams MA, Chen ZL (2000). Is photosynthesis related to concentrations of nitrogen and Rubisco in leaves of Australian native plants?Functional Plant Biology, 27, 407-416. |
[53] | Warren CR, Dreyer E, Adams MA (2003). Photosynthesis- Rubisco relationships in foliage of Pinus sylvestris in response to nitrogen supply and the proposed role of Rubisco and amino acids as nitrogen stores.Tree, 17, 359-366. |
[54] | Wullschleger SD (1993). Biochemical limitations to carbon assimilation in C3 plants—A retrospective analysis of the A/Ci curves from 109 species.Journal of Experimental Botany, 44, 907-920. |
[55] | Xiao SS, Dong YS, Qi YC, Peng Q, He YT, Liu XC (2010). Effects of mineral fertilizer addition on leaf functional traits and photosynthetic characteristics of Leymus chinensis from a temperate grassland in Inner Mongolia in China.Acta Scientiae Circumstantiae, 30, 2535-2543. (in Chinese with English abstract)[肖胜生, 董云社, 齐玉春, 彭琴, 何亚婷, 刘欣超 (2010). 内蒙古温带草原羊草叶片功能特性与光合特征对外源氮输入的响应. 环境科学学报, 30, 2535-2543.] |
[56] | Xiao YG, Chen Q, Shan L, Brueck H, Dittert K, Taube F, Schnyder H (2011). Tradeoffs between nitrogen- and water-use efficiency in dominant species of the semiarid steppe of Inner Mongolia.Plant & Soil, 340, 227-238. |
[57] | Xu ZZ, Zhou GS (2006). Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis.Planta, 224, 1080-1090. |
[58] | Yao M, Rui J, Li J, Dai Y, Bai Y, Heděnec P, Wang JM, Zhang SH, Pei KQ, Liu C, Wang YF, He ZL, Frouz J, Li XZ (2014). Rate-specific responses of prokaryotic diversity and structure to nitrogen deposition in the Leymus chinensis steppe.Soil Biology & Biochemistry, 79, 81-90. |
[59] | Ye ZP, Yu Q, Kang HJ (2012). Evaluation of photosynthetic electron flow using simultaneous measurements of gas exchange and chlorophyll fluorescence under photorespiratory conditions.Photosynthetica, 50, 472-476. |
[60] | Yuan YH, Fan HB, Huang QR, Liao YC, Huang RZ (2009). Effects of long-term fertilization on rice photosynthetic traits and water use efficiency.Chinese Journal of Ecology, 28, 2239-2244. (in Chinese with English abstract)[袁颖红, 樊后保, 黄欠如, 廖迎春, 黄荣珍 (2009). 长期施肥对水稻光合特性及水分利用效率的影响. 生态学杂志, 28, 2239-2244.] |
[61] | Zhan SX, Zheng SX, Wang Y, Bai YF (2016). Response and correlation of above- and below-ground functional traits of Leymus chinensis to nitrogen and phosphorus additions.Chinese Journal of Plant Ecology, 40, 36-47. (in Chinese with English abstract)[詹书侠, 郑淑霞, 王扬, 白永飞 (2016). 羊草的地上-地下功能性状对氮磷施肥梯度的响应及关联. 植物生态学报, 40, 36-47.] |
[62] | Zhang J, Han X (2008). N2O emission from the semi-arid ecosystem under mineral fertilizer (urea and superphosphate) and increased precipitation in northern China.Atmospheric Environment, 42, 291-302. |
[63] | Zhang L, Yang YX, Zhan XY, Zhang CJ, Zhou SX, Wu DX (2010). Responses of a dominant temperate grassland plant (Leymus chinensis) to elevated carbon dioxide and nitrogen addition in China. Journal of Environmental Quality, 39, 251-259. |
[64] | Zhang T, Yang S, Guo R, Guo J (2016). Warming and nitrogen addition alter photosynthetic pigments, sugars and nutrients in a temperate meadow ecosystem.PLOS ONE, 11, e0155375. doi:10.1371/journal.pone.0155375. |
[65] | Zhang XC, Yu XF, Gao SM (2010). Effects of nitrogen application rates on photosynthetic energy utilization in wheat leaves under elevated atmospheric CO2 concentration.Chinese Journal of Plant Ecology, 34, 1196-1203. (in Chinese with English abstract)[张绪成, 于显枫, 高世铭 (2010). 高大气CO2浓度下氮素对小麦叶片光能利用的影响. 植物生态学报, 34, 1196-1203.] |
[66] | Zhang YH, He NP, Zhang GM, Huang JH, Han XG (2013). Nitrogen deposition and Leymus chinensis leaf chlorophyll content in Inner Mongolian grassland.Acta Ecologica Sinica, 33, 6786-6794. (in Chinese with English abstract)[张云海, 何念鹏, 张光明, 黄建辉, 韩兴国 (2013). 氮沉降强度和频率对羊草叶绿素含量的影响. 生态学报, 33, 6786-6794.] |
[67] | Zhang YM, Zhou GS (2012). Advances in leaf maximum carboxylation rate and its response to environmental factors.Acta Ecologica Sinica, 32, 5907-5917. (in Chinese with English abstract)[张彦敏, 周广胜 (2012). 植物叶片最大羧化速率及其对环境因子响应的研究进展. 生态学报, 32, 5907-5917.] |
[68] | Zhang ZY, Gong JR, Liu M, Huang YM, Yan X, Qi Y, Wang YH (2013). Dominant species and ecosystem gas exchange in temperate grassland under different land use patterns.Chinese Journal of Plant Ecology, 37, 718-727. (in Chinese with English abstract)[张梓瑜, 龚吉蕊, 刘敏, 黄永梅, 晏欣, 祁瑜, 王忆慧 (2013). 温带草原不同土地利用方式下优势种植物和生态系统的气体交换. 植物生态学报, 37, 718-727.] |
[69] | Zhao C, Liu Q (2009). Growth and photosynthetic responses of two coniferous species to experimental warming and nitrogen fertilization.Canadian Journal of Forest Research, 39, 1-11. |
[70] | Zhu JT, Li XY, Zhang XM, Lin LS, Yang SG (2010). Nitrogen allocation and partitioning within a leguminous and two non-leguminous plant species growing at the southern fringe of China’s Taklamakan Desert.Chinese Journal of Plant Ecology, 34, 1025-1032. (in Chinese with English abstract)[朱军涛, 李向义, 张希明, 林丽莎, 杨尚功 (2010). 塔克拉玛干沙漠南缘豆科与非豆科植物的氮分配. 植物生态学报, 34, 1025-1032.] |
[1] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[2] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[3] | 范宏坤, 曾涛, 金光泽, 刘志理. 小兴安岭不同生长型阔叶植物叶性状变异及权衡[J]. 植物生态学报, 2024, 48(3): 364-376. |
[4] | 高敏, 缑倩倩, 王国华, 郭文婷, 张宇, 张妍. 低温胁迫对不同母树年龄柠条锦鸡儿种子萌发幼苗生理和生长的影响[J]. 植物生态学报, 2024, 48(2): 201-214. |
[5] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[6] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[7] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[8] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[9] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[10] | 代景忠, 白玉婷, 卫智军, 张楚, 辛晓平, 闫玉春, 闫瑞瑞. 羊草功能性状对施肥的动态响应[J]. 植物生态学报, 2023, 47(7): 943-953. |
[11] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[12] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[13] | 罗来聪, 赖晓琴, 白健, 李爱新, 方海富, Nasir SHAD, 唐明, 胡冬南, 张令. 氮添加背景下土壤真菌和细菌对不同种源入侵植物乌桕生长特征的影响[J]. 植物生态学报, 2023, 47(2): 206-215. |
[14] | 安凡, 李宝银, 钟全林, 程栋梁, 徐朝斌, 邹宇星, 张雪, 邓兴宇, 林秋燕. 不同种源刨花楠苗木生长与主要功能性状对氮添加的响应[J]. 植物生态学报, 2023, 47(12): 1693-1707. |
[15] | 葛萍, 李昂, 王银柳, 姜良超, 牛国祥, 哈斯木其尔, 王彦兵, 薛建国, 赵威, 黄建辉. 草甸草原温室气体排放对氮添加量的非线性响应[J]. 植物生态学报, 2023, 47(11): 1483-1492. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19