植物生态学报 ›› 2019, Vol. 43 ›› Issue (11): 988-998.DOI: 10.17521/cjpe.2019.0128
所属专题: 全球变化与生态系统
收稿日期:
2019-05-28
接受日期:
2019-11-07
出版日期:
2019-11-20
发布日期:
2020-03-26
通讯作者:
张振振
基金资助:
ZHANG Zhen-Zhen1,*(),YANG Ke-Jia1,GU Yu-Lu1,ZHAO Ping2,OUYANG Lei2
Received:
2019-05-28
Accepted:
2019-11-07
Online:
2019-11-20
Published:
2020-03-26
Contact:
ZHANG Zhen-Zhen
Supported by:
摘要:
在全球变化的影响下, 中国亚热带地区近几十年降水格局发生了急剧变化。这种变化对亚热带常绿阔叶林植物的生长和森林水分平衡的影响尚不清楚。为此, 该研究从植物整树蒸腾角度出发, 通过在天然次生林中进行人工隔除降雨模拟降水格局变化, 研究降水变化对植物水分利用的影响。试验于2012年9月至2014年12月在广东鹤山森林生态系统国家野外科学观测研究站内的常绿阔叶林内进行, 通过林下搭建遮雨棚, 截留干季(10月至次年3月)的降雨, 并在湿季(次年4至9月)等量返还到样地中, 在保证总降水量不变的前提下模拟干季更干、湿季更湿(DD)的降雨格局变化。在此期间对样地内的木荷(Schima superba)与火力楠(Michelia macclurei)树干液流特征进行连续监测。运用独立样本t检验对对照组(AC)两个树种间的平均最大液流通量密度(¯JS)差异性进行分析, 并将DD处理下两个树种的¯JS与AC进行对比, 来检验隔除降雨对森林蒸腾的效应。结果表明: 当光合有效辐射(PAR)大于1 100 μmol·m -2·s -1时, 对照样地火力楠和木荷的¯JS分别为(49.5 ± 1.7)和(43.6 ± 2.0) mL∙m -2∙s -1, 且前者表现出对光合有效辐射(PAR)更强的敏感性。截留降雨处理开始后(2012-10), 两个树种DD与AC处理的¯JS比值(DD:AC)均先减小后增加, 其中木荷的比值从处理前的0.74下降到了第1次截留降雨处理期(2012-10至2013-03)的0.68, 增加到了第2次截留降雨处理期(2013-10至2014-03)的0.93以及第3次截留降雨处理期(2014-10至2014-11)的1.04; 火力楠则从处理前的1.00下降到了第1次截留降雨处理期的0.94, 在第2次截留降雨处理期增长到1.06, 变化幅度小于木荷。此外, 在第3次截留降雨处理期, 木荷在相同的水汽压亏缺及PAR下能够保持更高的¯JS。这些结果表明, 短期干旱事件会促使森林蒸腾急剧下降, 然而在长期干旱下, 植物会通过提高¯JS来弥补干旱带来的损失, 而木荷由于具有较大的¯JS可塑性, 从而使其在干旱条件下维持更高的水分传输速率。
张振振, 杨轲嘉, 顾宇璐, 赵平, 欧阳磊. 模拟降雨格局变化对亚热带地区两树种液流特征的影响. 植物生态学报, 2019, 43(11): 988-998. DOI: 10.17521/cjpe.2019.0128
ZHANG Zhen-Zhen, YANG Ke-Jia, GU Yu-Lu, ZHAO Ping, OUYANG Lei. Effects of simulated changes in precipitation pattern on sap flux in two tree species in subtropical region. Chinese Journal of Plant Ecology, 2019, 43(11): 988-998. DOI: 10.17521/cjpe.2019.0128
图1 降雨季节分配变化模拟试验设计示意图。隔除降雨时间: DD(ED): 10月-次年3月(4-5月); 增加降雨时间: 6-9月。AC, 对照; DD, 干季更干, 湿季更湿; ED, 延长干季。
Fig. 1 Experimental designs for the “simulated seasonal changes in precipitation”. Throughfall exclusion from October to March of the following year (DD) and from April to May (ED). Reapplication of throughfall rainwater from June to September. AC, control; DD, drier dry season and wetter wet season; ED, extended dry season.
DD | AC | ||||||||
---|---|---|---|---|---|---|---|---|---|
物种 Species | I | II | III | IV | I | II | III | IV | |
数量 N | SS | 3 | 1 | 3 | 0 | 3 | 1 | 2 | 3 |
MM | 0 | 3 | 3 | 6 | 3 | 5 | 4 | 3 | |
胸径 DBH (cm) | SS | 14.02 ± 0.93 (0.13) | 12.93 ± 1.17 (0.15) | ||||||
MM | 19.02 ± 1.43 (0.09) | 17.53 ± 1.35 (0.11) | |||||||
树高 H (m) | SS | 7.02 ± 0.48 (0.11) | 7.04 ± 0.5 (0.10) | ||||||
MM | 13.59 ± 0.51 (0.12) | 9.43 ± 0.64 (0.13) | |||||||
边材厚度 Sapwood depth (cm) | SS | 5.5-6.3 | |||||||
MM | 3.5-4.2 | ||||||||
边材密度 Sapwood density (g·cm-3) | SS | 0.61 ± 0.03 (0.05) | |||||||
MM | 0.53 ± 0.03 (0.06) |
表1 截留降雨处理和对照组不同树种在鹤山实验站各区组中的个体数量、胸径及树高(平均值±标准偏差)
Table 1 The number of trees and tree diameter at breast height (DBH), tree height for different species in the drier dry season and wetter wet season (DD) and control (AC) treatments (mean ± SD) in each block in Heshan experimental station
DD | AC | ||||||||
---|---|---|---|---|---|---|---|---|---|
物种 Species | I | II | III | IV | I | II | III | IV | |
数量 N | SS | 3 | 1 | 3 | 0 | 3 | 1 | 2 | 3 |
MM | 0 | 3 | 3 | 6 | 3 | 5 | 4 | 3 | |
胸径 DBH (cm) | SS | 14.02 ± 0.93 (0.13) | 12.93 ± 1.17 (0.15) | ||||||
MM | 19.02 ± 1.43 (0.09) | 17.53 ± 1.35 (0.11) | |||||||
树高 H (m) | SS | 7.02 ± 0.48 (0.11) | 7.04 ± 0.5 (0.10) | ||||||
MM | 13.59 ± 0.51 (0.12) | 9.43 ± 0.64 (0.13) | |||||||
边材厚度 Sapwood depth (cm) | SS | 5.5-6.3 | |||||||
MM | 3.5-4.2 | ||||||||
边材密度 Sapwood density (g·cm-3) | SS | 0.61 ± 0.03 (0.05) | |||||||
MM | 0.53 ± 0.03 (0.06) |
补水量 Water input (mm) | 土壤含水量 Soil water content (%) | |||
---|---|---|---|---|
0-20 cm | 50 cm | |||
湿季增雨 Irrigated in wet season | DD1 | 370.56 | 35.12 | 39.34 |
DD2 | 370.56 | 33.85 | 38.69 | |
DD3 | 370.56 | |||
DD4 | 370.56 | |||
AC1 | 0 | 34.98 | 37.79 | |
AC2 | 0 | 34.13 | 38.55 | |
AC3 | 0 | |||
AC4 | 0 | |||
干季减雨 Excluded in dry season | DD1 | -533.25 | 22.15 | 31.04 |
DD2 | -496.89 | 21.64 | 30.61 | |
DD3 | -499.37 | |||
DD4 | -513.80 | |||
AC1 | 0 | 29.59 | 33.91 | |
AC2 | 0 | 27.54 | 35.68 | |
AC3 | 0 | |||
AC4 | 0 |
表2 遮雨处理和对照组湿/干季降雨的灌溉/排除量及相应的土壤含水量
Table 2 The excluded/irrigated precipitation in wet/dry season and the corresponding soil water content in the control and drier dry season and wetter wet season treatments
补水量 Water input (mm) | 土壤含水量 Soil water content (%) | |||
---|---|---|---|---|
0-20 cm | 50 cm | |||
湿季增雨 Irrigated in wet season | DD1 | 370.56 | 35.12 | 39.34 |
DD2 | 370.56 | 33.85 | 38.69 | |
DD3 | 370.56 | |||
DD4 | 370.56 | |||
AC1 | 0 | 34.98 | 37.79 | |
AC2 | 0 | 34.13 | 38.55 | |
AC3 | 0 | |||
AC4 | 0 | |||
干季减雨 Excluded in dry season | DD1 | -533.25 | 22.15 | 31.04 |
DD2 | -496.89 | 21.64 | 30.61 | |
DD3 | -499.37 | |||
DD4 | -513.80 | |||
AC1 | 0 | 29.59 | 33.91 | |
AC2 | 0 | 27.54 | 35.68 | |
AC3 | 0 | |||
AC4 | 0 |
图2 对照处理下火力楠和木荷的平均最大液流通量密度(¯JS)(11:00-13:00期间的平均值±标准偏差)的年动态变化及日间¯JS (2013年10月1日-次年3月31日)边界线分析(上边界)中光合有效辐射(PAR)之间的拟合关系。
Fig. 2 Annual dynamics of mean maximum sap flux density (¯JS)(average values between 11:00-13:00, mean ± SD) in Michelia macclurei and Schima superba, and the fitted relationship of ¯JS as a function of the photosynthetically active radiation (PAR) from the upper boundary of the boundary line analysis during 1 October 2013 and 31 March 2014.
图3 遮雨组(DD, 红色圆点)和对照组(AC, 黑色圆点)火力楠(n = 15)和木荷(n = 9)平均最大液流通量密度(¯JS)(平均值±标准偏差)的年际变化。图中阴影部分为隔除降雨处理期, 其他时间为增加降雨期。
Fig. 3 Annual variations of mean maximum sap flux density (¯JS)(mean ± SD) for trees in DD (red dot) and AC (black dot) groups in Michelia macclurei (n = 15) and Schima superba (n = 9). The shaded sections indicate the period of throughfall exclusion, and other sections the period of enhanced rainfall. AC, control; DD, drier dry season and wetter wet season.
图4 火力楠(n = 15)和木荷(n = 9)在不同降雨隔除处理期对照组(AC)和遮雨组(DD)的平均最大液流通量密度(¯JS)(平均值±标准偏差)的线性拟合关系。图中插图为的两个处理¯JS的比值(JS(DD)/JS(AC))。
Fig. 4 Linear fitting of the relationship of mean maximum sap flux density (¯JS)(mean ± SD) between control (AC) and drier dry season and wetter wet season (DD) treatments during different drought periods in Michelia macclurei (n = 15) and Schima superba (n = 9). The inserted figures show the ¯JS ratios (JS(DD)/JS(AC)) during different periods.
图5 遮雨处理组火力楠和木荷在干季2阶段10月份平均最大液流通量密度(¯JS)(2013年10月14至18日)与环境驱动因子(VPD和PAR)的日动态变化(平均值±标准偏差)。箭头表示时间变化方向。PAR, 光合有效辐射; VPD, 水汽压亏缺。
Fig. 5 Daily dynamics of mean maximum sap flux density (¯JS) and environmental drivers (VPD and PAR) in drier dry season and wetter wet season (DD) treatments during the second phase of dry season (from 14 to 18 October 2013) in Michelia macclurei and Schima superba (mean ± SD). The arrow lines indicate the direction of time series. PAR, photosynthetically active radiation; VPD, water vapor deficit.
[1] | Andrade JL, Meinzer FC, Goldstein G, Holbrook NM, Cavelier J, Jackson P, Silvera K ( 1998). Regulation of water flux through trunks, branches, and leaves in trees of a lowland tropical forest. Oecologia, 115, 463-471. |
[2] | Attia Z, Domec JC, Oren R, Way DA, Moshelion M ( 2015). Growth and physiological responses of isohydric and anisohydric poplars to drought. Journal of Experimental Botany, 66, 4373-4381. |
[3] | Babst F, Poulter B, Trouet V, Tan K, Neuwirth B, Wilson R, Carrer M, Grabner M, Tegel W, Levanic T, Panayotov M, Urbinati C, Bouriaud O, Ciais P, Frank D ( 2013). Site- and species-specific responses of forest growth to climate across the European continent. Global Ecology and Biogeography, 22, 706-717. |
[4] | Bonal D, Burban B, Stahl C, Wagner F, Hérault B ( 2016). The response of tropical rainforests to drought—Lessons from recent research and future prospects. Annals of Forest Science, 73, 27-44. |
[5] | Brunner I, Herzog C, Dawes MA, Arend M, Sperisen C ( 2015). How tree roots respond to drought. Frontiers in Plant Science, 6, 547. DOI: 10.3389/fpls.2015.00547. |
[6] | Cai XA, Zhao P, Zeng XP, Zhu LW, Zou LL, Mei TT, Yu MH ( 2012). Dynamics of xylem sap flow of two Magnoliaceae tree species in relation to environmental factors. Chinese Journal of Ecology, 31, 2163-2169. |
[ 蔡锡安, 赵平, 曾小平, 朱丽薇, 邹绿柳, 梅婷婷, 余孟好 ( 2012). 两种木兰科植物的树干液流特征及其与环境因子的关系. 生态学杂志, 31, 2163-2169.] | |
[7] | Catovsky S, Holbrook NM, Bazzaz FA ( 2002). Coupling whole-tree transpiration and canopy photosynthesis in coniferous and broad-leaved tree species. Canadian Journal of Forest Research, 32, 295-309. |
[8] | Dong SY, Gao XJ ( 2014). Long-term climate change: Interpretation of IPCC Fifth Assessment Report. Progressus Inquisitiones de Mutatione Climatis, 10, 56-59. |
[ 董思言, 高学杰 ( 2014). 长期气候变化——IPCC第五次评估报告解读. 气候变化研究进展, 10, 56-59.] | |
[9] | Gao JG, Zhao P, Shen WJ, Rao XQ, Hu YT ( 2017). Physiological homeostasis and morphological plasticity of two tree species subjected to precipitation seasonal distribution changes. Perspectives in Plant Ecology, Evolution and Systematics, 25, 1-19. |
[10] | Gazol A, Camarero JJ, Vicente-Serrano SM, Sánchez-Salguero R, Gutiérrez E, de Luis M, Sangüesa-Barreda G, Novak K, Rozas V, Tíscar PA, Linares JC, Martín-Hernández N, Martínez Del Castillo E, Ribas M, García-González I, Silla F, Camisón A, Génova M, Olano JM, Longares LA, Hevia A, Tomás-Burguera M, Galván JD ( 2018). Forest resilience to drought varies across biomes. Global Change Biology, 24, 2143-2158. |
[11] | Graham EA, Mulkey SS, Kitajima K, Phillips NG, Wright SJ ( 2003). Cloud cover limits net CO2 uptake and growth of a rainforest tree during tropical rainy seasons. Proceedings of the National Academy of Sciences of the United States of America, 100, 572-576. |
[12] | Granier A ( 1987). Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 3, 309-320. |
[13] | Hertel D, Strecker T, Müller-Haubold H, Leuschner C ( 2013). Fine root biomass and dynamics in beech forests across a precipitation gradient—Is optimal resource partitioning theory applicable to water-limited mature trees? Journal of Ecology, 101, 1183-1200. |
[14] | Hoeber S, Leuschner C, Köhler L, Arias-Aguilar D, Schuldt B ( 2014). The importance of hydraulic conductivity and wood density to growth performance in eight tree species from a tropical semi-dry climate. Forest Ecology and Management, 330, 126-136. |
[15] | Hoffmann WA, Marchin RM, Abit P, Lau OL ( 2011). Hydraulic failure and tree dieback are associated with high wood density in a temperate forest under extreme drought. Global Change Biology, 17, 2731-2742. |
[16] | Hu Y, Hu TX, Hu HL, Chen H, Wang B, Li H ( 2014). Effects of drought stress on growth and photosynthetic characteristics of Cinnamomum camphora saplings. Chinese Journal of Applied and Environmental Biology, 20, 675-682. |
[ 胡义, 胡庭兴, 胡红玲, 陈洪, 王彬, 李晗 ( 2014). 干旱胁迫对香樟幼树生长及光合特性的影响. 应用与环境生物学报, 20, 675-682.] | |
[17] | Jiao M, Shen WJ ( 2014). Effects of seasonal precipitation variation on litter-fall in lower subtropical evergreen broad-leaved forest. Journal of Tropical and Subtropical Botany, 22, 549-557. |
[ 焦敏, 申卫军 ( 2014). 模拟降水分配季节变化对南亚热带常绿阔叶林凋落物的影响. 热带亚热带植物学报, 22, 549-557.] | |
[18] | Klos RJ, Wang GG, Bauerle WL, Rieck JR ( 2009). Drought impact on forest growth and mortality in the southeast USA: An analysis using forest health and monitoring data. Ecological Applications, 19, 699-708. |
[19] | Kuang YW, Xu YM, Zhang LL, Hou EQ, Shen WJ ( 2017). Dominant trees in a subtropical forest respond to drought mainly via adjusting tissue soluble sugar and proline content. Frontiers in Plant Science, 8, 802. DOI: 10.3389/fpls.2017.00802. |
[20] | Li L, Su HX, Sang WG ( 2011). Simulating impacts of summer drought on forest dynamics in Dongling Mountain. Chinese Journal of Plant Ecology, 35, 147-158. |
[ 李亮, 苏宏新, 桑卫国 ( 2011). 模拟夏季干旱对东灵山森林植被动态的影响. 植物生态学报, 35, 147-158.] | |
[21] | Liu DJ, Ogaya R, Barbeta A, Yang XH, Peñuelas J ( 2015). Contrasting impacts of continuous moderate drought and episodic severe droughts on the aboveground-biomass increment and litterfall of three coexisting Mediterranean woody species. Global Change Biology, 21, 4196-4209. |
[22] | Malhi Y, Aragao LEOC, Galbraith D, Huntingford C, Fisher R, Zelazowski P, Sitch S, McSweeney C, Meir P ( 2009). Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences of the United States of America, 106, 20610-20615. |
[23] | Parry ML, Canziani OF, Palutikof JP, Linden PVD, Hanson CE ( 2007). Intergovernmental Panel on Climate Change Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[24] | Pasho E, Camarero JJ, de Luis M, Vicente-Serrano SM ( 2011). Impacts of drought at different time scales on forest growth across a wide climatic gradient in north-eastern Spain. Agricultural and Forest Meteorology, 151, 1800-1811. |
[25] | Samanta A, Ganguly S, Hashimoto H, Devadiga S, Vermote E, Knyazikhin Y, Nemani RR, Myneni RB ( 2010). Amazon forests did not green-up during the 2005 drought. Geophysical Research Letters, 37, 1-5. |
[26] | Santiago LS, Goldstein G, Meinzer FC, Fisher JB, MacHado K, Woodruff D, Jones T ( 2004). Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia, 140, 543-550. |
[27] | Seneviratne SI, Lüthi D, Litschi M, Schär C ( 2006). Land-atmosphere coupling and climate change in Europe. Nature, 443, 205-209. |
[28] | Skelton RP, Brodribb TJ, McAdam SAM, Mitchell PJ ( 2017). Gas exchange recovery following natural drought is rapid unless limited by loss of leaf hydraulic conductance: Evidence from an evergreen woodland. New Phytologist, 215, 1399-1412. |
[29] | Steppe K, de Pauw DJW, Lemeur R, Vanrolleghem PA ( 2006). A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth. Tree Physiology, 26, 257-273. |
[30] | Sun GC, Zhao P, Zeng XP, Cai XA ( 2009). Hydraulic responses of stomatal conductance in leaves of successional tree species in subtropical forest to environmental moisture. Acta Ecologica Sinica, 29, 698-708. |
[ 孙谷畴, 赵平, 曾小平, 蔡锡安 ( 2009). 亚热带森林演替树种叶片气孔导度对环境水分的水力响应. 生态学报, 29, 698-705.] | |
[31] | Vicente-Serrano SM, Gouveia C, Camarero JJ, Beguería S, Trigo R, López-Moreno JI, Azorín-Molina C, Pasho E, Lorenzo-Lacruz J, Revuelto J, Morán-Tejeda E, Sanchez- Lorenzo A ( 2013). Response of vegetation to drought time-scales across global land biomes. Proceedings of the National Academy of Sciences of the United States of America, 110, 52-57. |
[32] | Wang WX, Vinocur B, Altman A ( 2003). Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 218, 1-14. |
[33] | Wang XY, Chen DP, Xu GZ, Li Y, Lu JM ( 2017). Difference analysis of anatomic structure of Fraxinus mandschurica Rupr in different ecological environments. Journal of Anhui Agricultural Sciences, 45(21), 1-3, 8. |
[ 王晓钰, 陈丹萍, 徐光照, 李岩, 陆静梅 ( 2017). 不同生态环境下水曲柳的解剖结构差异分析. 安徽农业科学, 45(21), 1-3, 8.] | |
[34] | Weltzin JF, Loik ME, Schwinning S, Williams DG, Fay PA, Haddad BM, Harte J, Huxman TE, Knapp AK, Lin GH, Pockman WT, Shaw MR, Small EE, Smith MD, Smith SD, Tissue DT, Zak JC ( 2003). Assessing the response of terrestrial ecosystems to potential changes in precipitation. BioScience, 53, 941-952. |
[35] | Wu Q, Ding J, Yan H, Zhang SR, Fang T, Ma KP ( 2011). Effects of simulated precipitation and nitrogen addition on seedling growth and biomass in five tree species in Gutian Mountain, Zhejiang Province, China. Chinese Journal of Plant Ecology, 35, 256-267. |
[ 吴茜, 丁佳, 闫慧, 张守仁, 方腾, 马克平 ( 2011). 模拟降水变化和土壤施氮对浙江古田山5个树种幼苗生长和生物量的影响. 植物生态学报, 35, 256-267.] | |
[36] | Wu X, Chen YM, Tang YK ( 2015). Sap flow characteristics and its responses to precipitation in Robinia pseudoacacia and Platycladus orientalis plantations. Chinese Journal of Plant Ecology, 39, 1176-1187. |
[ 吴旭, 陈云明, 唐亚坤 ( 2015). 黄土丘陵区刺槐和侧柏人工林树干液流特征及其对降水的响应. 植物生态学报, 39, 1176-1187.] | |
[37] | Xu F, Guo WH, Xu WH, Wang RQ ( 2010). Effects of water stress on morphology, biomass allocation and photosynthesis in Robinia pseudoacacia seedlings. Journal of Beijing Forestry University, 32(1), 24-30. |
[ 徐飞, 郭卫华, 徐伟红, 王仁卿 ( 2010). 刺槐幼苗形态、生物量分配和光合特性对水分胁迫的响应. 北京林业大学学报, 32(1), 24-30.] | |
[38] | Xu F, Yang FT, Wang HM, Dai XQ ( 2012). Review of advances in radial patterns of stem sap flow. Chinese Journal of Plant Ecology, 36, 1004-1014. |
[ 徐飞, 杨风亭, 王辉民, 戴晓琴 ( 2012). 树干液流径向分布格局研究进展. 植物生态学报, 36, 1004-1014.] | |
[39] | Zang U, Goisser M, Häberle KH, Matyssek R, Matzner E, Borken W ( 2014). Effects of drought stress on photosynthesis, rhizosphere respiration, and fine-root characteristics of beech saplings: A rhizotron field study. Journal of Plant Nutrition and Soil Science, 177, 168-177. |
[40] | Zhang ZF, You YM, Huang YQ, Li XK, Zhang JC, Zhang DN, He CX ( 2012). Effects of drought stress on the photosynthesis and growth of Cyclobalanopsis glauca seedlings: A study with simulated hierarchical karst water supply. Chinese Journal of Ecology, 31, 2197-2202. |
[ 张中峰, 尤业明, 黄玉清, 李先琨, 张金池, 张德楠, 何成新 ( 2012). 模拟岩溶水分供应分层的干旱胁迫对青冈栎光合特性和生长的影响. 生态学杂志, 31, 2197-2202.] | |
[41] | Zhang ZZ, Zhao P, McCarthy HR, Zhao XH, Niu JF, Zhu LW, Ni GY, Ouyang L, Huang YQ ( 2016). Influence of the decoupling degree on the estimation of canopy stomatal conductance for two broadleaf tree species. Agricultural and Forest Meteorology, 221, 230-241. |
[42] | Zhang ZZ, Zhao P, Ni GY, Zhu LW, Zhao XH, Zhao PQ, Niu JF ( 2014). Water use of re-vegetation pioneer tree species Schima superba and Acacia mangium in hilly land of South China. Chinese Journal of Applied Ecology, 25, 931-939. |
[ 张振振, 赵平, 倪广艳, 朱丽薇, 赵秀华, 赵培强, 牛俊峰 ( 2014). 华南丘陵植被恢复先锋树种木荷与马占相思的水分利用. 应用生态学报, 25, 931-939.] | |
[43] | Zhang ZZ, Zhao P, Zhang JX, Si Y ( 2019). Conduits anatomical structure and leaf traits of diffuse- and ring-porous stems in subtropical evergreen broad-leaved forests. Chinese Journal of Plant Ecology, 43, 131-138. |
[ 张振振, 赵平, 张锦秀, 斯瑶 ( 2019). 亚热带常绿阔叶林散孔材和环孔材树种导管及叶片功能性状的比较. 植物生态学报, 43, 131-138.] | |
[44] | Zhao P ( 2011). On the coordinated regulation of forest transpiration by hydraulic conductance and canopy stomatal conductance. Acta Ecologica Sinica, 31, 1164-1173. |
[ 赵平 ( 2011). 整树水力导度协同冠层气孔导度调节森林蒸腾. 生态学报, 31, 1164-1173.] | |
[45] | Zhou GY, Peng CH, Li YL, Liu SZ, Zhang QM, Tang XL, Liu JX, Yan JH, Zhang DQ, Chu GW ( 2013). A climate change-induced threat to the ecological resilience of a subtropical monsoon evergreen broad-leaved forest in Southern China. Global Change Biology, 19, 1197-1210. |
[46] | Zhou J, Zhang ZQ, Sun G, Fang XR, Zha TG, Zhang Y, Wang XP, Chen JQ, Chen JQ ( 2013). Environmental controls on water use efficiency of a poplar plantation under different soil water conditions. Acta Ecologica Sinica, 33, 1465-1474. |
[ 周洁, 张志强, 孙阁, 方显瑞, 查同刚, 张燕, 王小平, 陈俊崎, 陈吉泉 ( 2013). 不同土壤水分条件下杨树人工林水分利用效率对环境因子的响应. 生态学报, 33, 1465-1474.] | |
[47] | Zhu WQ, Wu LH, Tao QN ( 2002). Advances in the studies on crop root against drought stress. Soil and Environmental Sciences, 11, 430-433. |
[ 朱维琴, 吴良欢, 陶勤南 ( 2002). 作物根系对干旱胁迫逆境的适应性研究进展. 土壤与环境, 11, 430-433.] | |
[48] | Zlatev Z, Lidon FC ( 2012). An overview on drought induced changes in plant growth, water relations and photosynthesis. Emirates Journal of Food and Agriculture, 24, 57-72. |
[1] | 桂子洋, 秦树高, 胡朝, 白凤, 石慧书, 张宇清. 毛乌素沙地两种典型灌木叶片凝结水吸收能力及吸水途径[J]. 植物生态学报, 2021, 45(6): 583-593. |
[2] | 李豆豆, 席本野, 王斐, 贾素苹, 赵洪林, 贺曰林, 刘洋, 贾黎明. 毛白杨叶片膨压变化规律及其对环境因子的响应[J]. 植物生态学报, 2018, 42(7): 741-751. |
[3] | 刘畅, 孙鹏森, 刘世荣. 植物反射光谱对水分生理变化响应的研究进展[J]. 植物生态学报, 2016, 40(1): 80-91. |
[4] | 张智猛, 万书波, 戴良香, 宋文武, 陈静, 石运庆. 花生抗旱性鉴定指标的筛选与评价[J]. 植物生态学报, 2011, 35(1): 100-109. |
[5] | 马建新, 陈亚宁, 李卫红, 黄湘, 朱成刚, 马晓东. 胡杨液流对地下水埋深变化的响应[J]. 植物生态学报, 2010, 34(8): 915-923. |
[6] | 贺学礼, 张焕仕, 赵丽莉. 不同土壤中水分胁迫和AM真菌对油蒿抗旱性的影响[J]. 植物生态学报, 2008, 32(5): 994-1001. |
[7] | 蔡昆争, 吴学祝, 骆世明. 不同生育期水分胁迫对水稻根叶渗透调节物质变化的影响[J]. 植物生态学报, 2008, 32(2): 491-500. |
[8] | 蔡一霞, 王维, 朱庆森. 水分胁迫对水稻籽粒蛋白质积累及营养品质的影响[J]. 植物生态学报, 2007, 31(3): 536-543. |
[9] | 韦莉莉, 张小全, 侯振宏, 徐德应, 余雪标. 杉木苗木光合作用及其产物分配对水分胁迫的响应[J]. 植物生态学报, 2005, 29(3): 394-402. |
[10] | 郑青松, 刘兆普, 刘友良, 刘玲. 等渗的盐分和水分胁迫对芦荟幼苗生长和离子分布的效应[J]. 植物生态学报, 2004, 28(6): 823-827. |
[11] | 王云龙, 许振柱, 周广胜. 水分胁迫对羊草光合产物分配及其气体交换特征的影响[J]. 植物生态学报, 2004, 28(6): 803-809. |
[12] | 刘洪升, 李凤民, 徐昊. 不同水分条件下春小麦根系耗碳及其与产量形成的关系[J]. 植物生态学报, 2004, 28(2): 191-197. |
[13] | 高洁, 曹坤芳, 王焕校. 干热河谷9种造林树种在旱季的水分关系和气孔导度[J]. 植物生态学报, 2004, 28(2): 186-190. |
[14] | 任红旭, 陈雄, 王亚馥. 抗旱性不同的小麦幼苗在水分和盐胁迫下抗氧化酶和多胺的变化[J]. 植物生态学报, 2001, 25(6): 709-715. |
[15] | 高玉葆, 任安芝, 刘峰, 吴秀英. 黑麦草叶内游离脯氨酸含量对于不同类型和强度的水分胁迫的生理生态响应(英文)[J]. 植物生态学报, 1999, 23(3): 193-204. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19