植物生态学报 ›› 2017, Vol. 41 ›› Issue (12): 1228-1238.DOI: 10.17521/cjpe.2017.0115
杨蕾, 孙晗, 樊艳文, 韩威, 曾令兵, 刘超, 王襄平*()
出版日期:
2017-12-10
发布日期:
2018-02-23
通讯作者:
王襄平
基金资助:
YANG Lei, SUN Han, FAN Yan-Wen, HAN Wei, ZENG Ling-Bing, LIU Chao, WANG Xiang-Ping*()
Online:
2017-12-10
Published:
2018-02-23
Contact:
WANG Xiang-Ping
摘要:
叶片是植物进行光合作用的器官, 研究叶片氮(N)、磷(P)含量和氮磷比(N:P)在地理和气候梯度上的变异规律有着重要的意义。该研究沿着长白山海拔梯度设置了14块样地, 测定了48种木本植物431份叶片样品的N、P含量和N:P, 以研究气候、植物功能型、谱系对叶片N、P含量以及N:P的相对影响大小, 探讨叶N、P化学计量特征在海拔梯度上的变化机制。结果表明, 叶片N含量、N:P随海拔的升高而降低, 与气温正相关, 与降水量负相关, 叶片P含量与海拔没有显著相关性。植物功能型是叶片N、P含量变异的重要影响因子, 灌木物种的叶N含量显著高于乔木, 两者的叶片P含量、N:P差异不显著; 阔叶、落叶物种的N、P含量和N:P分别显著高于针叶、常绿物种。气候对叶片N、P含量和N:P的作用显著, 但解释力不高(1.50%-2.98%)。系统发育关系是叶片N、P含量和N:P海拔格局形成的最主要因素, 解释了30.36%-54.38%的变异, 远大于气候的解释力。海拔梯度上的气候和物种组成变化对叶性状没有明显的协同作用。
杨蕾, 孙晗, 樊艳文, 韩威, 曾令兵, 刘超, 王襄平. 长白山木本植物叶片氮磷含量的海拔梯度格局及影响因子[J]. 植物生态学报, 2017, 41(12): 1228-1238.
YANG Lei, SUN Han, FAN Yan-Wen, HAN Wei, ZENG Ling-Bing, LIU Chao, WANG Xiang-Ping. Changes in leaf nitrogen and phosphorus stoichiometry of woody plants along an altitudinal gradient in Changbai Mountain, China[J]. Chin J Plan Ecolo, 2017, 41(12): 1228-1238.
叶性状 Leaf trait | 功能群 Functional group | 样本量 n | 平均值 Mean | 最大值 Max | 最小值 Min | 标准偏差 SD | 标准误差 SE | 变异系数 CV | |
---|---|---|---|---|---|---|---|---|---|
氮含量 N concentration (g·kg-1) | 全部样品 All samples | 431 | 21.46 | 37.90 | 5.10 | 6.75 | 0.33 | 0.31 | |
生活型 Life form | 乔木 Tree | 240 | 20.74b | 37.90 | 5.10 | 6.80 | 0.44 | 0.33 | |
灌木 Shrub | 191 | 22.37a | 37.40 | 6.80 | 6.59 | 0.48 | 0.29 | ||
叶型 Leaf shape | 针叶 Coniferous | 89 | 15.50b | 36.80 | 8.50 | 4.91 | 0.52 | 0.32 | |
阔叶 Broad-leaved | 342 | 23.02a | 37.90 | 5.10 | 6.29 | 0.34 | 0.27 | ||
叶片习性 Leaf habit | 常绿 Evergreen | 87 | 14.49b | 35.00 | 8.44 | 4.42 | 0.47 | 0.31 | |
落叶 Deciduous | 344 | 23.23a | 37.90 | 5.10 | 6.06 | 0.33 | 0.26 | ||
磷含量 P concentration (g·kg-1) | 全部样品 All samples | 431 | 2.23 | 6.75 | 0.66 | 0.87 | 0.04 | 0.39 | |
生活型 Life form | 乔木 Tree | 240 | 2.22 | 6.75 | 0.66 | 0.93 | 0.06 | 0.42 | |
灌木 Shrub | 191 | 2.25 | 5.29 | 0.77 | 0.80 | 0.06 | 0.35 | ||
叶型 Leaf shape | 针叶 Coniferous | 89 | 1.91b | 4.13 | 0.66 | 0.77 | 0.08 | 0.40 | |
阔叶 Broad-leaved | 342 | 2.32a | 6.75 | 0.77 | 0.88 | 0.05 | 0.38 | ||
叶片习性 Leaf habit | 常绿 Evergreen | 87 | 1.74b | 3.30 | 0.66 | 0.66 | 0.07 | 0.38 | |
落叶 Deciduous | 344 | 2.36a | 6.75 | 0.99 | 0.87 | 0.05 | 0.37 | ||
N:P | 全部样品 All samples | 431 | 10.81 | 33.70 | 2.47 | 4.77 | 0.23 | 0.44 | |
生活型 Life form | 乔木 Tree | 240 | 10.60 | 33.70 | 2.47 | 4.89 | 0.32 | 0.46 | |
灌木 Shrub | 191 | 11.07 | 26.34 | 3.12 | 4.62 | 0.33 | 0.42 | ||
叶型 Leaf shape | 针叶 Coniferous | 89 | 9.35b | 25.92 | 3.90 | 4.68 | 0.50 | 0.50 | |
阔叶 Broad-leaved | 342 | 11.19a | 33.70 | 2.47 | 4.72 | 0.26 | 0.42 | ||
叶片习性 Leaf habit | 常绿 Evergreen | 87 | 9.75b | 25.92 | 3.28 | 4.93 | 0.53 | 0.51 | |
落叶 Deciduous | 344 | 11.08a | 33.70 | 2.47 | 4.70 | 0.25 | 0.42 |
表1 长白山木本植物叶片氮、磷含量和氮磷比统计特征
Table 1 Statistics of leaf nitrogen (N), phosphorus (P) concentrations and N:P of the examined plant species in Changbai Mountain
叶性状 Leaf trait | 功能群 Functional group | 样本量 n | 平均值 Mean | 最大值 Max | 最小值 Min | 标准偏差 SD | 标准误差 SE | 变异系数 CV | |
---|---|---|---|---|---|---|---|---|---|
氮含量 N concentration (g·kg-1) | 全部样品 All samples | 431 | 21.46 | 37.90 | 5.10 | 6.75 | 0.33 | 0.31 | |
生活型 Life form | 乔木 Tree | 240 | 20.74b | 37.90 | 5.10 | 6.80 | 0.44 | 0.33 | |
灌木 Shrub | 191 | 22.37a | 37.40 | 6.80 | 6.59 | 0.48 | 0.29 | ||
叶型 Leaf shape | 针叶 Coniferous | 89 | 15.50b | 36.80 | 8.50 | 4.91 | 0.52 | 0.32 | |
阔叶 Broad-leaved | 342 | 23.02a | 37.90 | 5.10 | 6.29 | 0.34 | 0.27 | ||
叶片习性 Leaf habit | 常绿 Evergreen | 87 | 14.49b | 35.00 | 8.44 | 4.42 | 0.47 | 0.31 | |
落叶 Deciduous | 344 | 23.23a | 37.90 | 5.10 | 6.06 | 0.33 | 0.26 | ||
磷含量 P concentration (g·kg-1) | 全部样品 All samples | 431 | 2.23 | 6.75 | 0.66 | 0.87 | 0.04 | 0.39 | |
生活型 Life form | 乔木 Tree | 240 | 2.22 | 6.75 | 0.66 | 0.93 | 0.06 | 0.42 | |
灌木 Shrub | 191 | 2.25 | 5.29 | 0.77 | 0.80 | 0.06 | 0.35 | ||
叶型 Leaf shape | 针叶 Coniferous | 89 | 1.91b | 4.13 | 0.66 | 0.77 | 0.08 | 0.40 | |
阔叶 Broad-leaved | 342 | 2.32a | 6.75 | 0.77 | 0.88 | 0.05 | 0.38 | ||
叶片习性 Leaf habit | 常绿 Evergreen | 87 | 1.74b | 3.30 | 0.66 | 0.66 | 0.07 | 0.38 | |
落叶 Deciduous | 344 | 2.36a | 6.75 | 0.99 | 0.87 | 0.05 | 0.37 | ||
N:P | 全部样品 All samples | 431 | 10.81 | 33.70 | 2.47 | 4.77 | 0.23 | 0.44 | |
生活型 Life form | 乔木 Tree | 240 | 10.60 | 33.70 | 2.47 | 4.89 | 0.32 | 0.46 | |
灌木 Shrub | 191 | 11.07 | 26.34 | 3.12 | 4.62 | 0.33 | 0.42 | ||
叶型 Leaf shape | 针叶 Coniferous | 89 | 9.35b | 25.92 | 3.90 | 4.68 | 0.50 | 0.50 | |
阔叶 Broad-leaved | 342 | 11.19a | 33.70 | 2.47 | 4.72 | 0.26 | 0.42 | ||
叶片习性 Leaf habit | 常绿 Evergreen | 87 | 9.75b | 25.92 | 3.28 | 4.93 | 0.53 | 0.51 | |
落叶 Deciduous | 344 | 11.08a | 33.70 | 2.47 | 4.70 | 0.25 | 0.42 |
图2 叶片氮(N)、磷(P)含量和氮磷比(N:P)与年平均气温和年降水量的关系。
Fig. 2 Leaf nitrogen (N), phosphorus (P) concentrations and N:P in relation to mean annual temperature and mean annual precipitation.
叶性状 Leaf traits | 年平均气温 Mean annual temperature | 年降水量 Mean annual precipitation | 生活型 Life form | 叶型 Leaf shape | 叶片习性 Leaf habit | 90 Mya谱系组 90 Mya division | 60 Mya谱系组 60 Mya division | 物种 Species | |
---|---|---|---|---|---|---|---|---|---|
氮含量 N concentration | R2 | 0.012 | 0.012 | 0.016 | 0.229 | 0.324 | 0.415 | 0.459 | 0.536 |
p | 0.023* | 0.025* | 0.008** | 0.000*** | 0.000*** | 0.000*** | 0.000*** | 0.000*** | |
磷含量 P concentration | R2 | 0.003 | 0.003 | 0.002 | 0.049 | 0.115 | 0.216 | 0.306 | 0.391 |
p | 0.233 | 0.247 | 0.342 | 0.000*** | 0.000*** | 0.000*** | 0.000*** | 0.000*** | |
N:P | R2 | 0.016 | 0.016 | 0.003 | 0.028 | 0.018 | 0.152 | 0.215 | 0.303 |
p | 0.008** | 0.009** | 0.257 | 0.000*** | 0.005** | 0.000*** | 0.000*** | 0.000*** |
表2 各变量对氮(N)、磷(P)含量和氮磷比(N:P)的单因子解释力
Table 2 Contributions of each factor to the variations of leaf nitrogen (N), phosphorus (P) concentrations and N:P
叶性状 Leaf traits | 年平均气温 Mean annual temperature | 年降水量 Mean annual precipitation | 生活型 Life form | 叶型 Leaf shape | 叶片习性 Leaf habit | 90 Mya谱系组 90 Mya division | 60 Mya谱系组 60 Mya division | 物种 Species | |
---|---|---|---|---|---|---|---|---|---|
氮含量 N concentration | R2 | 0.012 | 0.012 | 0.016 | 0.229 | 0.324 | 0.415 | 0.459 | 0.536 |
p | 0.023* | 0.025* | 0.008** | 0.000*** | 0.000*** | 0.000*** | 0.000*** | 0.000*** | |
磷含量 P concentration | R2 | 0.003 | 0.003 | 0.002 | 0.049 | 0.115 | 0.216 | 0.306 | 0.391 |
p | 0.233 | 0.247 | 0.342 | 0.000*** | 0.000*** | 0.000*** | 0.000*** | 0.000*** | |
N:P | R2 | 0.016 | 0.016 | 0.003 | 0.028 | 0.018 | 0.152 | 0.215 | 0.303 |
p | 0.008** | 0.009** | 0.257 | 0.000*** | 0.005** | 0.000*** | 0.000*** | 0.000*** |
N | P | N:P | |||||||
---|---|---|---|---|---|---|---|---|---|
df | %SS | p | df | %SS | p | df | %SS | p | |
气候 Climate | |||||||||
年平均气温 Mean annual temperature | 1 | 1.21 | 0.001** | 1 | 0.33 | 0.146 | 1 | 1.65 | 0.002** |
年降水量 Mean annual precipitation | 1 | 0.61 | 0.022* | 1 | 0.45 | 0.089 | 1 | 1.28 | 0.007** |
植物功能型 Plant functional groups | |||||||||
生活型 Life form | 1 | 1.54 | 0.000*** | 1 | 0.22 | 0.237 | 1 | 0.27 | 0.214 |
叶型 Leaf shape | 1 | 22.60 | 0.000*** | 1 | 5.70 | 0.000*** | 1 | 2.24 | 0.000*** |
叶片习性 Leaf habit | 1 | 9.34 | 0.000*** | 1 | 6.46 | 0.000*** | 1 | 0.02 | 0.767 |
谱系 Phylogeny | |||||||||
90 Mya谱系组 90 Mya division | 18 | 12.06 | 0.000*** | 18 | 13.03 | 0.000*** | 18 | 13.18 | 0.000*** |
60 Mya谱系组 60 Mya division | 10 | 3.82 | 0.000*** | 10 | 8.10 | 0.000*** | 10 | 7.34 | 0.000*** |
物种 Species | 17 | 5.01 | 0.000*** | 17 | 6.33 | 0.002** | 17 | 7.32 | 0.001** |
残差 Residuals | 380 | 43.81 | 380 | 59.36 | 380 | 66.72 |
表3 气候、植物功能型、谱系对叶片氮(N)、磷(P)含量和氮磷比(N:P)影响的一般线性模型
Table 3 Summary of results of general linear model analysis for the effects of environmental factors, plant functional groups and phylogeny (90 and 60 Mya phylogenetic group, species) on leaf nitrogen (N), phosphorus (P) concentrations and N:P
N | P | N:P | |||||||
---|---|---|---|---|---|---|---|---|---|
df | %SS | p | df | %SS | p | df | %SS | p | |
气候 Climate | |||||||||
年平均气温 Mean annual temperature | 1 | 1.21 | 0.001** | 1 | 0.33 | 0.146 | 1 | 1.65 | 0.002** |
年降水量 Mean annual precipitation | 1 | 0.61 | 0.022* | 1 | 0.45 | 0.089 | 1 | 1.28 | 0.007** |
植物功能型 Plant functional groups | |||||||||
生活型 Life form | 1 | 1.54 | 0.000*** | 1 | 0.22 | 0.237 | 1 | 0.27 | 0.214 |
叶型 Leaf shape | 1 | 22.60 | 0.000*** | 1 | 5.70 | 0.000*** | 1 | 2.24 | 0.000*** |
叶片习性 Leaf habit | 1 | 9.34 | 0.000*** | 1 | 6.46 | 0.000*** | 1 | 0.02 | 0.767 |
谱系 Phylogeny | |||||||||
90 Mya谱系组 90 Mya division | 18 | 12.06 | 0.000*** | 18 | 13.03 | 0.000*** | 18 | 13.18 | 0.000*** |
60 Mya谱系组 60 Mya division | 10 | 3.82 | 0.000*** | 10 | 8.10 | 0.000*** | 10 | 7.34 | 0.000*** |
物种 Species | 17 | 5.01 | 0.000*** | 17 | 6.33 | 0.002** | 17 | 7.32 | 0.001** |
残差 Residuals | 380 | 43.81 | 380 | 59.36 | 380 | 66.72 |
图3 气候和物种(即谱系的总解释力, 见He et al., 2010)对叶片氮(N)、磷(P)元素影响的方差分解图。A, 叶片N含量。B, 叶片P含量。C, 叶片N:P。a和b分别为气候和谱系的单独解释力, c为两者的协同作用。采用F检验对a、b的显著性进行检验。***, p < 0.001; **, p < 0.01。
Fig. 3 Variation partitioning analysis for leaf nitrogen (N), phosphorus (P) concentrations and N:P by three types of factors: Climate (mean annual temperature and mean annual precipitation), species (phylogenetic differences among species, He et al., 2010), and unexplained variations. A, leaf N concentration. B, leaf P concentration. C, N:P. a and b are the pure effects of climate and species, respectively; c is their synergistic effects. The significances of a and b were evaluated with F test. ***, p < 0.001; **, p < 0.01.
样地 Plot | 经度 Longitude (°E) | 纬度 Latitude (°N) | 海拔 Altitude (m) | 林型 Forest type |
---|---|---|---|---|
CB01 | 128.11 | 42.39 | 530 | 白桦林 Betula platyphylla forest |
CB02 | 128.08 | 42.41 | 650 | 阔叶红松林 Pinus koraiensis and broadleaf mixed forest |
CB03 | 128.12 | 42.32 | 840 | 阔叶红松林 Pinus koraiensis and broadleaf mixed forest |
CB04 | 128.17 | 42.23 | 950 | 白桦林 Betula platyphylla forest |
CB05 | 128.17 | 42.23 | 970 | 阔叶红松林 Pinus koraiensis and broadleaf mixed forest |
CB06 | 128.17 | 42.19 | 1 010 | 云冷杉林 Picea and Abies forest |
CB07 | 128.11 | 42.12 | 1 270 | 阔叶红松林 Pinus koraiensis and broadleaf mixed forest |
CB08 | 128.26 | 42.07 | 1 420 | 云冷杉林 Picea and Abies forest |
CB09 | 128.09 | 42.10 | 1 420 | 长白落叶松林 Larix olgensis forest |
CB10 | 128.24 | 42.08 | 1 440 | 长白落叶松林 Larix olgensis forest |
CB11 | 128.08 | 42.09 | 1 530 | 长白落叶松林 Larix olgensis forest |
CB12 | 128.07 | 42.07 | 1 660 | 长白落叶松林 Larix olgensis forest |
CB13 | 128.07 | 42.06 | 1 885 | 岳桦林 Betula ermanii forest |
CB14 | 128.07 | 42.06 | 1 940 | 岳桦林 Betula ermanii forest |
附录I 长白山样地信息表
Appendix I General information of the plots on Changbai Mountain
样地 Plot | 经度 Longitude (°E) | 纬度 Latitude (°N) | 海拔 Altitude (m) | 林型 Forest type |
---|---|---|---|---|
CB01 | 128.11 | 42.39 | 530 | 白桦林 Betula platyphylla forest |
CB02 | 128.08 | 42.41 | 650 | 阔叶红松林 Pinus koraiensis and broadleaf mixed forest |
CB03 | 128.12 | 42.32 | 840 | 阔叶红松林 Pinus koraiensis and broadleaf mixed forest |
CB04 | 128.17 | 42.23 | 950 | 白桦林 Betula platyphylla forest |
CB05 | 128.17 | 42.23 | 970 | 阔叶红松林 Pinus koraiensis and broadleaf mixed forest |
CB06 | 128.17 | 42.19 | 1 010 | 云冷杉林 Picea and Abies forest |
CB07 | 128.11 | 42.12 | 1 270 | 阔叶红松林 Pinus koraiensis and broadleaf mixed forest |
CB08 | 128.26 | 42.07 | 1 420 | 云冷杉林 Picea and Abies forest |
CB09 | 128.09 | 42.10 | 1 420 | 长白落叶松林 Larix olgensis forest |
CB10 | 128.24 | 42.08 | 1 440 | 长白落叶松林 Larix olgensis forest |
CB11 | 128.08 | 42.09 | 1 530 | 长白落叶松林 Larix olgensis forest |
CB12 | 128.07 | 42.07 | 1 660 | 长白落叶松林 Larix olgensis forest |
CB13 | 128.07 | 42.06 | 1 885 | 岳桦林 Betula ermanii forest |
CB14 | 128.07 | 42.06 | 1 940 | 岳桦林 Betula ermanii forest |
|
附录II 长白山地区47物种谱系树, 基于Zanne等(2014)系统树作图。黑色实线进行的是90百万年以前(Mya)谱系组的划分(n = 19), 黑色虚线进行的是60 Mya谱系组的划分(n = 30)
Appendix II Phylogenetic tree for 47 species in this study, based on the phylogenetic tree of Zanne et al. (2014). Showing the phylogenetic divisions at the 90 and 60 million years ago (Mya)
|
氮 Nitrogen | 磷 Phosphorus | N:P | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
df | %SS | p | df | %SS | p | df | %SS | p | |||||||||||||
气候 Climate | |||||||||||||||||||||
年平均气温 Mean annual temperature | 1 | 1.21 | 0.001** | 1 | 0.33 | 0.146 | 1 | 1.65 | 0.002** | ||||||||||||
年降水量 Mean annual precipitation | 1 | 0.61 | 0.022* | 1 | 0.45 | 0.089 | 1 | 1.28 | 0.007** | ||||||||||||
植物功能型 Plant functional groups | |||||||||||||||||||||
生活型 Life form | 1 | 1.54 | 0.000*** | 1 | 0.22 | 0.237 | 1 | 0.27 | 0.214 | ||||||||||||
叶型 Leaf shape | 1 | 22.60 | 0.000*** | 1 | 5.70 | 0.000*** | 1 | 2.24 | 0.000*** | ||||||||||||
叶片习性 Leaf habit | 1 | 9.34 | 0.000*** | 1 | 6.46 | 0.000*** | 1 | 0.02 | 0.767 | ||||||||||||
系统发育关系 Taxonomy | |||||||||||||||||||||
科 Family | 17 | 11.50 | 0.000*** | 17 | 9.85 | 0.000*** | 17 | 9.81 | 0.000*** | ||||||||||||
属 Genus | 10 | 3.11 | 0.003** | 10 | 8.79 | 0.000*** | 10 | 6.30 | 0.000*** | ||||||||||||
种 Species | 18 | 6.29 | 0.000*** | 18 | 8.83 | 0.000*** | 18 | 11.73 | 0.000*** | ||||||||||||
残差 Residuals | 380 | 43.81 | 380 | 59.36 | 380 | 66.72 |
附录III 气候、植物功能型、分类群科属种对叶性状影响的一般线性模型
Appendix III Summary of general linear models for the effects of environmental variation (mean annual temperature and mean annual precipitation), plant functional groups and taxonomic variation (family, genus, and species) on individual leaf traits
氮 Nitrogen | 磷 Phosphorus | N:P | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
df | %SS | p | df | %SS | p | df | %SS | p | |||||||||||||
气候 Climate | |||||||||||||||||||||
年平均气温 Mean annual temperature | 1 | 1.21 | 0.001** | 1 | 0.33 | 0.146 | 1 | 1.65 | 0.002** | ||||||||||||
年降水量 Mean annual precipitation | 1 | 0.61 | 0.022* | 1 | 0.45 | 0.089 | 1 | 1.28 | 0.007** | ||||||||||||
植物功能型 Plant functional groups | |||||||||||||||||||||
生活型 Life form | 1 | 1.54 | 0.000*** | 1 | 0.22 | 0.237 | 1 | 0.27 | 0.214 | ||||||||||||
叶型 Leaf shape | 1 | 22.60 | 0.000*** | 1 | 5.70 | 0.000*** | 1 | 2.24 | 0.000*** | ||||||||||||
叶片习性 Leaf habit | 1 | 9.34 | 0.000*** | 1 | 6.46 | 0.000*** | 1 | 0.02 | 0.767 | ||||||||||||
系统发育关系 Taxonomy | |||||||||||||||||||||
科 Family | 17 | 11.50 | 0.000*** | 17 | 9.85 | 0.000*** | 17 | 9.81 | 0.000*** | ||||||||||||
属 Genus | 10 | 3.11 | 0.003** | 10 | 8.79 | 0.000*** | 10 | 6.30 | 0.000*** | ||||||||||||
种 Species | 18 | 6.29 | 0.000*** | 18 | 8.83 | 0.000*** | 18 | 11.73 | 0.000*** | ||||||||||||
残差 Residuals | 380 | 43.81 | 380 | 59.36 | 380 | 66.72 |
1 |
Aerts R, Champion FS (1999). The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns.Advances in Ecological Research, 30, 1-67.
DOI URL |
2 |
Balvanera P, Pfisterer AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D, Schmid B (2006). Quantifying the evidence for biodiversity effects on ecosystem functioning and services.Ecology Letters, 9, 1146-1156.
DOI URL |
3 |
Chapin FS, Schulze ED, Mooney HA (1990). The ecology and economics of plants.Annual Review of Ecology & Systematics, 21, 423-447.
DOI URL |
4 |
Chen YH, Han WX, Tang LY, Tang ZY, Fang JY (2013). Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form.Ecography, 36, 178-184.
DOI URL |
5 |
Cordell S, Goldstein G, Meinzer FC, Vitousek PM (2001). Morphological and physiological adjustment to N and P fertilization in nutrient-limited Metrosideros polymorpha canopy trees in Hawaii.Tree Physiology, 21, 43-50.
DOI URL PMID |
6 | Crawley MJ (2007). The R Book. Wiley Publishing. London. |
7 |
Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003). Growth rate-stoichiometry couplings in diverse biota.Ecology Letters, 6, 936-943.
DOI URL |
8 | Fan JW, Zhang LX, Zhang WY, Zhong HP (2014). The spatial pattern of plant nitrogen and phosphorus in relation to climate factors in Chinese grassland transect. Acta Agrestia Sinica, 22, 1-6.(in Chinese with English abstract) [樊江文, 张良侠, 张文彦, 钟华平 (2014). 中国草地样带植物氮磷元素空间格局及其与气候因子的关系. 草地学报, 22, 1-6.] |
9 | Fang JY (1992). Study on the geographic elements affecting temperature distribution in China.Acta Ecologica Sinica, 12, 97-104.(in Chinese with English abstract) [方精云 (1992). 地理要素对我国气温分布影响的数量评价. 生态学报, 12, 97-104.] |
10 |
Fang JY, Wang XP, Shen ZH, Tang ZY, He JS, Yu D, Jiang Y, Wang ZH, Zheng CY, Zhu JL, Guo ZD (2009). Methods and protocols for plant community inventory.Biodiversity Science, 17, 533-548.(in Chinese with English abstract) [方精云, 王襄平, 沈泽昊, 唐志尧, 贺金生, 于丹, 江源, 王志恒, 郑成洋, 朱江玲, 郭兆迪 (2009). 植物群落清查的主要内容、方法和技术规范. 生物多样性, 17, 533-548.]
DOI URL |
11 |
Fisher JB, Malhi Y, Torres IC, Metcalfe DB, van de Weg MJ, Meir P, Silva-Espejo JE, Huasco WH (2013). Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes.Oecologia, 172, 889-902.
DOI URL |
12 |
Güsewell S (2004). N:P ratios in terrestrial plants: Variation and functional significance.New Phytologist, 164, 243-266.
DOI URL |
13 |
Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China.New Phytologist, 168, 377-385.
DOI URL |
14 |
Han WX, Fang JY, Reich PB, Woodward FI, Wang ZH (2011). Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China.Ecology Letters, 14, 788-796.
DOI URL |
15 |
He JS, Fang JY, Wang ZH, Guo DL, Flynn DFB, Geng Z (2006). Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China.Oecologia, 149, 115-122.
DOI URL PMID |
16 | He JS, Han XG (2010). Ecological stoichiometry: Searching for unifying principles from individuals to ecosystem.Chinese Journal of Plant Ecology, 34, 2-6.(in Chinese with English abstract) [贺金生, 韩兴国 (2010). 生态化学计量学: 探索从个体到生态系统的统一化理论. 植物生态学报, 34, 2-6.] |
17 |
He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes.Oecologia, 155, 301-310.
DOI URL PMID |
18 |
He JS, Wang XP, Schmid B, Flynn DFB, Li XF, Reich PB, Fang JY (2010). Taxonomic identity, phylogeny, climate and soil fertility as drivers of leaf traits across Chinese grassland biomes.Journal of Plant Research, 123, 551-561.
DOI URL |
19 |
He JS, Wang XP, Flynn DFB, Wang L, Schmid B, Fang JY (2009). Taxonomic, phylogenetic, and environmental trade-offs between leaf productivity and persistence.Ecology, 90, 2779-2791.
DOI URL PMID |
20 |
Hedin LO (2004). Global organization of terrestrial plant- nutrient interactions.Proceedings of the National Academy of Sciences of the United States of America, 101, 10849-10850.
DOI URL PMID |
21 |
Kay AD, Ashton IW, Gorokhova E, Kerkhoff AJ, Liess A, Litchman E (2005). Toward a stoichiometric framework for evolutionary biology.Oikos, 109, 6-17.
DOI URL |
22 |
Koerselman W, Meuleman AFM (1996). The vegetation N:P: A new tool to detect the nature of nutrient limitation.Journal of Applied Ecology, 33, 1441-1450.
DOI URL |
23 |
K?rner C (1989). The nutritional status of plants from high altitudes.Oecologia, 81, 379-391.
DOI URL |
24 |
Liu C, Wang XP, Wu X, Dai S, He JS, Yin WL (2013). Relative effects of phylogeny, biological characters and environments on leaf traits in shrub biomes across central Inner Mongolia, China.Journal of Plant Ecology, 5, 220-231.
DOI URL |
25 |
Lovelock CE, Feller IC, Ball MC, Ellis J, Sorrell B (2007). Testing the growth rate vs. geochemical hypothesis for latitudinal variation in plant nutrients.Ecology Letters, 10, 1154-1163.
DOI URL |
26 |
Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude.Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
DOI URL PMID |
27 |
Ren SJ, Yu GR, Tao B, Wang SQ (2007). Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC.Chinese Journal of Environmental Science, 28, 2665-2673.(in Chinese with English abstract) [任书杰, 于贵瑞, 陶波, 王绍强 (2007). 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究. 环境科学, 28, 2665-2673.]
DOI URL |
28 |
Shi WQ, Wang GA, Han WX (2012). Altitudinal variation in leaf nitrogen concentration on the eastern slope of Mount Gongga on the Tibetan Plateau, China.PLOS ONE, 7, e44628. doi: 10.1371/journal.pone.0044628.
DOI URL PMID |
29 |
Smeck NE (1985). Phosphorus dynamics in soils and landscapes.Geoderma, 36, 185-199.
DOI URL |
30 |
Sun H, Wang XP, Fan YW, Liu C, Wu P, Li QY, Yin WL (2017). Effects of biophysical constraints, climate and phylogeny on forest shrub allometries along an altitudinal gradient in Northeast China.Scientific Reports, 7, 43769. doi: 10.1038/srep43769.
DOI URL PMID |
31 | van de Weg MJ, Meir P, Grace J, Atkin OK (2009). Altitudinal variation in leaf mass per unit area, leaf tissue density and foliar nitrogen and phosphorus content along an Amazon-Andes gradient in Peru.Plant Ecology & Diversity, 2, 243-254. |
32 |
Wang XP, Fang JY, Zhu B (2008). Forest biomass and root-shoot allocation in northeast China.Forest Ecology and Management, 255, 4007-4020.
DOI URL |
33 | Wang Z, Xu ZB, Li X, Peng DS, Tan ZX (1980). The main forest types and their features of community structure in northern slope of Changbai Mountain.Research of Forest Ecosystem, 1, 1-8.(in Chinese with English abstract) [王战, 徐振邦, 李昕, 彭定山, 谭征详 (1980). 长白山北坡主要森林类型及其群落结构特点. 森林生态系统研究,1, 1-8.] |
34 |
Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH, Niinemets ü, Oleksyn J, Osada N, Poorter H, Warton DI, Westoby M (2005). Modulation of leaf economic traits and trait relationships by climate.Global Ecology & Biogeography, 14, 411-421.
DOI |
35 |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum.Nature, 428, 821-827.
DOI URL |
36 | Wu TG, Chen BF, Xiao YH, Pan YJ, Chen Y, Xiao JH (2010). Leaf stoichiometry of trees in three forest types in Pearl River Delta, South China. Chinese Journal of Plant Ecology, 34, 58-63.(in Chinese with English abstract) [吴统贵, 陈步峰, 肖以华, 潘勇军, 陈勇, 萧江华 (2010). 珠江三角洲3种典型森林类型乔木叶片生态化学计量学. 植物生态学报, 34, 58-63.] |
37 |
Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, Aarssen L, Bertin RI, Calaminus A, Govaerts R, Hemmings F, Leishman MR, Oleksyn J, Soltis PS, Swenson NG, Warman L, Beaulieu JM (2014). Three keys to the radiation of angiosperms into freezing environments.Nature, 506, 89-92.
DOI URL |
38 |
Zhao N, He NP, Wang QF, Zhang XY, Wang RL, Xu ZW, Yu GR (2014). The altitudinal patterns of leaf C:N:P stoichiometry are regulated by plant growth form, climate and soil on Changbai Mountain, China.PLOS ONE, 9, e95196. doi: 10.1371/journal.pone.0095196.
DOI URL |
39 |
Zhao SQ, Fang JY, Zong ZJ, Zhu B, Shen HH (2004). Composition, structure and species diversity of plant communities along an altitudinal gradient on the northern slope of Mt. Changbai, Northeast China.Biodiversity Science, 12, 164-173.(in Chinese with English abstract) [赵淑清, 方精云, 宗占江, 朱彪, 沈海花 (2004). 长白山北坡植物群落组成、结构及物种多样性的垂直分布. 生物多样性, 12, 164-173.]
DOI URL |
40 |
Zhu B, Wang XP, Fang JY, Piao SL, Shen HH, Zhao SQ, Peng CH (2010). Altitudinal changes in carbon storage of temperate forests on Mt. Changbai, Northeast China.Journal of Plant Research, 123, 439-452.
DOI URL PMID |
[1] | 解梦怡 冯秀秀 马寰菲 胡汗 王洁莹 郭垚鑫 任成杰 王俊 赵发珠. 秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素[J]. 植物生态学报, 2020, 44(8): 0-0. |
[2] | 冯斌, 李迪强, 张于光, 薛亚东. 自然保护区减缓和适应气候变化的管理有效性评估: 以广西12个典型自然保护区为例[J]. 生物多样性, 2020, 28(8): 1026-1035. |
[3] | 余元钧, 罗火林, 刘南南, 熊冬金, 罗毅波, 杨柏云. 气候变化对中国大黄花虾脊兰及其传粉者适生区的影响[J]. 生物多样性, 2020, 28(7): 769-778. |
[4] | 李雪莹, 朱文泉, 李培先, 谢志英, 赵涔良. 气候变暖背景下青藏高原草本植物物候变化空间换时间预测[J]. 植物生态学报, 2020, 44(7): 742-751. |
[5] | 牛书丽, 陈卫楠. 全球变化与生态系统研究现状与展望[J]. 植物生态学报, 2020, 44(5): 449-460. |
[6] | 夏建阳, 鲁芮伶, 朱辰, 崔二乾, 杜莹, 黄昆, 孙宝玉. 陆地生态系统过程对气候变暖的响应与适应[J]. 植物生态学报, 2020, 44(5): 494-514. |
[7] | 白娥, 薛冰. 土地利用与土地覆盖变化对生态系统的影响[J]. 植物生态学报, 2020, 44(5): 543-552. |
[8] | 魏慧玉,陈凯,王备新. 澜沧江流域水生昆虫群落分类多样性和功能多样性海拔格局的空间尺度依赖性[J]. 生物多样性, 2020, 28(4): 504-514. |
[9] | 赵佳宁, 梁韵, 柳莹, 王玉珏, 杨倩茹, 肖春旺. 森林生态系统细根周转规律及影响因素[J]. 植物学报, 2020, 55(3): 308-317. |
[10] | 白杨,陈声文,钱海源,余顺海,徐谊明,张芷昕,沈超,陈雨奇,张美琪,余建平,朱瑞良. 钱江源国家公园叶附生苔类植物的物种多样性[J]. 生物多样性, 2020, 28(2): 231-237. |
[11] | 骆亦其 夏建阳. 陆地碳循环的动态非平衡假说[J]. 生物多样性, 2020, 28(11): 0-0. |
[12] | 侯祥 封托 韩宁 王京 陈晓宁 安晓雷 许磊 刘起勇 常罡. 气候变化和经济发展对肾综合征出血热发生的影响[J]. 生物多样性, 2020, 28(10): 0-0. |
[13] | 胡菀,张志勇,陈陆丹,彭焱松,汪旭. 末次盛冰期以来观光木的潜在地理分布变迁[J]. 植物生态学报, 2020, 44(1): 44-55. |
[14] | 秦浩, 张殷波, 董刚, 张峰. 山西关帝山森林群落物种、谱系和功能多样性海拔格局[J]. 植物生态学报, 2019, 43(9): 762-773. |
[15] | 唐丽丽,张梅,赵香林,康慕谊,刘鸿雁,高贤明,杨彤,郑璞帆,石福臣. 华北地区胡桃楸林分布规律及群落构建机制分析[J]. 植物生态学报, 2019, 43(9): 753-761. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2021 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19