植物生态学报 ›› 2021, Vol. 45 ›› Issue (6): 583-593.DOI: 10.17521/cjpe.2021.0066
桂子洋1, 秦树高1,2, 胡朝1, 白凤1, 石慧书3, 张宇清1,2,*()
收稿日期:
2021-02-26
接受日期:
2021-04-23
出版日期:
2021-06-20
发布日期:
2021-09-09
通讯作者:
张宇清
作者简介:
*(zhangyqbjfu@gmail.com)基金资助:
GUI Zi-Yang1, QIN Shu-Gao1,2, HU Zhao1, BAI Feng1, SHI Hui-Shu3, ZHANG Yu-Qing1,2,*()
Received:
2021-02-26
Accepted:
2021-04-23
Online:
2021-06-20
Published:
2021-09-09
Contact:
ZHANG Yu-Qing
Supported by:
摘要:
凝结水是半干旱地区生态系统重要的水源, 已有研究表明, 一些沙生植物可以通过叶片吸收凝结水以改善其水分状况。该研究以毛乌素沙地典型沙生灌木黑沙蒿(又称油蒿)(Artemisia ordosica)和北沙柳(Salix psammophila)为研究对象, 研究这两种植物的叶片是否具有吸收凝结水的能力, 并探究叶片吸水的途径及运移的通道。分别将黑沙蒿与北沙柳失水和未失水离体枝条置入人工模拟加湿室中, 使用高丰度氘水标记的凝结水进行浸润实验, 比对浸润前后枝条质量、叶片水及茎水氢同位素丰度变化, 确定黑沙蒿和北沙柳的叶片吸水能力; 并将盆栽黑沙蒿和北沙柳整株置入人工模拟加湿室, 使用荧光标记的凝结水进行浸润实验, 比对浸润前后叶片、小枝荧光显像, 确定黑沙蒿和北沙柳叶片吸收和运移凝结水的途径。结果显示: (1)黑沙蒿和北沙柳未失水枝条在浸润前后质量无显著差异, 黑沙蒿和北沙柳失水离体枝条在凝结水浸润后质量显著提高了2.04%和6.74%, 叶片水氘丰度提高了170.10‰和104.09‰, 茎水氘丰度提高了10.52‰和12.72‰; (2)荧光标记凝结水浸润后, 荧光示踪剂分布在黑沙蒿和北沙柳叶片的角质层、气孔、海绵组织、栅栏组织和维管束中, 黑沙蒿叶片的厚角组织中也发现了荧光示踪剂, 两种灌木小枝的表皮、韧皮部、木质部和髓中均观察到荧光。以上结果表明, 毛乌素沙地两种典型灌木叶片均具有吸收凝结水的能力, 水分亏缺植株的吸水能力更强; 两种灌木叶片通过气孔或角质层吸收凝结水, 并通过叶肉运移至维管束乃至小枝。黑沙蒿与北沙柳叶片具有的吸水功能可能是其适应干旱期水分亏缺的重要水分利用策略。
桂子洋, 秦树高, 胡朝, 白凤, 石慧书, 张宇清. 毛乌素沙地两种典型灌木叶片凝结水吸收能力及吸水途径. 植物生态学报, 2021, 45(6): 583-593. DOI: 10.17521/cjpe.2021.0066
GUI Zi-Yang, QIN Shu-Gao, HU Zhao, BAI Feng, SHI Hui-Shu, ZHANG Yu-Qing. Foliar condensate absorption and its pathways of two typical shrub species in the Mu Us Desert. Chinese Journal of Plant Ecology, 2021, 45(6): 583-593. DOI: 10.17521/cjpe.2021.0066
图1 黑沙蒿和北沙柳离体枝条浸润前后的质量变化(平均值±标准差)。**, p < 0.01。
Fig. 1 Changes in shoot mass of Artemisia ordosica and Salix psammophila before and after immersion (mean ± SD). **, p < 0.01.
图2 黑沙蒿和北沙柳在浸润前后的叶片水与茎水氢稳定同位素比值(δD)变化(平均值±标准差)。**, p < 0.01。
Fig. 2 Changes in hydrogen stable isotope ratio (δD) for leaf water and xylem water of Artemisia ordosica and Salix psammophila before and after immersion (mean ± SD). **, p < 0.01.
图3 凝结水对黑沙蒿和北沙柳叶片水与茎水的相对贡献率(平均值±标准差)。*, p < 0.05; **, p < 0.01。
Fig. 3 Relative contributions of condensate to total water in leaf and xylem of Artemisia ordosica and Salix psammophila (mean ± SD). *, p < 0.05; **, p < 0.01.
图4 黑沙蒿和北沙柳叶面及气孔形态。A, 黑沙蒿叶表。B, C, 黑沙蒿气孔。D, 北沙柳叶片背面。E, 北沙柳叶片腹面。F, 北沙柳叶片气孔。
Fig. 4 Leaf surface and stomata of Artemisia ordosica and Salix psammophila. A, Leaf surface of A. ordosica. B, C, Stomata of A. ordosica. D, Abaxial side of leaf of S. psammophila. E, Adaxial side of leaf of S. psammophila. F, Stomata of S. psammophila.
图5 浸润前后黑沙蒿和北沙柳叶片横切面荧光示踪。A, E, 浸润前黑沙蒿和北沙柳叶片横切面荧光示踪。B, F, 浸润后黑沙蒿和北沙柳叶片横切面荧光示踪。C, G, 浸润前黑沙蒿和北沙柳小枝横截面荧光示踪。D, H, 浸润后黑沙蒿和北沙柳小枝横切面荧光示踪。Ca, 厚角组织; Ct, 角质层; Pc, 栅栏组织; Ph, 韧皮部; Pi, 髓; Sc, 海绵组织; Vb, 维管束; Xl, 木质部。
Fig. 5 Cross-sections of leaf and twig of Artemisia ordosica and Salix psammophila in fluorescent tracing before and after immersion. A, E, Cross-sections of the leaf of A. ordosica and S. psammophila before immersion. B, F, Cross-sections of the leaf of A. ordosica and S. psammophila after immersion. C, G, Cross-sections of the twig of A. ordosica and S. psammophila before immersion. D, H, Cross-sections of the twig of A. ordosica and S. psammophila after immersion. Ca, collenchyma; Ct, cuticles; Pc, palisade cells; Ph, phloem; Pi, pith; Sc, spongy mesophyll; Vb, vascular bundle; Xl, xylem.
图6 黑沙蒿和北沙柳叶片横切面荧光示踪(激光共聚焦)。A, D, 黑沙蒿和北沙柳叶片横切面明场+荧光。B, E, 黑沙蒿和北沙柳叶片横切面荧光示踪。C, F, 黑沙蒿和北沙柳叶片横切面荧光明亮部位。Ca, 厚角组织; Ct, 角质层; Pc, 栅栏组织; Sc, 海绵组织; St, 气孔; Vb, 维管束。
Fig. 6 Cross-sections of leaf of Artemisia ordosica and Salix psammophila in fluorescent tracing (confocal laser scanning). A, D, Cross-sections of the leaf of A. ordosica and S. psammophil under fluorescence and bright light. B, E, Cross-sections of the leaf of A. ordosica and S. psammophil under fluorescence. C, F, Fluorescent bright spot in cross-sections of the leaf of A. ordosica and S. psammophil under fluorescence. Ca, collenchyma; Ct, cuticles; Pc, palisade cells; Sc, spongy mesophyll; St, stomata; Vb, vascular bundle.
[1] |
Bai YX, She WW, Michalet R, Zheng J, Qin SG, Zhang YQ (2018). Benefactor facilitation and beneficiary feedback effects drive shrub-dominated community succession in a semi-arid dune ecosystem. Applied Vegetation Science, 21, 595-606.
DOI URL |
[2] | Berry ZC, Emery NC, Gotsch SG, Goldsmith GR (2019). Foliar water uptake: processes, pathways, and integration into plant water budgets. Plant, Cell & Environment, 42, 410-423. |
[3] |
Berry ZC, Hughes NM, Smith WK (2014). Cloud immersion: an important water source for spruce and fir saplings in the southern Appalachian Mountains. Oecologia, 174, 319-326.
DOI URL |
[4] | Brewer CA, Smith WK, Vogelmann TC (1991). Functional interaction between leaf trichomes, leaf wettability and the optical properties of water droplets. Plant, Cell & Environment, 14, 955-962. |
[5] |
Burkhardt J, Basi S, Pariyar S, Hunsche M (2012). Stomatal penetration by aqueous solutions—An update involving leaf surface particles. New Phytologist, 196, 774-787.
DOI PMID |
[6] |
Burkhardt J, Kaiser H, Kappen L, Goldbach HE (2001). The possible role of aerosols on stomatal conductivity for water vapour. Basic and Applied Ecology, 2, 351-364.
DOI URL |
[7] |
Caird MA, Richards JH, Donovan LA (2007). Nighttime stomatal conductance and transpiration in C3 and C4 plants. Plant Physiology, 143, 4-10.
DOI URL |
[8] | Cassana FF, Eller CB, Oliveira RS, Dillenburg LR (2016). Effects of soil water availability on foliar water uptake of Araucaria angustifolia. Plant and Soil, 399, 147-157. |
[9] |
Cavallaro A, Carbonell Silleta L, Pereyra DA, Goldstein G, Scholz FG, Bucci SJ (2020). Foliar water uptake in arid ecosystems: seasonal variability and ecophysiological consequences. Oecologia, 193, 337-348.
DOI PMID |
[10] | Chen D, Zhou HY, Li PG, Chen YL, Wang YL, Zhao X(2015). Circadian variations and regulation mechanism of eco-physiological characteristics of Artemisia ordosica and Caragana korshinskii. Journal of Desert Research, 35, 1549-1556. |
[ 陈栋, 周海燕, 李培广, 陈永乐, 王艳莉, 赵昕(2015). 油蒿(Artemisia ordosica)和柠条(Caragana korshinskii)生理生态特性的昼夜变化特征与调节机制. 中国沙漠, 35, 1549-1556.] | |
[11] |
Cheng XL, An SQ, Li B, Chen JQ, Lin GH, Liu YH, Luo YQ, Liu SR (2006). Summer rain pulse size and rainwater uptake by three dominant desert plants in a desertified grassland ecosystem in northwestern China. Plant Ecology, 184, 1-12.
DOI URL |
[12] |
Dawson TE, Ehleringer JR (1993). Isotopic enrichment of water in the “woody” tissues of plants: implications for plant water source, water uptake, and other studies which use the stable isotopic composition of cellulose. Geochimica et Cosmochimica Acta, 57, 3487-3492.
DOI URL |
[13] |
Dongmann G, Nürnberg HW, Förstel H, Wagener K (1974). On the enrichment of H218O in the leaves of transpiring plants. Radiation and Environmental Biophysics, 11, 41-52.
PMID |
[14] |
Eller CB, Lima AL, Oliveira RS (2016). Cloud forest trees with higher foliar water uptake capacity and anisohydric behavior are more vulnerable to drought and climate change. New Phytologist, 211, 489-501.
DOI URL |
[15] |
Goldsmith GR, Lehmann MM, Cernusak LA, Arend M, Siegwolf RTW (2017). Inferring foliar water uptake using stable isotopes of water. Oecologia, 184, 763-766.
DOI PMID |
[16] |
Goldsmith GR, Matzke NJ, Dawson TE (2013). The incidence and implications of clouds for cloud forest plant water relations. Ecology Letters, 16, 307-314.
DOI PMID |
[17] |
Gong XW, Lü GH, He XM, Sarkar B, Yang XD (2019). High air humidity causes atmospheric water absorption via assimilating branches in the deep-rooted tree Haloxylon ammodendron in an arid desert region of northwest China. Frontiers in Plant Science, 10, 573. DOI: 10.3389/fpls2019.00573.
DOI URL |
[18] | Gotsch SG, Asbjornsen H, Holwerda F, Goldsmith GR, Weintraub AE, Dawson TE (2014). Foggy days and dry nights determine crown-level water balance in a seasonal tropical montane cloud forest. Plant, Cell & Environment, 37, 261-272. |
[19] |
Gotsch SG, Nadkarni N, Darby A, Glunk A, Dix M, Davidson K, Dawson TE (2015). Life in the treetops: ecophysiological strategies of canopy epiphytes in a tropical montane cloud forest. Ecological Monographs, 85, 393-412.
DOI URL |
[20] |
Guo XN, Zha TS, Jia X, Wu B, Feng W, Xie J, Gong JN, Zhang YQ, Peltola H (2016). Dynamics of dew in a cold desert-shrub ecosystem and its abiotic controls. Atmosphere, 7, 32. DOI: 10.3390/atmos7030032.
DOI URL |
[21] | Guo XN(2017). Dynamics and Environmental Control of Nocturnal Vapor Exchange in a Desert Shrub Ecosystem in Mu Us Desert. PhD dissertation, Beijing Forestry University,Beijing. |
[ 郭晓楠(2017). 毛乌素沙地沙生灌木生态系统夜间水汽交换过程与环境控制. 博士学位论文, 北京林业大学, 北京.] | |
[22] | Hales S (1727). Vegetable Staticks. Isaac Newton, London. |
[23] | Hao XM, Li C, Guo B, Ma JX, Ayup M, Chen ZS (2012). Dew formation and its long-term trend in a desert riparian forest ecosystem on the eastern edge of the Taklimakan Desert in China. Journal of Hydrology, 472-473, 90-98. |
[24] | He JS, Chen WL, Wang XL(1994). Morphological and anatomical features of quercus section suber and its adaptation to the ecological environment. Acta Phytoecologica Sinica, 18, 219-227. |
[ 贺金生, 陈伟烈, 王勋陵(1994). 高山栎叶的形态结构及其与生态环境的关系. 植物生态学报, 18, 219-227.] | |
[25] |
Jia X, Zha TS, Gong JN, Zhang YQ, Wu B, Qin SG, Peltola H (2018). Multi-scale dynamics and environmental controls on net ecosystem CO2 exchange over a temperate semiarid shrubland. Agricultural and Forest Meteorology, 259, 250-259.
DOI URL |
[26] | Kim K, Lee X (2011). Transition of stable isotope ratios of leaf water under simulated dew formation. Plant, Cell & Environment, 34, 1790-1801. |
[27] |
Laur J, Hacke UG (2014). Exploring Picea glauca aquaporins in the context of needle water uptake and xylem refilling. New Phytologist, 203, 388-400.
DOI URL |
[28] | Li LC, Gui ZY, Qin SG, Zhang YQ, Liu L, Yang KJ(2021). Foliar condensate absorption capacity of four typical plant species and their physiological responses to water in the Mu Us Sandy Land of northwestern China. Journal of Beijing Forestry University, 43(2), 72-80. |
[ 李鹭辰, 桂子洋, 秦树高, 张宇清, 刘靓, 杨凯捷(2021). 毛乌素沙地4种典型植物叶片凝结水吸收能力及其水分生理响应. 北京林业大学学报, 43(2), 72-80.] | |
[29] |
Liu MZ, Cen Y, Wang CD, Gu X, Bowler P, Wu DX, Zhang L, Jiang GM, Beysens D (2020). Foliar uptake of dew in the sandy ecosystem of the Mongolia Plateau: a life-sustaining and carbon accumulation strategy shared differently by C3 and C4 grasses. Agricultural and Forest Meteorology, 287, 107941. DOI: 10.1016/j.agrformet.2020.107941.
DOI URL |
[30] | Liu WJ, Zeng JM, Wang CM, Li HM, Duan WP(2001). On the relationship between forests and occult precipitation (dew and fog precipitation). Journal of Natural Resources, 16, 571-575. |
[ 刘文杰, 曾觉民, 王昌命, 李红梅, 段文平(2001). 森林与雾露水关系研究进展. 自然资源学报, 16, 571-575.] | |
[31] |
Malek E, McCurdy G, Giles B (1999). Dew contribution to the annual water balances in semi-arid desert valleys. Journal of Arid Environments, 42, 71-80.
DOI URL |
[32] | Martin CE, von Willert AD (2000). Leaf epidermal hydathodes and the ecophysiological consequences of foliar water uptake in species of Crassula from the Namib Desert in southern Africa. Plant Biology, 2, 229-242. |
[33] |
Mayr S, Schmid P, Laur J, Rosner S, Charra-Vaskou K, Dämon B, Hacke UG (2014). Uptake of water via branches helps timberline conifers refill embolized xylem in late winter. Plant Physiology, 164, 1731-1740.
DOI URL |
[34] |
McCulloh KA, Johnson DM, Meinzer FC, Lachenbruch B (2011). An annual pattern of native embolism in upper branches of four tall conifer species. American Journal of Botany, 98, 1007-1015.
DOI URL |
[35] |
Mitchell D, Henschel JR, Hetem RS, Wassenaar TD, Strauss WM, Hanrahan SA, Seely MK (2020). Fog and fauna of the Namib Desert: past and future. Ecosphere, 11, e02996. DOI: 10.1002/ecs2.2996.
DOI |
[36] |
Munné-Bosch S, Alegre L (1999). Role of dew on the recovery of water-stressed Melissa officinalis L. plants. Journal of Plant Physiology, 154, 759-766.
DOI URL |
[37] | Pan LZ, Guo W, Wang T, Li YP, Yang SJ(2021). Research progress on foliar water uptake. Plant Physiology Journal, 57, 19-32. |
[ 潘志立, 郭雯, 王婷, 李永萍, 杨石建(2021). 叶片吸收水分的研究进展. 植物生理学报, 57, 19-32.] | |
[38] | Ren Y, Wei CG, Guo XY(2021). Comparative analysis on stomatal characters of six desert plants’ leaves. Journal of Inner Mongolia Agriculural University, 42(2), 21-26. |
[ 任昱, 魏春光, 郭小宇(2021). 6种荒漠植物叶片气孔性状比较分析. 内蒙古农业大学学报, 42(2), 21-26.] | |
[39] |
Riederer M, Schreiber L (2001). Protecting against water loss: analysis of the barrier properties of plant cuticles. Journal of Experimental Botany, 52, 2023-2032.
PMID |
[40] |
Schönherr J (2006). Characterization of aqueous pores in plant cuticles and permeation of ionic solutes. Journal of Experimental Botany, 57, 2471-2491.
PMID |
[41] |
Schreel JDM, Steppe K (2020). Foliar water uptake in trees: negligible or necessary? Trends in Plant Science, 25, 590-603.
DOI PMID |
[42] | Schreel JDM, van de Wal BAE, Hervé-Fernandez P, Boeckx P, Steppe K (2019a). Hydraulic redistribution of foliar absorbed water causes turgor-driven growth in mangrove seedlings. Plant, Cell & Environment, 42, 2437-2447. |
[43] |
Schreel JDM, von der Crone JS, Kangur O, Steppe K (2019b). Influence of drought on foliar water uptake capacity of temperate tree species. Forests, 10, 562. DOI: 10.3390/f10070562.
DOI URL |
[44] |
Schultz NM, Griffis TJ, Lee X, Baker JM (2011). Identification and correction of spectral contamination in 2H/1H and 18O/16O measured in leaf, stem, and soil water. Rapid Communications in Mass Spectrometry, 25, 3360-3368.
DOI URL |
[45] |
Snyder KA, Richards JH, Donovan LA (2003). Night-time conductance in C3 and C4 species: Do plants lose water at night? Journal of Experimental Botany, 54, 861-865.
PMID |
[46] |
Sparks JP, Campbell GS, Black AR (2001). Water content, hydraulic conductivity, and ice formation in winter stems of Pinus contorta: a TDR case study. Oecologia, 127, 468-475.
DOI PMID |
[47] | Wang F, Guo SJ, Han FG, Wang FL, Zhang WX, Zhang YN(2020). Study on leaf water uptake traits of desert plants in Minqin. Arid Zone Research, 37, 1256-1263. |
[ 王飞, 郭树江, 韩福贵, 王方琳, 张卫星, 张裕年(2020). 民勤荒漠植物叶片水分吸收性状研究. 干旱区研究, 37, 1256-1263.] | |
[48] |
Wang HX, Ding J, Dai LM, Wang XG, Lin T (2010). Directional water-transfer through fabrics induced by asymmetric wettability. Journal of Materials Chemistry, 20, 7938-7940.
DOI URL |
[49] |
Wang XH, Xiao HL, Cheng YB, Ren J (2016a). Leaf epidermal water-absorbing scales and their absorption of unsaturated atmospheric water in Reaumuria soongorica, a desert plant from the northwest arid region of China. Journal of Arid Environments, 128, 17-29.
DOI URL |
[50] |
Wang XH, Xiao HL, Ren J, Cheng YB, Yang Q (2016b). An ultrasonic humidification fluorescent tracing method for detecting unsaturated atmospheric water absorption by the aerial parts of desert plants. Journal of Arid Land, 8, 272-283.
DOI URL |
[51] | West AG, Goldsmith GR, Matimati I, Dawson TE (2011). Spectral analysis software improves confidence in plant and soil water stable isotope analyses performed by isotope ratio infrared spectroscopy (IRIS). Rapid Communications in Mass Spectrometry, 25, 2268-2274. |
[52] |
Yan X, Zhou MX, Dong XC, Zou SB, Xiao HL, Ma XF (2015). Molecular mechanisms of foliar water uptake in a desert tree. AoB Plants, 7, plv129. DOI: 10.1093/aobpla/plv129.
DOI |
[53] | Yang LZ, Feng L, Yang GS, Huang L(2020). Water absorption potential and influencing factors of leaf in Caragana korshinskii, Artemisia ordosica, Hedysarum scoparium in a revegetated area of the Tengger Desert, China. Journal of Desert Research, 40, 214-221. |
[ 杨利贞, 冯丽, 杨贵森, 黄磊(2020). 柠条(Caragana korshinskii)、油蒿(Artemisia ordosica)、花棒(Hedysarum scoparium)叶片吸水潜力及影响因素. 中国沙漠, 40, 214-221.] | |
[54] | Yang Q(2016). Effect of Rainfall on Transpiration of Artemisia ordosica and Salix psammophila in the Mu Us Desert. Master degree dissertation, Beijing Forestry University, Beijing. |
[ 杨强(2016). 降雨对毛乌素沙地油蒿和沙柳蒸腾特性的影响. 硕士学位论文, 北京林业大学, 北京.] | |
[55] |
Yates DJ, Hutley LB (1995). Foliar uptake of water by wet leaves of Sloanea woollsii, an Australian subtropical rainforest tree. Australian Journal of Botany, 43, 157. DOI: 10.1071/bt9950157.
DOI URL |
[56] | Yin LH, Huang JT, Wang XY, Ma HY, Zhang J, Dong JQ(2016). Analyses on change in leaf water potential of four species in Maowusu sandland and its influence factors. Journal of Plant Resources and Environment, 25, 17-23. |
[ 尹立河, 黄金廷, 王晓勇, 马洪云, 张俊, 董佳秋(2016). 毛乌素沙地4种植物叶水势变化及其影响因素分析. 植物资源与环境学报, 25, 17-23.] | |
[57] |
Zangvil A (1996). Six years of dew observations in the Negev Desert, Israel. Journal of Arid Environments, 32, 361-371.
DOI URL |
[58] |
Zhang J, Zhang YM, Downing A, Cheng JH, Zhou XB, Zhang BC (2009). The influence of biological soil crusts on dew deposition in Gurbantunggut Desert, Northwestern China. Journal of Hydrology, 379, 220-228.
DOI URL |
[59] |
Zheng XJ, Li S, Li Y(2011). Leaf water uptake strategy of desert plants in the Junggar Basin, China. Chinese Journal of Plant Ecology, 35, 893-905.
DOI URL |
[ 郑新军, 李嵩, 李彦(2011). 准噶尔盆地荒漠植物的叶片水分吸收策略. 植物生态学报, 35, 893-905.] | |
[60] | Zhu YJ, Jia ZQ, Lu Q, Hao YG, Zhang JB, Li L, Qi YL(2010). Water use strategy of five shrubs in Ulanbuh Desert. Scientia Silvae Sinicae, 46(4), 15-21. |
[ 朱雅娟, 贾志清, 卢琦, 郝玉光, 张景波, 李磊, 綦艳林(2010). 乌兰布和沙漠5种灌木的水分利用策略. 林业科学, 46(4), 15-21.] | |
[61] |
Zhuang YL, Ratcliffe S (2012). Relationship between dew presence and Bassia dasyphylla plant growth. Journal of Arid Land, 4, 11-18.
DOI URL |
[62] | Zhuang YL, Zhao WZ(2010). Experimental study of effects of artificial dew on Bassia dasyphylla and Agriophyllum squarrosum. Journal of Desert Research, 30, 1068-1074. |
[ 庄艳丽, 赵文智(2010). 荒漠植物雾冰藜和沙米叶片对凝结水响应的模拟实验. 中国沙漠, 30, 1068-1074.] |
[1] | 代远萌 李满乐 徐铭泽 田赟 赵洪贤 高圣杰 郝少荣 刘鹏 贾昕 查天山. 毛乌素沙地沙丘不同固定阶段黑沙蒿叶性状特征研究[J]. 植物生态学报, 2022, 46(11): 1376-1387. |
[2] | 张振振, 杨轲嘉, 顾宇璐, 赵平, 欧阳磊. 模拟降雨格局变化对亚热带地区两树种液流特征的影响[J]. 植物生态学报, 2019, 43(11): 988-998. |
[3] | 岑宇, 刘美珍. 凝结水对干旱胁迫下羊草和冰草生理生态特征及叶片形态的影响[J]. 植物生态学报, 2017, 41(11): 1199-1207. |
[4] | 闫姣,贺学礼,张亚娟,许伟,张娟,赵丽莉. 荒漠北沙柳根系丛枝菌根真菌和黑隔内生真菌定殖状况[J]. 植物生态学报, 2014, 38(9): 949-958. |
[5] | 郑新军, 李嵩, 李彦. 准噶尔盆地荒漠植物的叶片水分吸收策略[J]. 植物生态学报, 2011, 35(9): 893-905. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19