植物生态学报 ›› 2020, Vol. 44 ›› Issue (6): 642-653.DOI: 10.17521/cjpe.2019.0329
李颖1, 龚吉蕊1,*(), 刘敏1, 侯向阳2, 丁勇2, 杨波1, 张子荷1, 王彪1, 朱趁趁1
收稿日期:
2019-11-30
接受日期:
2020-03-25
出版日期:
2020-06-20
发布日期:
2020-04-03
通讯作者:
* 龚吉蕊: ORCID:0000-0003-2012-2606, jrgong@bnu.edu.cn
基金资助:
LI Ying1, GONG Ji-Rui1,*(), LIU Min1, HOU Xiang-Yang2, DING Yong2, YANG Bo1, ZHANG Zi-He1, WANG Biao1, ZHU Chen-Chen1
Received:
2019-11-30
Accepted:
2020-03-25
Online:
2020-06-20
Published:
2020-04-03
Contact:
GONG Ji-Rui: ORCID:0000-0003-2012-2606, jrgong@bnu.edu.cn
Supported by:
摘要:
放牧是草原的主要利用方式, 但对牧草造成了一定的生物胁迫。面对生存压力, 牧草会通过调节初级与次级代谢过程启动防御机制。该研究以内蒙古温带典型草原优势种植物为研究对象, 通过测定其在5个放牧水平下不同营养器官中的次级代谢产物及木质素等含量, 探讨大针茅(Stipa grandis)和羊草(Leymus chinensis)的各营养器官在防御机制中的角色及其碳氮权衡策略。结果表明: 面对放牧胁迫, 大针茅和羊草会产生大量的单宁、总黄酮、酚类以及生物碱等次级代谢产物, 并以叶片为主要的合成及储存器官。中度放牧使羊草的化学防御机制得到较充分的诱导及表达。但二者地上部分木质素含量并无显著增加, 因此, 二者在避牧性机制上更倾向于化学防御而非机械防御。由于羊草有更高的氮利用效率, 这使得羊草可以通过碳氮两种代谢途径进行防御, 但大针茅在生长初期并不能将氮高效地分配到化学防御中。大针茅和羊草在生长初期面对轻度放牧胁迫, 较多的资源仍然用于初级代谢, 增加了植物耐牧性。因此, 轻度放牧有利于提高牧草的碳氮资源利用效率、提高生态系统生产力及稳定性。
李颖, 龚吉蕊, 刘敏, 侯向阳, 丁勇, 杨波, 张子荷, 王彪, 朱趁趁. 不同放牧强度下内蒙古温带典型草原优势种植物防御策略. 植物生态学报, 2020, 44(6): 642-653. DOI: 10.17521/cjpe.2019.0329
LI Ying, GONG Ji-Rui, LIU Min, HOU Xiang-Yang, DING Yong, YANG Bo, ZHANG Zi-He, WANG Biao, ZHU Chen-Chen. Defense strategies of dominant plants under different grazing intensity in the typical temperate steppe of Nei Mongol, China. Chinese Journal of Plant Ecology, 2020, 44(6): 642-653. DOI: 10.17521/cjpe.2019.0329
图1 2016年内蒙古温带典型草原研究区月平均气温和降水量示意图。
Fig. 1 Monthly precipitation and mean air temperature at the study sites in the typical temperate steppe of Nei Mongol in 2016.
图2 6月(A、B)及8月(C、D)不同放牧水平下内蒙古温带典型草原大针茅与羊草的木质素含量(平均值±标准误差)。 CK, 围封; LG, 轻度放牧; MG, 中度放牧; HG, 重度放牧; EHG, 极重度放牧。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 2 Lignin content of Stipa grandis and Leymus chinensis in the typical temperate steppe of Nei Mongol in June (A, B) and August (C, D) under different grazing levels (mean ± SE). CK, grazing exclusion; LG, light grazing; MG, moderate grazing; HG, heavy grazing; EHG, extremely heavy grazing. Different lowercase letters indicate significant differences among treatments (p < 0.05).
图3 6月(A、B)及8月(C、D)不同放牧水平下内蒙古温带典型草原大针茅与羊草的单宁含量(平均值±标准误差)。 CK, 围封; LG, 轻度放牧; MG, 中度放牧; HG, 重度放牧; EHG, 极重度放牧。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 3 Tannins content of Stipa grandis and Leymus chinensis in the typical temperate steppe of Nei Mongol in June (A, B) and August (C, D) under different grazing levels (mean ± SE). CK, grazing exclusion; LG, light grazing; MG, moderate grazing; HG, heavy grazing; EHG, extremely heavy grazing. Different lowercase letters indicate significant differences among treatments (p < 0.05).
图4 6月(A、B)及8月(C、D)不同放牧水平下内蒙古温带典型草原大针茅与羊草的总黄酮含量(平均值±标准误差)。 CK, 围封; LG, 轻度放牧; MG, 中度放牧; HG, 重度放牧; EHG, 极重度放牧。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 4 Total flavonoids contents of Stipa grandis and Leymus chinensis in the typical temperate steppe of Nei Mongol in June (A, B) and August (C, D) under different grazing levels (mean ± SE). CK, grazing exclusion; LG, light grazing; MG, moderate grazing; HG, heavy grazing; EHG, extremely heavy grazing. Different lowercase letters indicate significant differences among treatments (p < 0.05).
图5 6月(A、B)及8月(C、D)不同放牧水平下内蒙古温带典型草原大针茅与羊草的总酚含量(平均值±标准误差)。 CK, 围封; LG, 轻度放牧; MG, 中度放牧; HG, 重度放牧; EHG, 极重度放牧。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 5 Total phenols contents of Stipa grandis and Leymus chinensis in the typical temperate steppe of Nei Mongol in June (A, B) and August (C, D) under different grazing levels (mean ± SE). CK, grazing exclusion; LG, light grazing; MG, moderate grazing; HG, heavy grazing; EHG, extremely heavy grazing. Different lowercase letters indicate significant differences among treatments (p < 0.05).
图6 6月及8月不同放牧水平下内蒙古温带典型草原大针茅与羊草叶片中的生物碱含量(平均值±标准误差)。 CK, 围封; LG, 轻度放牧; MG, 中度放牧; HG, 重度放牧; EHG, 极重度放牧。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 6 Alkaloid contents of Stipa grandis and Leymus chinensis in the typical temperate steppe of Nei Mongol in June and August under different grazing levels (mean ± SE). CK, grazing exclusion; LG, light grazing; MG, moderate grazing; HG, heavy grazing; EHG, extremely heavy grazing. Different lowercase letters indicate significant differences among treatments (p < 0.05).
图7 6月(A、B)及8月(C、D)不同放牧水平下内蒙古温带典型草原大针茅与羊草叶片碳氮比(平均值±标准误差)。 CK, 围封; LG, 轻度放牧; MG, 中度放牧; HG, 重度放牧; EHG, 极重度放牧。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 7 The C:N in leafs of Stipa grandis and Leymus chinensis in the typical temperate steppe of Nei Mongol in June (A, B) and August (C, D) under different grazing levels (mean ± SE). CK, grazing exclusion; LG, light grazing; MG, moderate grazing; HG, heavy grazing; EHG, extremely heavy grazing. Different lowercase letters indicate significant differences among treatments (p < 0.05).
大针茅 S. grandis | 羊草 L. chinensis | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
单宁 Tannins | 总黄酮 Flavonoids | 总酚 Phenols | 木质素 Lignin | 总生物碱 Alkaloid | 碳氮比 C:N | 单宁 Tannins | 总黄酮 Flavonoids | 总酚 Phenols | 木质素 Lignin | 总生物碱 Alkaloid | 碳氮比 C:N | ||
大针茅 S. grandis | 单宁 Tannins | 0.800 | 0.900* | -0.400 | 0.051 | -0.300 | 0.400 | 0.400 | -0.800 | 0.600 | 0.000 | ||
总黄酮 Flavonoids | 0.900* | 0.100 | 0.154 | 0.200 | 1.000** | -0.200 | -0.400 | 0.800 | |||||
总酚 Phenols | -0.300 | 0.051 | -0.100 | -0.200 | -0.400 | 0.800 | |||||||
木质素 Lignin | -0.154 | 0.500 | -0.800 | 0.400 | |||||||||
总生物碱 Alkaloid | 0.718 | -0.800 | |||||||||||
碳氮比 C:N | |||||||||||||
羊草 L. chinensis | 单宁 Tannins | 0.900* | 0.300 | -0.200 | 0.600 | 0.500 | 0.000 | 0.600 | -1.000** | 0.400 | -0.600 | ||
总黄酮 Flavonoids | 0.600 | -0.100 | 0.700 | 0.700 | 0.800 | 0.000 | -0.800 | -0.800 | |||||
总酚 Phenols | 0.300 | 0.500 | 0.900* | -0.600 | -0.400 | -1.000** | |||||||
木质素 Lignin | 0.600 | -0.100 | -0.400 | 0.600 | |||||||||
总生物碱 Alkaloid | 0.300 | 0.400 | |||||||||||
碳氮比 C:N |
表1 6月及8月内蒙古温带典型草原大针茅与羊草叶片中防御代谢产物与C:N的相关性分析
Table 1 Correlation analysis of defense metabolites and C:N in leaves of Stipa grandis and Leymus chinensis in the typical temperate steppe of Nei Mongol in June and August
大针茅 S. grandis | 羊草 L. chinensis | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
单宁 Tannins | 总黄酮 Flavonoids | 总酚 Phenols | 木质素 Lignin | 总生物碱 Alkaloid | 碳氮比 C:N | 单宁 Tannins | 总黄酮 Flavonoids | 总酚 Phenols | 木质素 Lignin | 总生物碱 Alkaloid | 碳氮比 C:N | ||
大针茅 S. grandis | 单宁 Tannins | 0.800 | 0.900* | -0.400 | 0.051 | -0.300 | 0.400 | 0.400 | -0.800 | 0.600 | 0.000 | ||
总黄酮 Flavonoids | 0.900* | 0.100 | 0.154 | 0.200 | 1.000** | -0.200 | -0.400 | 0.800 | |||||
总酚 Phenols | -0.300 | 0.051 | -0.100 | -0.200 | -0.400 | 0.800 | |||||||
木质素 Lignin | -0.154 | 0.500 | -0.800 | 0.400 | |||||||||
总生物碱 Alkaloid | 0.718 | -0.800 | |||||||||||
碳氮比 C:N | |||||||||||||
羊草 L. chinensis | 单宁 Tannins | 0.900* | 0.300 | -0.200 | 0.600 | 0.500 | 0.000 | 0.600 | -1.000** | 0.400 | -0.600 | ||
总黄酮 Flavonoids | 0.600 | -0.100 | 0.700 | 0.700 | 0.800 | 0.000 | -0.800 | -0.800 | |||||
总酚 Phenols | 0.300 | 0.500 | 0.900* | -0.600 | -0.400 | -1.000** | |||||||
木质素 Lignin | 0.600 | -0.100 | -0.400 | 0.600 | |||||||||
总生物碱 Alkaloid | 0.300 | 0.400 | |||||||||||
碳氮比 C:N |
[1] |
Al-Saeedi AH, Hossain MA (2015). Total phenols, total flavonoids contents and free radical scavenging activity of seeds crude extracts of pigeon pea traditionally used in Oman for the treatment of several chronic diseases. Asian Pacific Journal of Tropical Disease, 5, 316-321.
DOI URL |
[2] |
Appel HM, Arnold TM, Schultz JC (2012). Effects of jasmonic acid, branching and girdling on carbon and nitrogen transport in poplar. New Phytologist, 195, 419-426.
DOI URL |
[3] |
Brandolini A, Castoldi P, Plizzari L, Hidalgo A (2013). Phenolic acids composition, total polyphenols content and antioxidant activity of Triticum monococcum, Triticum turgidum and Triticum aestivum: a two-years evaluation. Journal of Cereal Science, 58, 123-131.
DOI URL |
[4] |
Brock AK, Berger B, Schreiner M, Ruppel S, Mewis I (2018). Plant growth-promoting bacteria Kosakonia radicincitans mediate anti-herbivore defense in Arabidopsis thaliana. Planta, 248, 1383-1392.
DOI URL |
[5] |
Bryant JP, Chapin FS, Klein DR (1983). Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos, 40, 357-368.
DOI URL |
[6] |
Chen HY, Zhang JH, Huang YM, Gong JR (2014). Traits related to carbon sequestration of common plant species in a Stipa grandis steppe in Nei Mongol under different land- uses. Chinese Journal of Plant Ecology, 38, 821-832.
DOI URL |
[ 陈慧颖, 张景慧, 黄永梅, 龚吉蕊 (2014). 内蒙古大针茅草原常见植物在不同土地利用方式下的固碳相关属性. 植物生态学报, 38, 821-832.] | |
[7] |
Dong BC, Fu T, Luo FL, Yu FH (2017). Herbivory-induced maternal effects on growth and defense traits in the clonal species Alternanthera philoxeroides. Science of the Total Environment, 605-606, 114-123.
DOI URL |
[8] |
Erb M (2018). Volatiles as inducers and suppressors of plant defense and immunity—Origins, specificity, perception and signaling. Current Opinion in Plant Biology, 44, 117-121.
DOI URL PMID |
[9] |
Fuchs B, Krischke M, Mueller MJ, Krauss J (2017a). Herbivore- specific induction of defence metabolites in a grass-endophyte association. Functional Ecology, 31, 318-324.
DOI URL |
[10] |
Fuchs B, Krischke M, Mueller MJ, Krauss J (2017b). Plant age and seasonal timing determine endophyte growth and alkaloid biosynthesis. Fungal Ecology, 29, 52-58.
DOI URL |
[11] | Garland Jr T (2014). Trade-offs. Current Biology, 24, 60-61. |
[12] |
Guo Q, Major IT, Howe GA (2018). Resolution of growth- defense conflict: mechanistic insights from jasmonate signaling. Current Opinion in Plant Biology, 44, 72-81.
DOI URL PMID |
[13] |
Herms DA, Mattson WJ (1992). The dilemma of plants: to grow or defend. The Quarterly Review of Biology, 67, 283-335.
DOI URL |
[14] |
Herrero-Jáuregui C, Oesterheld M (2018). Effects of grazing intensity on plant richness and diversity: a meta-analysis. Oikos, 127, 757-766.
DOI URL |
[15] | Hu J, Hou XY, Sa RL, Li XL, Wang Z, Ding Y (2016). Regulatory effects of stip grandis on above-ground biomass of plant community in grazing ecosystem. Acta Agrestia Sinica, 24, 1-11. |
[ 胡静, 侯向阳, 萨茹拉, 李西良, 王珍, 丁勇 (2016). 大针茅对放牧生态系统植物群落地上生物量的调控作用. 草地学报, 24, 1-11.] | |
[16] |
Isah T (2019). Stress and defense responses in plant secondary metabolites production. Biological Research, 52, 39. DOI: 10.1186/s40659-019-0246-3.
DOI URL PMID |
[17] | Kabir MSH, Ahmad S, Mahamoud MS, Masum MAA, Kamal ATMM, Hoque MA, Chakrabarty N, Hasanat A, Adnan M (2015). Evaluation of Total condensed tannin content and anthelmintic activities of organic extracts of four Bangladeshi plants on Tubifex tubifex worm using in vitro method. International Journal of Pharmacy, 5, 903-910. |
[18] | Li JM, Jin ZX, Zhou Y (2007). Endangered species long Ye Torreya jackii secondary metabolic content analysis. Journal of Fujian Forestry Science and Technology, 34, 29-32. |
[ 李钧敏, 金则新, 周杨 (2007). 长叶榧不同营养器官次生代谢产物含量分析. 福建林业科技, 34, 29-32.] | |
[19] | Li LY, Song B, Chen J, Sun BD, Zhang GS, Deng H, Ding G (2018). Advance on secondary metabolites of grassland and desert plants endophytic fungi. Microbiology China, 45, 1146-1160. |
[ 李露莹, 宋波, 陈娟, 孙炳达, 张桂山, 邓晖, 丁刚 (2018). 草原与荒漠植物内生真菌次生代谢产物研究进展. 微生物学通报, 45, 1146-1160.] | |
[20] | Li SY (2013). Study on Determination of Fifteen Alkaloids and Their Distribution in Grass and Derived Products by Liquid Chromatography Tandem Mass Spectrometry. Chinese Academy of Agricultural Sciences, Beijing. |
[ 李爽跃 (2013). 牧草及草产品中有害生物碱LC-MS/MS检测方法及分布特点研究. 中国农业科学院, 北京.] | |
[21] |
Li XL, Liu ZY, Hou XY, Wu XH, Wang Z, Hu J, Wu ZN (2015). Plant functional traits and their trade-offs in response to grazing: a review. Chinese Bulletin of Botany, 50, 159-170.
DOI URL |
[ 李西良, 刘志英, 侯向阳, 吴新宏, 王珍, 胡静, 武自念 (2015). 放牧对草原植物功能性状及其权衡关系的调控. 植物学报, 50, 159-170.] | |
[22] | Lin KM, Ye FM, Lin Y, Li QS (2010). Research advances of phenolic functional mechanisms in soils and plants. Chinese Journal of Eco-Agriculture, 18, 1130-1137. |
[ 林开敏, 叶发茂, 林艳, 李卿叁 (2010). 酚类物质对土壤和植物的作用机制研究进展. 中国生态农业学报, 18, 1130-1137.] | |
[23] |
Liu M, Gong JR, Li Y, Li XB, Yang B, Zhang ZH, Yang LL, Hou XY (2019a). Growth-defense trade-off regulated by hormones in grass plants growing under different grazing intensities. Physiologia Plantarum, 166, 553-569.
DOI URL PMID |
[24] | Liu MM, Jia L, Zhang HQ, Zang XL, Zhang RM, Gao Y (2015). Mechanical damage on secondary metabolites from Artemisia frigida leaves. Journal of Zhejiang A & F University, 32, 845-852. |
[ 刘盟盟, 贾丽, 张洪芹, 臧晓琳, 张汝民, 高岩 (2015). 机械损伤对冷蒿叶片次生代谢产物的影响. 浙江农林大学学报, 32, 845-852.] | |
[25] |
Liu YY, Wang Q, Zhang ZY, Tong LJ, Wang ZQ, Li JL (2019b). Grassland dynamics in responses to climate variation and human activities in China from 2000 to 2013. Science of the Total Environment, 690, 27-39.
DOI URL |
[26] |
Louault F, Pillar VD, Aufrère J, Garnier E, Soussana JF (2005). Plant traits and functional types in response to reduced disturbance in a semi-natural grassland. Journal of Vegetation Science, 16, 151-160.
DOI URL |
[27] |
Lu H, McKnight TD (1999). Tissue-specific expression of the β-subunit of tryptophan synthase in Camptotheca acuminata, an indole alkaloid-producing plant. Plant Physiology, 120, 43-52.
DOI URL |
[28] |
Mathesius U (2018). Flavonoid functions in plants and their interactions with other organisms. Plants, 7, 30. DOI: 10.3390/plants7020030.
DOI URL |
[29] |
Mundim FM, Pringle EG (2018). Whole-plant metabolic allocation under water stress. Frontiers in Plant Science, 9, 852. DOI: 10.3389/fpls.2018.00852.
DOI URL PMID |
[30] |
Olmo-García L, Kessler N, Neuweger H, Wendt K, Olmo- Peinado J, Fernández-Gutiérrez A, Baessmann C, Carrasco- Pancorbo A (2018). Unravelling the distribution of secondary metabolites in Olea europaea L.: exhaustive characterization of eight olive-tree derived matrices by complementary platforms (LC-ESI/APCI-MS and GC-APCI-MS). Molecules, 23, 2419. DOI: 10.3390/molecules23102419.
DOI URL |
[31] | Pu JS (2016). Determination, Extraction and Concentration Analysis of Alkaloid in Mulberry Leaves. Master degree dissertation, Southwest University, Chongqing. |
[ 蒲俊松(2016). 桑叶生物碱的检测提取及含量分析. 硕士学位论文, 西南大学, 重庆.] | |
[32] | Qin HY, Li W, Dai LY (2015). Research progress of plant metabolites function on resistant response. Chinese Agricultural Science Bulletin, 31, 256-259. |
[ 覃瀚仪, 李魏, 戴良英 (2015). 植物代谢产物在抗病反应中的功能研究进展. 中国农学通报, 31, 256-259.] | |
[33] | Qin J, Han GD, Qiao J, Wu Q, Jin YX (2016). Response of Leymus chinensis above-ground biomass to grazing intensity in different grasslands of Inner Mongolia. Chinese Journal of Grassland, 38, 76-82. |
[ 秦洁, 韩国栋, 乔江, 武倩, 靳宇曦 (2016). 内蒙古不同草地类型中羊草地上生物量对放牧强度的响应. 中国草地学报, 38, 76-82.] | |
[34] |
Sasaki T, Lauenroth WK (2011). Dominant species, rather than diversity, regulates temporal stability of plant communities. Oecologia, 166, 761-768.
DOI URL |
[35] |
Smith MD, Knapp AK (2003). Dominant species maintain ecosystem function with non-random species loss. Ecology Letters, 6, 509-517.
DOI URL |
[36] |
Srinivasa YB (2018). Breaching plant defence theories: growth rates of plants directly impact the evolution of consumption rates of herbivorous insects. Current Science, 114, 258-260.
DOI URL |
[37] |
Swemmer AM, Knapp AK (2008). Defoliation synchronizes aboveground growth of co-occurring C4 grass species. Ecology, 89, 2860-2867.
DOI URL PMID |
[38] |
van Soest PJ (1967). Development of a comprehensive system of feed analyses and its application to forages. Journal of Animal Science, 26, 119-128.
DOI URL |
[39] | Xu R, Nan ZB, Zhou YF, Li CJ (2012). Distribution and seasonal dynamics of ergot alkaloids in Elymus dahuricus- endophytic fungus symbiont. Acta Prataculturae Sinica, 21, 84-92. |
[ 徐瑞, 南志标, 周雁飞, 李春杰 (2012). 披碱草内生真菌共生体中麦角生物碱的组织分布与季节动态. 草业学报, 21, 84-92.] | |
[40] |
Xu S, Gong JR, Zhang ZY, Liu M, Wang YH, Luo QP (2014). The ecological stoichiometry of dominant species in different land uses type of grassland. Acta Prataculturae Sinica, 23, 45-53.
DOI URL |
[ 徐沙, 龚吉蕊, 张梓榆, 刘敏, 王忆慧, 罗亲普 (2014). 不同利用方式下草地优势植物的生态化学计量特征. 草业学报, 23, 45-53.] | |
[41] | Yan XF, Wang Y, Li YM (2007). Plant secondary metabolism and its response to environment. Acta Ecologica Sinica, 27, 2554-2562. |
[ 阎秀峰, 王洋, 李一蒙 (2007). 植物次生代谢及其与环境的关系. 生态学报, 27, 2554-2562.] | |
[42] |
Yang L, Wen KS, Ruan X, Zhao YX, Wei F, Wang Q (2018). Response of plant secondary metabolites to environmental factors. Molecules, 23, 762. DOI: 10.3390/molecules 23040762.
DOI URL |
[43] |
Zhai ZW, Gong JR, Luo QP, Pan Y, Bao Y, Xu S, Liu M, Yang LL (2017). Effects of nitrogen addition on photosynthetic characteristics of Leymus chinensis in the temperate grassland of Nei Mongol, China. Chinese Journal of Plant Ecology, 41, 196-208.
DOI URL |
[ 翟占伟, 龚吉蕊, 罗亲普, 潘琰, 宝音陶格涛, 徐沙, 刘敏, 杨丽丽 (2017). 氮添加对内蒙古温带草原羊草光合特性的影响. 植物生态学报, 41, 196-208.] | |
[44] | Zhao G, Cui ZR (1999). Selective grazing of animals and the response of plants. Grassland of China, 21, 62-67. |
[ 赵钢, 崔泽仁 (1999). 家畜的选择性采食对草地植物的反应. 中国草地, 21, 62-67.] | |
[45] |
Zhao Q, Dixon RA (2011). Transcriptional networks for lignin biosynthesis: More complex than we thought? Trends in Plant Science, 16, 227-233.
DOI URL |
[46] |
Zhou GY, Zhou XH, He YH, Shao JJ, Hu ZH, Liu RQ, Zhou HM, Hosseinibai S (2017). Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta-analysis. Global Change Biology, 23, 1167-1179.
DOI URL PMID |
[47] |
Zhou SQ, Lou YR, Tzin V, Jander G (2015). Alteration of plant primary metabolism in response to insect herbivory. Plant Physiology, 169, 1488-1498.
DOI URL PMID |
[1] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[2] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[3] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[4] | 代景忠, 白玉婷, 卫智军, 张楚, 辛晓平, 闫玉春, 闫瑞瑞. 羊草功能性状对施肥的动态响应[J]. 植物生态学报, 2023, 47(7): 943-953. |
[5] | 何春梅, 李雨姗, 尹秋龙, 贾仕宏, 郝占庆. 秦岭皇冠暖温性落叶阔叶林优势树种的径级结构和数量特征[J]. 植物生态学报, 2023, 47(12): 1658-1667. |
[6] | 张景慧, 王铮, 黄永梅, 陈慧颖, 李智勇, 梁存柱. 草地利用方式对温性典型草原优势种植物功能性状的影响[J]. 植物生态学报, 2021, 45(8): 818-833. |
[7] | 朱蔚娜, 张国龙, 张璞进, 张迁迁, 任瑾涛, 徐步云, 清华. 大针茅草原6种主要植物叶凋落物和根系分解特征与功能性状的关系[J]. 植物生态学报, 2021, 45(6): 606-616. |
[8] | 代景忠, 白玉婷, 卫智军, 张楚, 闫瑞瑞. 切根对羊草营养生长期内植物功能性状的影响[J]. 植物生态学报, 2021, 45(12): 1292-1302. |
[9] | 温超,单玉梅,晔薷罕,张璞进,木兰,常虹,任婷婷,陈世苹,白永飞,黄建辉,孙海莲. 氮和水分添加对内蒙古荒漠草原放牧生态系统土壤呼吸的影响[J]. 植物生态学报, 2020, 44(1): 80-92. |
[10] | 张璐, 郝匕台, 齐丽雪, 李艳龙, 徐慧敏, 杨丽娜, 宝音陶格涛. 草原群落生物量和土壤有机质含量对改良措施的动态响应[J]. 植物生态学报, 2018, 42(3): 317-326. |
[11] | 朱志成, 黄银, 许丰伟, 邢稳, 郑淑霞, 白永飞. 降雨强度和时间频次对内蒙古典型草原土壤氮矿化的影响[J]. 植物生态学报, 2017, 41(9): 938-952. |
[12] | 杨雪, 申俊芳, 赵念席, 高玉葆. 不同基因型羊草数量性状的可塑性及遗传分化[J]. 植物生态学报, 2017, 41(3): 359-368. |
[13] | 翟占伟, 龚吉蕊, 罗亲普, 潘琰, 宝音陶格涛, 徐沙, 刘敏, 杨丽丽. 氮添加对内蒙古温带草原羊草光合特性的影响[J]. 植物生态学报, 2017, 41(2): 196-208. |
[14] | 岑宇, 刘美珍. 凝结水对干旱胁迫下羊草和冰草生理生态特征及叶片形态的影响[J]. 植物生态学报, 2017, 41(11): 1199-1207. |
[15] | 杨丽丽, 龚吉蕊, 王忆慧, 刘敏, 罗亲普, 徐沙, 潘琰, 翟占伟. 内蒙古温带草原不同放牧强度和围栏封育对凋落物分解的影响[J]. 植物生态学报, 2016, 40(8): 748-759. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19