植物生态学报 ›› 2011, Vol. 35 ›› Issue (9): 893-905.DOI: 10.3724/SP.J.1258.2011.00893
• 研究论文 • 下一篇
收稿日期:
2011-04-06
接受日期:
2011-06-21
出版日期:
2011-04-06
发布日期:
2011-09-01
通讯作者:
李彦
作者简介:
**(E-mail:jshe@pku.edu.cn)
ZHENG Xin-Jun1(), LI Song1,2, LI Yan1,**(
)
Received:
2011-04-06
Accepted:
2011-06-21
Online:
2011-04-06
Published:
2011-09-01
Contact:
LI Yan
摘要:
在干旱地区, 经常出现只能湿润植物地上部分和表层土壤的小量级降雨和凝结水输入, 此量级的水分输入无法通过入渗进入根区土壤而被植物根系吸收利用。最近研究发现, 叶片吸收水分是利用小量级降水和凝结水的主要方式。该研究通过鉴定和观测准噶尔盆地东南部5个自然植物群落中夏季地上部分仍存活的所有51种荒漠植物叶片的单位面积吸水量(LWUC)、叶片含水量增加率(Rw)以及其他7种植物功能性状, 探讨了这些植物功能性状与植物叶片吸收水分能力的关系。研究结果表明: (1)与Rw相比, LWUC是更加适合评价植物叶片吸收水分能力的指标; (2)植物生活型是相对合理的评价荒漠植物叶片吸收水分能力的植物性状; (3)荒漠植物地上(叶片)和地下(根系)部分吸收水分策略存在着权衡; (4)荒漠植物叶片耗水和吸水存在着权衡。总之, 叶片吸收水分策略对于荒漠植物, 特别是一年生草本植物最大限度地利用有限的水资源渡过持续的干旱并完成生活史具有重要的意义。
郑新军, 李嵩, 李彦. 准噶尔盆地荒漠植物的叶片水分吸收策略. 植物生态学报, 2011, 35(9): 893-905. DOI: 10.3724/SP.J.1258.2011.00893
ZHENG Xin-Jun, LI Song, LI Yan. Leaf water uptake strategy of desert plants in the Junggar Basin, China. Chinese Journal of Plant Ecology, 2011, 35(9): 893-905. DOI: 10.3724/SP.J.1258.2011.00893
群落 Community | 位置 Location | 群落组成 Community composition |
---|---|---|
胡杨河岸林群落 Riparian forest community of Populus diversifolia | 三工河尾闾 Lower reach of Sangong River, 44°22′07″ N, 87°53′04″ E | 苦豆子 Sophora alopecuroides、铃铛刺 Halimodendron halodendron、胀果甘草 Glycyrrhiza inflata、骆驼刺 Alhagi sparsifolia、苦马豆 Sphaerophysa salsula、胡杨 Populus euphratica、多枝柽柳 Tamarix ramosissima、刚毛柽柳 T. hispida、耳叶补血草 Limonium otolepis、芦苇 Phragmites australis和花花柴 Karelinia caspia (共11种 Total 11 species) |
梭梭-白梭梭荒漠灌木群落 Desert shrub community of Haloxylon ammodendron-H. persicum | 古尔班通古特沙漠东南缘Southeastern edge of Gurbantonggut Desert, 44°22′63″ N, 87°55′02″ E | 细子麻黄 Ephedra regeliana、淡枝沙拐枣 Calligonum leucocladum、角果藜 Ceratocarpus arenarius、梭梭 Haloxylon ammodendron、白梭梭 H. persicum、刺沙蓬 Salsola ruthenica、粗枝猪毛菜 S. subcrassa、沙蓬 Agriophyllum squarrosum、羽毛三芒草 Aristida pennata、新疆绢蒿 Seriphidium kaschgaricum、准噶尔沙蒿 Artemisia songarica和砂蓝刺头 Echinops gmelini (共12种 Total 12 species) |
柽柳属荒漠灌木群落Desert shrub community of Tamarix spp. | 三工河洪积扇缘 Proluvial fan edge of Sangong River, 44°22′07″ N, 87°53′04″ E | 多枝柽柳 Tamarix ramosissima、盐地柽柳 T. karelinii、刚毛柽柳 T. hispida、红砂 Reaumuria songarica、樟味藜 Camphorosma monspeliaca、囊果碱蓬 Suaeda physophora、兜藜 Panderia turkestanica、粗枝猪毛菜 Salsola subcrassa、叉毛蓬 Petrosimonia sibirica、小果白刺 Nitraria sibirica和戟叶鹅绒藤 Cynanchum sibiricum (共11种 Total 11 species) |
盐穗木-盐爪爪荒漠灌木群落 Desert shrub communities of Kalidium spp.-Halostachys caspica | 柳城子水库北侧 Northern side of Liuchenzi Reservoir, 44°22′07″ N, 87°53′04″ E | 骆驼刺 Alhagi sparsifolia、小果白刺 Nitraria sibirica、黑果枸杞 Lycium ruthenicum、兜藜 Panderia turkestanica、盐穗木 Halostachys caspica、里海盐爪爪 Kalidium caspicum、盐爪爪 K. foliatum、白茎盐生草 Halogeton arachnoideus、梭梭 Haloxylon ammodendron、小蓬 Nanophyton erinaceum、肥叶碱蓬 Suaeda kossinskyi、刺毛碱蓬 S. acuminata、囊果碱蓬 S. physophora、小叶碱蓬 S. microphylla、异苞滨藜 Atriplex micrantha、鞑靼滨藜 A. tatarica、戟叶滨藜 A. hastata、中亚滨藜 A. centralasiatica、粗枝猪毛菜 Salsola subcrassa、叉毛蓬 Petrosimonia sibirica、刚毛柽柳 T. hispida、红砂 Reaumuria songarica、网果酸模 Rumex chalepensis、大叶补血草 Limonium gmelinii、小獐毛 Aeluropus pungens、芦苇 Phragmites australis和花花柴 Karelinia caspia (共28种 Total 28 species) |
梭梭-红砂荒漠灌木群落 Desert shrub community of Haloxylon ammodendron-Reau- muria songarica | 阜北农场东侧荒地(东戈壁) Wildland at eastern side of Fubei farm (Eastern Gobi, 460 mm, 44°19′48″ N, 88°00′59″ E | 小果白刺 Nitraria sibirica、骆驼蓬 Peganum harmala、翼果驼蹄瓣 Zygophyllum pterocarpum、黑果枸杞 Lycium ruthenicum、兜藜 Panderia turkestanica、里海盐爪爪 Kalidium caspicum、盐爪爪 K. foliatum、毛足假木贼 Anabasis eriopoda、盐地假木贼 A. salsa、梭梭 Haloxylon ammodendron、小叶碱蓬 Suaeda microphylla、叉毛蓬 Petrosimonia sibirica、粗枝猪毛菜 Salsola subcrassa、刚毛柽柳 T. hispida、红砂 Reaumuria songarica、小獐毛 Aeluropus pungens、芦苇 Phragmites australis和花花柴 Karelinia caspia (共18种 Total 18 species) |
表1 采样点的位置与群落组成
Table 1 Location and community composition of experiment site
群落 Community | 位置 Location | 群落组成 Community composition |
---|---|---|
胡杨河岸林群落 Riparian forest community of Populus diversifolia | 三工河尾闾 Lower reach of Sangong River, 44°22′07″ N, 87°53′04″ E | 苦豆子 Sophora alopecuroides、铃铛刺 Halimodendron halodendron、胀果甘草 Glycyrrhiza inflata、骆驼刺 Alhagi sparsifolia、苦马豆 Sphaerophysa salsula、胡杨 Populus euphratica、多枝柽柳 Tamarix ramosissima、刚毛柽柳 T. hispida、耳叶补血草 Limonium otolepis、芦苇 Phragmites australis和花花柴 Karelinia caspia (共11种 Total 11 species) |
梭梭-白梭梭荒漠灌木群落 Desert shrub community of Haloxylon ammodendron-H. persicum | 古尔班通古特沙漠东南缘Southeastern edge of Gurbantonggut Desert, 44°22′63″ N, 87°55′02″ E | 细子麻黄 Ephedra regeliana、淡枝沙拐枣 Calligonum leucocladum、角果藜 Ceratocarpus arenarius、梭梭 Haloxylon ammodendron、白梭梭 H. persicum、刺沙蓬 Salsola ruthenica、粗枝猪毛菜 S. subcrassa、沙蓬 Agriophyllum squarrosum、羽毛三芒草 Aristida pennata、新疆绢蒿 Seriphidium kaschgaricum、准噶尔沙蒿 Artemisia songarica和砂蓝刺头 Echinops gmelini (共12种 Total 12 species) |
柽柳属荒漠灌木群落Desert shrub community of Tamarix spp. | 三工河洪积扇缘 Proluvial fan edge of Sangong River, 44°22′07″ N, 87°53′04″ E | 多枝柽柳 Tamarix ramosissima、盐地柽柳 T. karelinii、刚毛柽柳 T. hispida、红砂 Reaumuria songarica、樟味藜 Camphorosma monspeliaca、囊果碱蓬 Suaeda physophora、兜藜 Panderia turkestanica、粗枝猪毛菜 Salsola subcrassa、叉毛蓬 Petrosimonia sibirica、小果白刺 Nitraria sibirica和戟叶鹅绒藤 Cynanchum sibiricum (共11种 Total 11 species) |
盐穗木-盐爪爪荒漠灌木群落 Desert shrub communities of Kalidium spp.-Halostachys caspica | 柳城子水库北侧 Northern side of Liuchenzi Reservoir, 44°22′07″ N, 87°53′04″ E | 骆驼刺 Alhagi sparsifolia、小果白刺 Nitraria sibirica、黑果枸杞 Lycium ruthenicum、兜藜 Panderia turkestanica、盐穗木 Halostachys caspica、里海盐爪爪 Kalidium caspicum、盐爪爪 K. foliatum、白茎盐生草 Halogeton arachnoideus、梭梭 Haloxylon ammodendron、小蓬 Nanophyton erinaceum、肥叶碱蓬 Suaeda kossinskyi、刺毛碱蓬 S. acuminata、囊果碱蓬 S. physophora、小叶碱蓬 S. microphylla、异苞滨藜 Atriplex micrantha、鞑靼滨藜 A. tatarica、戟叶滨藜 A. hastata、中亚滨藜 A. centralasiatica、粗枝猪毛菜 Salsola subcrassa、叉毛蓬 Petrosimonia sibirica、刚毛柽柳 T. hispida、红砂 Reaumuria songarica、网果酸模 Rumex chalepensis、大叶补血草 Limonium gmelinii、小獐毛 Aeluropus pungens、芦苇 Phragmites australis和花花柴 Karelinia caspia (共28种 Total 28 species) |
梭梭-红砂荒漠灌木群落 Desert shrub community of Haloxylon ammodendron-Reau- muria songarica | 阜北农场东侧荒地(东戈壁) Wildland at eastern side of Fubei farm (Eastern Gobi, 460 mm, 44°19′48″ N, 88°00′59″ E | 小果白刺 Nitraria sibirica、骆驼蓬 Peganum harmala、翼果驼蹄瓣 Zygophyllum pterocarpum、黑果枸杞 Lycium ruthenicum、兜藜 Panderia turkestanica、里海盐爪爪 Kalidium caspicum、盐爪爪 K. foliatum、毛足假木贼 Anabasis eriopoda、盐地假木贼 A. salsa、梭梭 Haloxylon ammodendron、小叶碱蓬 Suaeda microphylla、叉毛蓬 Petrosimonia sibirica、粗枝猪毛菜 Salsola subcrassa、刚毛柽柳 T. hispida、红砂 Reaumuria songarica、小獐毛 Aeluropus pungens、芦苇 Phragmites australis和花花柴 Karelinia caspia (共18种 Total 18 species) |
植物功能性状 Plant functional trait | 属性 Attribute |
---|---|
植物生长型 Plant growth form | 乔木及小乔木、灌木、矮灌木、半灌木和草本植物 Arbor and dwarf arbor, shrub, dwarf shrub, sub-shrub and herbage |
植物生活型 Plant life form | 一年生、地下芽、地面芽、地上芽和高位芽植物 Therophytes, cryptophytes, hemicryptophytes, chamaephytes and phanerophytes |
叶质地性状 Leaf texture trait | 草质、革质、肉质多汁、叶片退化 Herbaceous, coriaceous, succulent and aphyllous |
叶面性状 Leaf surface trait | 光滑、单面、双面和周身覆毛 Smooth, single-side-tomentose, double-side-tomentose and whole-body-tomentose |
叶片单位面积吸水量 Leaf water uptake content | 反累加概率区间依次是: 0-0.166 7、0.166 7-0.333 3、0.333 3-0.500 0、0.500 0-0.666 7、0.666 7-0.833 3和0.833 3- 1.000 0。The interval of inverse cumulative probability is 0-0.166 7, 0.166 7-0.333 3, 0.333 3-0.500 0, 0.500 0- 0.666 7, 0.666 7-0.833 3 and 0.833 3-1.000 0, respectively |
叶片含水量增加率 Percentage increase in leaf water content | 反累加概率区间依次是: 0-0.166 7、0.166 7-0.333 3、0.333 3-0.500 0、0.500 0-0.666 7、0.666 7-0.833 3和0.833 3- 1.000 0。The interval of inverse cumulative probability is 0-0.166 7, 0.166 7-0.333 3, 0.333 3-0.500 0, 0.500 0- 0.666 7, 0.666 7-0.833 3 and 0.833 3-1.000 0, respectively |
叶片水分饱和亏 Leaf water deficit | 反累加概率区间依次是: 0-0.166 7、0.166 7-0.333 3、0.333 3-0.500 0、0.500 0-0.666 7、0.666 7-0.833 3和0.833 3- 1.000 0。The interval of inverse cumulative probability is 0-0.166 7, 0.166 7-0.333 3, 0.333 3-0.500 0, 0.500 0- 0.666 7, 0.666 7-0.833 3 and 0.833 3-1.000 0, respectively |
比叶面积 Specific leaf area | 反累加概率区间依次是: 0-0.166 7、0.166 7-0.333 3、0.333 3-0.500 0、0.500 0-0.666 7、0.666 7-0.833 3和0.833 3- 1.000 0。The interval of inverse cumulative probability is 0-0.166 7, 0.166 7-0.333 3, 0.333 3-0.500 0, 0.500 0- 0.666 7, 0.666 7-0.833 3 and 0.833 3-1.000 0, respectively |
叶片干物质含量 Leaf dry matter content | 反累加概率区间依次是: 0-0.166 7、0.166 7-0.333 3、0.333 3-0.500 0、0.500 0-0.666 7、0.666 7-0.833 3和0.833 3- 1.000 0。The interval of inverse cumulative probability is 0-0.166 7, 0.166 7-0.333 3, 0.333 3-0.500 0, 0.500 0- 0.666 7, 0.666 7-0.833 3 and 0.833 3-1.000 0, respectively |
表2 本研究中的植物功能性状及其属性
Table 2 Plant functional traits and its attributes in this study
植物功能性状 Plant functional trait | 属性 Attribute |
---|---|
植物生长型 Plant growth form | 乔木及小乔木、灌木、矮灌木、半灌木和草本植物 Arbor and dwarf arbor, shrub, dwarf shrub, sub-shrub and herbage |
植物生活型 Plant life form | 一年生、地下芽、地面芽、地上芽和高位芽植物 Therophytes, cryptophytes, hemicryptophytes, chamaephytes and phanerophytes |
叶质地性状 Leaf texture trait | 草质、革质、肉质多汁、叶片退化 Herbaceous, coriaceous, succulent and aphyllous |
叶面性状 Leaf surface trait | 光滑、单面、双面和周身覆毛 Smooth, single-side-tomentose, double-side-tomentose and whole-body-tomentose |
叶片单位面积吸水量 Leaf water uptake content | 反累加概率区间依次是: 0-0.166 7、0.166 7-0.333 3、0.333 3-0.500 0、0.500 0-0.666 7、0.666 7-0.833 3和0.833 3- 1.000 0。The interval of inverse cumulative probability is 0-0.166 7, 0.166 7-0.333 3, 0.333 3-0.500 0, 0.500 0- 0.666 7, 0.666 7-0.833 3 and 0.833 3-1.000 0, respectively |
叶片含水量增加率 Percentage increase in leaf water content | 反累加概率区间依次是: 0-0.166 7、0.166 7-0.333 3、0.333 3-0.500 0、0.500 0-0.666 7、0.666 7-0.833 3和0.833 3- 1.000 0。The interval of inverse cumulative probability is 0-0.166 7, 0.166 7-0.333 3, 0.333 3-0.500 0, 0.500 0- 0.666 7, 0.666 7-0.833 3 and 0.833 3-1.000 0, respectively |
叶片水分饱和亏 Leaf water deficit | 反累加概率区间依次是: 0-0.166 7、0.166 7-0.333 3、0.333 3-0.500 0、0.500 0-0.666 7、0.666 7-0.833 3和0.833 3- 1.000 0。The interval of inverse cumulative probability is 0-0.166 7, 0.166 7-0.333 3, 0.333 3-0.500 0, 0.500 0- 0.666 7, 0.666 7-0.833 3 and 0.833 3-1.000 0, respectively |
比叶面积 Specific leaf area | 反累加概率区间依次是: 0-0.166 7、0.166 7-0.333 3、0.333 3-0.500 0、0.500 0-0.666 7、0.666 7-0.833 3和0.833 3- 1.000 0。The interval of inverse cumulative probability is 0-0.166 7, 0.166 7-0.333 3, 0.333 3-0.500 0, 0.500 0- 0.666 7, 0.666 7-0.833 3 and 0.833 3-1.000 0, respectively |
叶片干物质含量 Leaf dry matter content | 反累加概率区间依次是: 0-0.166 7、0.166 7-0.333 3、0.333 3-0.500 0、0.500 0-0.666 7、0.666 7-0.833 3和0.833 3- 1.000 0。The interval of inverse cumulative probability is 0-0.166 7, 0.166 7-0.333 3, 0.333 3-0.500 0, 0.500 0- 0.666 7, 0.666 7-0.833 3 and 0.833 3-1.000 0, respectively |
图1 准噶尔盆地东南部51种荒漠植物的5种主要生态功能性状(平均值±标准误差, n = 8)。 A, 叶片单位面积吸水量。B, 叶片含水量增加率。C, 比叶面积。D, 叶片干物质含量。E, 叶片水分饱和亏。物种中文名见表1。
Fig. 1 Five main ecological functional traits of 51 desert plants in southeastern Junggar Basin (mean ± SE, n = 8). A, Leaf water uptake content (LWUC). B, Percentage increase in leaf water content (Rw). C, Specific leaf area (SLA). D, Leaf dry matter content (LDMC). E, Leaf water deficit (WSD).
图2 准噶尔盆地东南部51种荒漠植物5种主要生态功能性状的经验累加概率分布(散点)及Anderson-Darling正态性检验。 A,叶片单位面积吸水量(LWUC)。B, 叶片含水量增加率(Rw)。C, 比叶面积(SLA)。D, 叶片干物质含量(LDMC)。E, 叶片水分饱和亏(WSD)。如果数据来自于正态分布, 那么散点都分布于直线之上。
Fig. 2 Empirical cumulative distribution probability (scatters) and Anderson-Darling’s normality test on five main ecological functional traits of 51 desert plants in southeastern Junggar Basin. A, Leaf water uptake content (LWUC). B, Percentage increase in leaf water content (Rw). C, Specific leaf area (SLA). D, Leaf dry matter content (LDMC). E, Leaf water deficit (WSD). If the data come from a normal distribution, the plot will appear linear.
性状 Trait | LWUC | Rw | SLA | LDMC | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | ||||
Rw | 0.678 | < 0.001 | |||||||||
SLA | 0.323 | 0.021 | -0.153 | 0.283 | |||||||
LDMC | -0.647 | < 0.001 | -0.045 | 0.755 | -0.719 | < 0.001 | |||||
WSD | 0.753 | < 0.001 | 0.949 | < 0.001 | -0.162 | 0.257 | -0.079 | 0.580 |
表3 准噶尔盆地东南部51种荒漠植物5种主要生态功能性状的相关系数(r)及其p值
Table 3 Correlation coefficient (r) and its p value between five main ecological functional traits of 51 desert plants in southeastern Junggar Basin
性状 Trait | LWUC | Rw | SLA | LDMC | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | ||||
Rw | 0.678 | < 0.001 | |||||||||
SLA | 0.323 | 0.021 | -0.153 | 0.283 | |||||||
LDMC | -0.647 | < 0.001 | -0.045 | 0.755 | -0.719 | < 0.001 | |||||
WSD | 0.753 | < 0.001 | 0.949 | < 0.001 | -0.162 | 0.257 | -0.079 | 0.580 |
性状 Trait | PGF | PLF | LTT | LST | LWUC | Rw | SLA | LDMC |
---|---|---|---|---|---|---|---|---|
PLF | 3.512 | |||||||
LTT | 2.500 | 3.404 | ||||||
LST | 2.751 | 3.656 | 2.879 | |||||
LWUC | 4.660 | 6.168 | 4.874 | 3.617 | ||||
Rw | 4.806 | 6.314 | 5.020 | 3.763 | 6.929 | |||
SLA | 3.669 | 4.875 | 3.840 | 2.835 | 5.367 | 4.783 | ||
LDMC | 4.646 | 6.153 | 4.859 | 3.602 | 6.769 | 6.038 | 5.367 | |
WSD | 4.589 | 6.096 | 4.802 | 3.545 | 6.711 | 5.981 | 5.309 | 6.782 |
表4 准噶尔盆地东南部51种荒漠植物的9种主要生态功能性状的基于信息论的关联度
Table 4 Association degree based on information theory between nine main ecological functional traits of 51 desert plants in southeastern Junggar Basin
性状 Trait | PGF | PLF | LTT | LST | LWUC | Rw | SLA | LDMC |
---|---|---|---|---|---|---|---|---|
PLF | 3.512 | |||||||
LTT | 2.500 | 3.404 | ||||||
LST | 2.751 | 3.656 | 2.879 | |||||
LWUC | 4.660 | 6.168 | 4.874 | 3.617 | ||||
Rw | 4.806 | 6.314 | 5.020 | 3.763 | 6.929 | |||
SLA | 3.669 | 4.875 | 3.840 | 2.835 | 5.367 | 4.783 | ||
LDMC | 4.646 | 6.153 | 4.859 | 3.602 | 6.769 | 6.038 | 5.367 | |
WSD | 4.589 | 6.096 | 4.802 | 3.545 | 6.711 | 5.981 | 5.309 | 6.782 |
图3 准噶尔盆地东南部不同植物生长型的物种数(A)、叶片单位面积吸水量(B)和叶片含水量增加率(C) (平均值±标准误差)。 a1, 乔木及小乔木; a2, 灌木; a3, 矮灌木; a4, 半灌木; a5, 草本植物。不同字母表示通过Fisher多重比较叶片单位面积吸水量或叶片含水量增加率的平均值存在显著差异(p < 0.05)。
Fig. 3 Number of species (SN) (A), leaf water uptake content (LWUC) (B) and percentage increase in leaf water content (Rw) (C) of different plant growth forms in southeastern Junggar Basin (mean ± SE). a1, arbor and dwarf arbor; a2, shrub; a3, dwarf shrub; a4, sub-shrub; a5, herbage. Different letters show the significant difference at p < 0.05 among the mean of LWUC or Rw by Fisher’s multiple comparison.
图4 准噶尔盆地东南部不同植物生活型的物种数(A)、叶片单位面积吸水量(B)和叶片含水量增加率(C) (平均值±标准误差)。 a1, 一年生植物; a2, 地下芽植物; a3, 地面芽植物; a4, 地上芽植物; a5, 高位芽植物。不同字母表示通过Fisher多重比较叶片单位面积吸水量或叶片含水量增加率的平均值存在显著差异(p < 0.05)。
Fig. 4 Number of species (SN) (A), leaf water uptake content (LWUC) (B) and percentage increase in leaf water content (Rw) (C) of different plant life forms in southeastern Junggar Basin (mean ± SE). a1, therophytes; a2, geopgytes; a3, hemieryptophytes; a4, chamaephytes; a5, phanerophytes. Different letters show the significant difference at p < 0.05 among the mean of LWUC or Rw by Fisher’s multiple comparison.
图5 准噶尔盆地东南部不同植物叶片质地类型的物种数(A)、叶片吸水量(B)和叶片含水量增加率(C) (平均值±标准误差)。 a1, 草质; a2, 革质; a3, 肉质多汁; a4, 叶片退化。不同字母表示通过Fisher多重比较叶片单位面积吸水量或叶片含水量增加率的平均值存在显著差异(p < 0.05)。
Fig. 5 Number of species (SN) (A), leaf water uptake (LWUC) (B) and percentage increase in leaf water content (Rw) (C) of different plant leaf texture attributes in southeastern Junggar Basin (mean ± SE). a1, herbaceous; a2, coriaceous; a3, succulent; a4, aphyllous. Different letters show the significant difference at p < 0.05 among the mean of LWUC or Rw by Fisher’s multiple comparison.
图6 准噶尔盆地东南部不同植物叶面性状类型的物种数(A)、叶片单位面积吸水量(B)和叶片含水量增加率(C) (平均值±标准误差)。 a1, 光滑; a2, 单面覆毛; a3, 双面覆毛; a4, 周身覆毛。
Fig. 6 Number of species (SN) (A), leaf water uptake content (LWUC) (B) and percentage increase in leaf water content (Rw) (C) of different plant leaf surface attributes in southeastern Junggar Basin (mean ± SE). a1, smooth; a2, single-sided tomentose; a3, double-sided tomentose; a4, whole body tomentose.
[1] | Agam N, Berliner PR (2006). Dew formation and water vapor adsorption in semiarid environments―a review. Journal of Arid Environments, 65, 572-590. |
[2] | Asbjornsen H, Goldsmith GR, Alvarado-Barrientos MS, Rebel K, van Osch FP, Rietkerk M, Chen JQ, Gotsch S, Tóbon C, Geissert DR, Gómez-Tagle A, Vache K, Dawson TE (2011). Ecohydrological advances and applications in plant-water relations research: a review. Journal of Plant Ecology, 4, 3-22. |
[3] | Azevedo J, Morgan DL (1974). Fog precipitation in coastal California forests. Ecology, 55, 1135-1141. |
[4] | Barradas VL, Glez-Medellín MG (1999). Dew and its effect on two heliophile understorey species of a tropical dry deciduous forest in Mexico. International Journal of Biometeorology, 43, 1-7. |
[5] | Benzing DH, Seemann J, Renfrow A (1978). The foliar epidermis in Tillandsioideae (Bromeliaceae) and its role in habitat selection. American Journal of Botany, 65, 359-365. |
[6] | Boucher JF, Munson AD, Bernier PY (1995). Foliar absorption of dew influences shoot water potential and root growth in Pinus strobus seedlings. Tree Physiology, 15, 819-823. |
[7] |
Breshears DD, McDowell NG, Goddard KL, Dayem KE, Martens SN, Meyer CW, Brown KM (2008). Foliar absorption of intercepted rainfall improves woody plant water status most during drought. Ecology, 89, 41-47.
URL PMID |
[8] | Burgess SSO, Dawson TE (2004). The contribution of fog to the water relations of Sequoia sempervirens(D. Don): foliar uptake and prevention of dehydration. Plant, Cell & Environment, 27, 1023-1034. |
[9] |
Cable JM, Huxman TE (2004). Precipitation pulse size effects on Sonoran Desert soil microbial crusts. Oecologia, 141, 317-324.
URL PMID |
[10] | Campbell GS, Norman JM (1998). An Introduction to Environmental Biophysics 2nd edn. Springer-Verlag, New York. |
[11] |
Chesson P, Gebauer RLE, Schwinning S, Huntly N, Wiegand K, Ernest MSK, Sher A, Novoplansky A, Weltzin JF (2004). Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia, 141, 236-253.
URL PMID |
[12] | Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380. |
[13] |
Dawson TE (1998). Fog in the California redwood forest: ecosystem inputs and use by plants. Oecologia, 117, 476-485.
URL PMID |
[14] | Ewing HA, Weathers KC, Templer PH, Dawson TE, Firestone MK, Elliott AM, Boukili VKS (2009). Fog water and ecosystem function: heterogeneity in a California Redwood forest. Ecosystems, 12, 417-433. |
[15] | Gao JF ( 高俊凤) (2006). Plant Physiology Experiment Guidance (植物生理学实验指导). Higher Education Press, Beijing. (in Chinese) |
[16] |
Golluscio RA, Sala OE, Lauenroth WK (1998). Differential use of large summer rainfall events by shrubs and grasses: a manipulative experiment in the Patagonian steppe. Oecologia, 115, 17-25.
URL PMID |
[17] | Gouvra E, Grammatikopoulos G (2003). Beneficial effects of direct foliar water uptake on shoot water potential of five chasmophytes. Canadian Journal of Botany, 81, 1280-1286. |
[18] | Grammatikopoulos G, Manetas Y (1994). Direct absorption of water by hairy leaves of Phlomis fruticosa and its contribution to drought avoidance. Canadian Journal of Botany, 72, 1805-1811. |
[19] | Hodgson JG, Wilson PJ, Hunt R, Grime JP, Thompson K (1999). Allocating C-S-R plant functional types: a soft approach to a hard problem. Oikos, 85, 282-294. |
[20] | Hülskamp M, Schwab B (2001). Trichomes. John Wiley & Sons, Ltd., New York. |
[21] |
Johnstone JA, Dawson TE (2010). Climatic context and ecological implications of summer fog decline in the coast redwood region. Proceedings of the National Academy of Sciences of the United States of America, 107, 4533-4538.
URL PMID |
[22] | Kerr JP, Beardsell MF (1975). Effect of dew on leaf water potentials and crop resistances in a Paspalum pasture. Agronomy Journal, 67, 596-599. |
[23] |
Kosmas C, Danalatos NG, Poesen J, van Wesemael B (1998). The effect of water vapour adsorption on soil moisture content under Mediterranean climatic conditions. Agricultural Water Management, 36, 157-168.
DOI URL |
[24] | Lauenroth WK, Bradford JB (2009). Ecohydrology of dry regions of the United States: precipitation pulses and intraseasonal drought. Ecohydrology, 2, 173-181. |
[25] | Lavorel S, Garnier E (2002). Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology, 16, 545-556. |
[26] | Li B ( 李博), Yang C ( 杨持), Lin P ( 林鹏) (2000). Ecology (生态学). Higher Education Press, Beijing. (in Chinese) |
[27] | Li CX ( 李春喜), Jiang LN ( 姜丽娜), Shao Y ( 邵云), Wang WL ( 王文林) (2005). Biostatistics 3rd edn (生物统计学(第三版)). Science Press, Beijing. (in Chinese) |
[28] | Li HB ( 李洪波), Bai AN ( 白爱宁), Zhang GS ( 张国盛), Wang LH ( 王林和), Yang XL ( 杨新林), Zhang Y ( 张瑜) (2009). Dew formation and effect by canopy of Sabina vulgaris in semi-arid area of Inner Mongolia. Hubei Agricultural Sciences (湖北农业科学), 48, 2706-2711. (in Chinese with English abstract) |
[29] | Li YN ( 李亦农), Li M ( 李梅) (2005). Information Theory Foundation Tutorial (信息论基础教程). Beijing University of Posts and Telecommunications Press, Beijing. (in Chinese) |
[30] |
Limm EB, Dawson TE (2010). Polystichum munitum(Dryopteridaceae) varies geographically in its capacity to absorb fog water by foliar uptake within the redwood forest ecosystem. American Journal of Botany, 97, 1121-1128.
URL PMID |
[31] |
Limm EB, Simonin KA, Bothman AG, Dawson TE (2009). Foliar water uptake: a common water acquisition strategy for plants of the redwood forest. Oecologia, 161, 449-459.
URL PMID |
[32] |
Loik ME, Breshears DD, Lauenroth WK, Belnap J (2004). A multi-scale perspective of water pulses in dryland ecosystems: climatology and ecohydrology of the western USA. Oecologia, 141, 269-281.
URL PMID |
[33] | Lombardini L (2006). Ecophysiology of plants in dry environments. In: D’Odorico P, Porporato A eds. Dryland Ecohydrology. Springer, Dordrecht. 47-65. |
[34] | Malek E, McCurdy G, Giles B (1999). Dew contribution to the annual water balances in semi-arid desert valleys. Journal of Arid Environments, 42, 71-80. |
[35] |
Martin CE, von Willert DJ (2000). Leaf epidermal hydathodes and the ecophysiological consequences of foliar water uptake in species of Crassula from the Namib Desert in southern Africa. Plant Biology, 2, 229-242.
DOI URL |
[36] |
McIntyre S, Lavorel S, Landsberg J, Forbes TDA (1999). Disturbance response in vegetation-towards a global perspective on functional traits. Journal of Vegetation Science, 10, 621-630.
DOI URL |
[37] | Meng TT ( 孟婷婷), Ni J ( 倪健), Wang GH ( 王国宏) (2007). Plant functional traits, environments and ecosystem functioning. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 150-165. (in Chinese with English abstract) |
[38] | Munné-Bosch S (2010). Direct foliar absorption of rainfall water and its biological significance in dryland ecosystems. Journal of Arid Environments, 74, 417-418. |
[39] |
Munné-Bosch S, Nogués S, Alegre L (1999). Diurnal variations of photosynthesis and dew absorption by leaves in two evergreen shrubs growing in Mediterranean field conditions. New Phytologist, 144, 109-119.
DOI URL |
[40] |
Ogle K, Reynolds JF (2004). Plant responses to precipitation in desert ecosystems: integrating functional types, pulses, thresholds, and delays. Oecologia, 141, 282-294.
URL PMID |
[41] |
Ohrui T, Nobira H, Sakata Y, Taji T, Yamamoto C, Nishida K, Yamakawa T, Sasuga Y, Yaguchi Y, Takenaga H, Tanaka S (2007). Foliar trichome- and aquaporin-aided water uptake in a drought-resistant epiphyte Tillandsia ionantha Planchon. Planta, 227, 47-56.
URL PMID |
[42] |
NIST/SEMATECH (2010). e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, Cited 29 July 2011.
URL PMID |
[43] | Oliveira RS, Dawson TE, Burgess SSO (2005). Evidence for direct water absorption by the shoot of the desiccation- tolerant plant Vellozia flavicans in the savannas of central Brazil. Journal of Tropical Ecology, 21, 585-588. |
[44] |
Reynolds JF, Kemp PR, Ogle K, Fernández RJ (2004). Modifying the “pulse-reserve” paradigm for deserts of North America: precipitation pulses, soil water, and plant responses. Oecologia, 141, 194-210.
DOI URL PMID |
[45] | Sala OE, Lauenroth WK, Parton WJ (1992). Long-term soil-water dynamics in the shortgrass steppe. Ecology, 73, 1175-1181. |
[46] |
Schwinning S, Sala OE (2004). Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia, 141, 211-220.
URL PMID |
[47] |
Schwinning S, Sala OE, Loik ME, Ehleringer JR (2004). Thresholds, memory, and seasonality: understanding pulse dynamics in arid/semi-arid ecosystems. Oecologia, 141, 191-193.
URL PMID |
[48] |
Simonin KA, Santiago LS, Dawson TE (2009). Fog interception by Sequoia sempervirens(D. Don) crowns decouples physiology from soil water deficit. Plant, Cell & Environment, 32, 882-892.
URL PMID |
[49] | Stephens MA (1974). EDF statistics for goodness of fit and some comparisons. Journal of the American Statistical Association, 69, 730-737. |
[50] | Stone EC (1957a). Dew as an ecological factor. I. A review of the literature. Ecology, 38, 407-413. |
[51] | Stone EC (1957b). Dew as an ecological factor. II. The effect of artificial dew on the survival of Pinus ponderosa and associated species. Ecology, 38, 414-422. |
[52] |
Stone EC, Shachori AY, Stanley RG (1956). Water absorption by needles of ponderosa pine seedlings and its internal redistribution. Plant Physiology, 31, 120-126.
URL PMID |
[53] |
Stone EC, Went FW, Young CL (1950). Water absorption from the atmosphere by plants growing in dry soil. Science, 111, 546-548.
URL PMID |
[54] | Tange T, Yanaga K, Osawa H, Masumori M (2009). Effects of evening and nighttime leaf wetting on stomatal behavior of Cryptomeria japonica growing in dry soil. Photosynthetica, 47, 313-316. |
[55] | Xu KX ( 徐克学) (1999). Biomathematics (生物数学). Science Press, Beijing. (in Chinese) |
[56] |
Yates DJ, Hutley LB (1995). Foliar uptake of water by wet leaves of Sloanea woollsii, an Australian subtropical rainforest tree. Australian Journal of Botany, 43, 157-167.
DOI URL |
[57] | Zangvil A (1996). Six years of dew observations in the Negev Desert, Israel. Journal of Arid Environments, 32, 361-371. |
[58] | Zheng XJ ( 郑新军), Li Y ( 李彦) (2009). Effect of soil moisture sorption on soil moisture availability. Arid Zone Research (干旱区研究), 26, 744-749. (in Chinese with English abstract) |
[59] | Zheng XJ ( 郑新军), Wang QX ( 王勤学), Liu R ( 刘冉), Li Y ( 李彦) (2009). Dew water input over the saline desert ecosystem in southeast Junggar Basin. Progress in Natural Science (自然科学进展), 19, 1175-1186. (in Chinese) |
[60] |
Zheng YL ( 郑玉龙), Feng YL ( 冯玉龙) (2006). Fog water absorption by the leaves of epiphytes and non-epiphytes in Xishuangbanna. Chinese Journal of Applied Ecology (应用生态学报), 17, 977-981. (in Chinese with English abstract)
URL PMID |
[61] | Zhou HF ( 周宏飞), Li Y ( 李彦), Tang Y ( 汤英), Zhou BJ ( 周宝佳), Xu HW ( 徐宏伟) (2009). The characteristics of the snow-cover and snow-melt water storage in Gurbantunggut Desert. Arid Zone Research (干旱区研究), 26, 312-317. (in Chinese with English abstract) |
[62] | Zhuang YL ( 庄艳丽), Zhao WZ ( 赵文智) (2008). Advances in the condensation water of arid regions. Advances in Earth Science (地球科学进展), 23, 31-38. (in Chinese with English abstract) |
[63] | Zhuang YL ( 庄艳丽), Zhao WZ ( 赵文智) (2009). Study on the ecological effects of condensed water on an annual plant in a temperate desert. Arid Zone Research (干旱区研究), 26, 526-532. (in Chinese with English abstract) |
[64] | Zhuang YL ( 庄艳丽), Zhao WZ ( 赵文智) (2010). Experimental study of effects of artificial dew on Bassia dasyphylla and Agriophyllum squarrosum. Journal of Desert Research (中国沙漠), 30, 1068-1074. |
[1] | 杨蕾, 孙晗, 樊艳文, 韩威, 曾令兵, 刘超, 王襄平. 长白山木本植物叶片氮磷含量的海拔梯度格局及影响因子[J]. 植物生态学报, 2017, 41(12): 1228-1238. |
[2] | 樊大勇, 熊高明, 张爱英, 刘曦, 谢宗强, 李兆佳. 三峡库区水位调度对消落带生态修复中物种筛选实践的影响[J]. 植物生态学报, 2015, 39(4): 416-432. |
[3] | 于鸿莹, 陈莹婷, 许振柱, 周广胜. 内蒙古荒漠草原植物叶片功能性状关系及其经济谱分析[J]. 植物生态学报, 2014, 38(10): 1029-1040. |
[4] | 陈瑜, 倪健. 利用孢粉记录定量重建大尺度古植被格局[J]. 植物生态学报, 2008, 32(5): 1201-1212. |
[5] | 马剑英, 方向文, 夏敦胜, 段争虎, 陈发虎, 王刚. 荒漠植物红砂叶片元素含量与气候因子的关系[J]. 植物生态学报, 2008, 32(4): 848-857. |
[6] | 张志东, 臧润国. 海南岛霸王岭热带天然林景观中木本植物功能型分布的影响因素[J]. 植物生态学报, 2007, 31(6): 1092-1102. |
[7] | 孟婷婷, 倪健, 王国宏. 植物功能性状与环境和生态系统功能[J]. 植物生态学报, 2007, 31(1): 150-165. |
[8] | 翁恩生, 周广胜. 用于全球变化研究的中国植物功能型划分[J]. 植物生态学报, 2005, 29(1): 81-97. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19