植物生态学报 ›› 2017, Vol. 41 ›› Issue (12): 1228-1238.DOI: 10.17521/cjpe.2017.0115
所属专题: 生态化学计量
杨蕾, 孙晗, 樊艳文, 韩威, 曾令兵, 刘超, 王襄平*()
出版日期:
2017-12-10
发布日期:
2018-02-23
通讯作者:
王襄平
基金资助:
YANG Lei, SUN Han, FAN Yan-Wen, HAN Wei, ZENG Ling-Bing, LIU Chao, WANG Xiang-Ping*()
Online:
2017-12-10
Published:
2018-02-23
Contact:
WANG Xiang-Ping
摘要:
叶片是植物进行光合作用的器官, 研究叶片氮(N)、磷(P)含量和氮磷比(N:P)在地理和气候梯度上的变异规律有着重要的意义。该研究沿着长白山海拔梯度设置了14块样地, 测定了48种木本植物431份叶片样品的N、P含量和N:P, 以研究气候、植物功能型、谱系对叶片N、P含量以及N:P的相对影响大小, 探讨叶N、P化学计量特征在海拔梯度上的变化机制。结果表明, 叶片N含量、N:P随海拔的升高而降低, 与气温正相关, 与降水量负相关, 叶片P含量与海拔没有显著相关性。植物功能型是叶片N、P含量变异的重要影响因子, 灌木物种的叶N含量显著高于乔木, 两者的叶片P含量、N:P差异不显著; 阔叶、落叶物种的N、P含量和N:P分别显著高于针叶、常绿物种。气候对叶片N、P含量和N:P的作用显著, 但解释力不高(1.50%-2.98%)。系统发育关系是叶片N、P含量和N:P海拔格局形成的最主要因素, 解释了30.36%-54.38%的变异, 远大于气候的解释力。海拔梯度上的气候和物种组成变化对叶性状没有明显的协同作用。
杨蕾, 孙晗, 樊艳文, 韩威, 曾令兵, 刘超, 王襄平. 长白山木本植物叶片氮磷含量的海拔梯度格局及影响因子. 植物生态学报, 2017, 41(12): 1228-1238. DOI: 10.17521/cjpe.2017.0115
YANG Lei, SUN Han, FAN Yan-Wen, HAN Wei, ZENG Ling-Bing, LIU Chao, WANG Xiang-Ping. Changes in leaf nitrogen and phosphorus stoichiometry of woody plants along an altitudinal gradient in Changbai Mountain, China. Chinese Journal of Plant Ecology, 2017, 41(12): 1228-1238. DOI: 10.17521/cjpe.2017.0115
叶性状 Leaf trait | 功能群 Functional group | 样本量 n | 平均值 Mean | 最大值 Max | 最小值 Min | 标准偏差 SD | 标准误差 SE | 变异系数 CV | |
---|---|---|---|---|---|---|---|---|---|
氮含量 N concentration (g·kg-1) | 全部样品 All samples | 431 | 21.46 | 37.90 | 5.10 | 6.75 | 0.33 | 0.31 | |
生活型 Life form | 乔木 Tree | 240 | 20.74b | 37.90 | 5.10 | 6.80 | 0.44 | 0.33 | |
灌木 Shrub | 191 | 22.37a | 37.40 | 6.80 | 6.59 | 0.48 | 0.29 | ||
叶型 Leaf shape | 针叶 Coniferous | 89 | 15.50b | 36.80 | 8.50 | 4.91 | 0.52 | 0.32 | |
阔叶 Broad-leaved | 342 | 23.02a | 37.90 | 5.10 | 6.29 | 0.34 | 0.27 | ||
叶片习性 Leaf habit | 常绿 Evergreen | 87 | 14.49b | 35.00 | 8.44 | 4.42 | 0.47 | 0.31 | |
落叶 Deciduous | 344 | 23.23a | 37.90 | 5.10 | 6.06 | 0.33 | 0.26 | ||
磷含量 P concentration (g·kg-1) | 全部样品 All samples | 431 | 2.23 | 6.75 | 0.66 | 0.87 | 0.04 | 0.39 | |
生活型 Life form | 乔木 Tree | 240 | 2.22 | 6.75 | 0.66 | 0.93 | 0.06 | 0.42 | |
灌木 Shrub | 191 | 2.25 | 5.29 | 0.77 | 0.80 | 0.06 | 0.35 | ||
叶型 Leaf shape | 针叶 Coniferous | 89 | 1.91b | 4.13 | 0.66 | 0.77 | 0.08 | 0.40 | |
阔叶 Broad-leaved | 342 | 2.32a | 6.75 | 0.77 | 0.88 | 0.05 | 0.38 | ||
叶片习性 Leaf habit | 常绿 Evergreen | 87 | 1.74b | 3.30 | 0.66 | 0.66 | 0.07 | 0.38 | |
落叶 Deciduous | 344 | 2.36a | 6.75 | 0.99 | 0.87 | 0.05 | 0.37 | ||
N:P | 全部样品 All samples | 431 | 10.81 | 33.70 | 2.47 | 4.77 | 0.23 | 0.44 | |
生活型 Life form | 乔木 Tree | 240 | 10.60 | 33.70 | 2.47 | 4.89 | 0.32 | 0.46 | |
灌木 Shrub | 191 | 11.07 | 26.34 | 3.12 | 4.62 | 0.33 | 0.42 | ||
叶型 Leaf shape | 针叶 Coniferous | 89 | 9.35b | 25.92 | 3.90 | 4.68 | 0.50 | 0.50 | |
阔叶 Broad-leaved | 342 | 11.19a | 33.70 | 2.47 | 4.72 | 0.26 | 0.42 | ||
叶片习性 Leaf habit | 常绿 Evergreen | 87 | 9.75b | 25.92 | 3.28 | 4.93 | 0.53 | 0.51 | |
落叶 Deciduous | 344 | 11.08a | 33.70 | 2.47 | 4.70 | 0.25 | 0.42 |
表1 长白山木本植物叶片氮、磷含量和氮磷比统计特征
Table 1 Statistics of leaf nitrogen (N), phosphorus (P) concentrations and N:P of the examined plant species in Changbai Mountain
叶性状 Leaf trait | 功能群 Functional group | 样本量 n | 平均值 Mean | 最大值 Max | 最小值 Min | 标准偏差 SD | 标准误差 SE | 变异系数 CV | |
---|---|---|---|---|---|---|---|---|---|
氮含量 N concentration (g·kg-1) | 全部样品 All samples | 431 | 21.46 | 37.90 | 5.10 | 6.75 | 0.33 | 0.31 | |
生活型 Life form | 乔木 Tree | 240 | 20.74b | 37.90 | 5.10 | 6.80 | 0.44 | 0.33 | |
灌木 Shrub | 191 | 22.37a | 37.40 | 6.80 | 6.59 | 0.48 | 0.29 | ||
叶型 Leaf shape | 针叶 Coniferous | 89 | 15.50b | 36.80 | 8.50 | 4.91 | 0.52 | 0.32 | |
阔叶 Broad-leaved | 342 | 23.02a | 37.90 | 5.10 | 6.29 | 0.34 | 0.27 | ||
叶片习性 Leaf habit | 常绿 Evergreen | 87 | 14.49b | 35.00 | 8.44 | 4.42 | 0.47 | 0.31 | |
落叶 Deciduous | 344 | 23.23a | 37.90 | 5.10 | 6.06 | 0.33 | 0.26 | ||
磷含量 P concentration (g·kg-1) | 全部样品 All samples | 431 | 2.23 | 6.75 | 0.66 | 0.87 | 0.04 | 0.39 | |
生活型 Life form | 乔木 Tree | 240 | 2.22 | 6.75 | 0.66 | 0.93 | 0.06 | 0.42 | |
灌木 Shrub | 191 | 2.25 | 5.29 | 0.77 | 0.80 | 0.06 | 0.35 | ||
叶型 Leaf shape | 针叶 Coniferous | 89 | 1.91b | 4.13 | 0.66 | 0.77 | 0.08 | 0.40 | |
阔叶 Broad-leaved | 342 | 2.32a | 6.75 | 0.77 | 0.88 | 0.05 | 0.38 | ||
叶片习性 Leaf habit | 常绿 Evergreen | 87 | 1.74b | 3.30 | 0.66 | 0.66 | 0.07 | 0.38 | |
落叶 Deciduous | 344 | 2.36a | 6.75 | 0.99 | 0.87 | 0.05 | 0.37 | ||
N:P | 全部样品 All samples | 431 | 10.81 | 33.70 | 2.47 | 4.77 | 0.23 | 0.44 | |
生活型 Life form | 乔木 Tree | 240 | 10.60 | 33.70 | 2.47 | 4.89 | 0.32 | 0.46 | |
灌木 Shrub | 191 | 11.07 | 26.34 | 3.12 | 4.62 | 0.33 | 0.42 | ||
叶型 Leaf shape | 针叶 Coniferous | 89 | 9.35b | 25.92 | 3.90 | 4.68 | 0.50 | 0.50 | |
阔叶 Broad-leaved | 342 | 11.19a | 33.70 | 2.47 | 4.72 | 0.26 | 0.42 | ||
叶片习性 Leaf habit | 常绿 Evergreen | 87 | 9.75b | 25.92 | 3.28 | 4.93 | 0.53 | 0.51 | |
落叶 Deciduous | 344 | 11.08a | 33.70 | 2.47 | 4.70 | 0.25 | 0.42 |
图2 叶片氮(N)、磷(P)含量和氮磷比(N:P)与年平均气温和年降水量的关系。
Fig. 2 Leaf nitrogen (N), phosphorus (P) concentrations and N:P in relation to mean annual temperature and mean annual precipitation.
叶性状 Leaf traits | 年平均气温 Mean annual temperature | 年降水量 Mean annual precipitation | 生活型 Life form | 叶型 Leaf shape | 叶片习性 Leaf habit | 90 Mya谱系组 90 Mya division | 60 Mya谱系组 60 Mya division | 物种 Species | |
---|---|---|---|---|---|---|---|---|---|
氮含量 N concentration | R2 | 0.012 | 0.012 | 0.016 | 0.229 | 0.324 | 0.415 | 0.459 | 0.536 |
p | 0.023* | 0.025* | 0.008** | 0.000*** | 0.000*** | 0.000*** | 0.000*** | 0.000*** | |
磷含量 P concentration | R2 | 0.003 | 0.003 | 0.002 | 0.049 | 0.115 | 0.216 | 0.306 | 0.391 |
p | 0.233 | 0.247 | 0.342 | 0.000*** | 0.000*** | 0.000*** | 0.000*** | 0.000*** | |
N:P | R2 | 0.016 | 0.016 | 0.003 | 0.028 | 0.018 | 0.152 | 0.215 | 0.303 |
p | 0.008** | 0.009** | 0.257 | 0.000*** | 0.005** | 0.000*** | 0.000*** | 0.000*** |
表2 各变量对氮(N)、磷(P)含量和氮磷比(N:P)的单因子解释力
Table 2 Contributions of each factor to the variations of leaf nitrogen (N), phosphorus (P) concentrations and N:P
叶性状 Leaf traits | 年平均气温 Mean annual temperature | 年降水量 Mean annual precipitation | 生活型 Life form | 叶型 Leaf shape | 叶片习性 Leaf habit | 90 Mya谱系组 90 Mya division | 60 Mya谱系组 60 Mya division | 物种 Species | |
---|---|---|---|---|---|---|---|---|---|
氮含量 N concentration | R2 | 0.012 | 0.012 | 0.016 | 0.229 | 0.324 | 0.415 | 0.459 | 0.536 |
p | 0.023* | 0.025* | 0.008** | 0.000*** | 0.000*** | 0.000*** | 0.000*** | 0.000*** | |
磷含量 P concentration | R2 | 0.003 | 0.003 | 0.002 | 0.049 | 0.115 | 0.216 | 0.306 | 0.391 |
p | 0.233 | 0.247 | 0.342 | 0.000*** | 0.000*** | 0.000*** | 0.000*** | 0.000*** | |
N:P | R2 | 0.016 | 0.016 | 0.003 | 0.028 | 0.018 | 0.152 | 0.215 | 0.303 |
p | 0.008** | 0.009** | 0.257 | 0.000*** | 0.005** | 0.000*** | 0.000*** | 0.000*** |
N | P | N:P | |||||||
---|---|---|---|---|---|---|---|---|---|
df | %SS | p | df | %SS | p | df | %SS | p | |
气候 Climate | |||||||||
年平均气温 Mean annual temperature | 1 | 1.21 | 0.001** | 1 | 0.33 | 0.146 | 1 | 1.65 | 0.002** |
年降水量 Mean annual precipitation | 1 | 0.61 | 0.022* | 1 | 0.45 | 0.089 | 1 | 1.28 | 0.007** |
植物功能型 Plant functional groups | |||||||||
生活型 Life form | 1 | 1.54 | 0.000*** | 1 | 0.22 | 0.237 | 1 | 0.27 | 0.214 |
叶型 Leaf shape | 1 | 22.60 | 0.000*** | 1 | 5.70 | 0.000*** | 1 | 2.24 | 0.000*** |
叶片习性 Leaf habit | 1 | 9.34 | 0.000*** | 1 | 6.46 | 0.000*** | 1 | 0.02 | 0.767 |
谱系 Phylogeny | |||||||||
90 Mya谱系组 90 Mya division | 18 | 12.06 | 0.000*** | 18 | 13.03 | 0.000*** | 18 | 13.18 | 0.000*** |
60 Mya谱系组 60 Mya division | 10 | 3.82 | 0.000*** | 10 | 8.10 | 0.000*** | 10 | 7.34 | 0.000*** |
物种 Species | 17 | 5.01 | 0.000*** | 17 | 6.33 | 0.002** | 17 | 7.32 | 0.001** |
残差 Residuals | 380 | 43.81 | 380 | 59.36 | 380 | 66.72 |
表3 气候、植物功能型、谱系对叶片氮(N)、磷(P)含量和氮磷比(N:P)影响的一般线性模型
Table 3 Summary of results of general linear model analysis for the effects of environmental factors, plant functional groups and phylogeny (90 and 60 Mya phylogenetic group, species) on leaf nitrogen (N), phosphorus (P) concentrations and N:P
N | P | N:P | |||||||
---|---|---|---|---|---|---|---|---|---|
df | %SS | p | df | %SS | p | df | %SS | p | |
气候 Climate | |||||||||
年平均气温 Mean annual temperature | 1 | 1.21 | 0.001** | 1 | 0.33 | 0.146 | 1 | 1.65 | 0.002** |
年降水量 Mean annual precipitation | 1 | 0.61 | 0.022* | 1 | 0.45 | 0.089 | 1 | 1.28 | 0.007** |
植物功能型 Plant functional groups | |||||||||
生活型 Life form | 1 | 1.54 | 0.000*** | 1 | 0.22 | 0.237 | 1 | 0.27 | 0.214 |
叶型 Leaf shape | 1 | 22.60 | 0.000*** | 1 | 5.70 | 0.000*** | 1 | 2.24 | 0.000*** |
叶片习性 Leaf habit | 1 | 9.34 | 0.000*** | 1 | 6.46 | 0.000*** | 1 | 0.02 | 0.767 |
谱系 Phylogeny | |||||||||
90 Mya谱系组 90 Mya division | 18 | 12.06 | 0.000*** | 18 | 13.03 | 0.000*** | 18 | 13.18 | 0.000*** |
60 Mya谱系组 60 Mya division | 10 | 3.82 | 0.000*** | 10 | 8.10 | 0.000*** | 10 | 7.34 | 0.000*** |
物种 Species | 17 | 5.01 | 0.000*** | 17 | 6.33 | 0.002** | 17 | 7.32 | 0.001** |
残差 Residuals | 380 | 43.81 | 380 | 59.36 | 380 | 66.72 |
图3 气候和物种(即谱系的总解释力, 见He et al., 2010)对叶片氮(N)、磷(P)元素影响的方差分解图。A, 叶片N含量。B, 叶片P含量。C, 叶片N:P。a和b分别为气候和谱系的单独解释力, c为两者的协同作用。采用F检验对a、b的显著性进行检验。***, p < 0.001; **, p < 0.01。
Fig. 3 Variation partitioning analysis for leaf nitrogen (N), phosphorus (P) concentrations and N:P by three types of factors: Climate (mean annual temperature and mean annual precipitation), species (phylogenetic differences among species, He et al., 2010), and unexplained variations. A, leaf N concentration. B, leaf P concentration. C, N:P. a and b are the pure effects of climate and species, respectively; c is their synergistic effects. The significances of a and b were evaluated with F test. ***, p < 0.001; **, p < 0.01.
样地 Plot | 经度 Longitude (°E) | 纬度 Latitude (°N) | 海拔 Altitude (m) | 林型 Forest type |
---|---|---|---|---|
CB01 | 128.11 | 42.39 | 530 | 白桦林 Betula platyphylla forest |
CB02 | 128.08 | 42.41 | 650 | 阔叶红松林 Pinus koraiensis and broadleaf mixed forest |
CB03 | 128.12 | 42.32 | 840 | 阔叶红松林 Pinus koraiensis and broadleaf mixed forest |
CB04 | 128.17 | 42.23 | 950 | 白桦林 Betula platyphylla forest |
CB05 | 128.17 | 42.23 | 970 | 阔叶红松林 Pinus koraiensis and broadleaf mixed forest |
CB06 | 128.17 | 42.19 | 1 010 | 云冷杉林 Picea and Abies forest |
CB07 | 128.11 | 42.12 | 1 270 | 阔叶红松林 Pinus koraiensis and broadleaf mixed forest |
CB08 | 128.26 | 42.07 | 1 420 | 云冷杉林 Picea and Abies forest |
CB09 | 128.09 | 42.10 | 1 420 | 长白落叶松林 Larix olgensis forest |
CB10 | 128.24 | 42.08 | 1 440 | 长白落叶松林 Larix olgensis forest |
CB11 | 128.08 | 42.09 | 1 530 | 长白落叶松林 Larix olgensis forest |
CB12 | 128.07 | 42.07 | 1 660 | 长白落叶松林 Larix olgensis forest |
CB13 | 128.07 | 42.06 | 1 885 | 岳桦林 Betula ermanii forest |
CB14 | 128.07 | 42.06 | 1 940 | 岳桦林 Betula ermanii forest |
附录I 长白山样地信息表
Appendix I General information of the plots on Changbai Mountain
样地 Plot | 经度 Longitude (°E) | 纬度 Latitude (°N) | 海拔 Altitude (m) | 林型 Forest type |
---|---|---|---|---|
CB01 | 128.11 | 42.39 | 530 | 白桦林 Betula platyphylla forest |
CB02 | 128.08 | 42.41 | 650 | 阔叶红松林 Pinus koraiensis and broadleaf mixed forest |
CB03 | 128.12 | 42.32 | 840 | 阔叶红松林 Pinus koraiensis and broadleaf mixed forest |
CB04 | 128.17 | 42.23 | 950 | 白桦林 Betula platyphylla forest |
CB05 | 128.17 | 42.23 | 970 | 阔叶红松林 Pinus koraiensis and broadleaf mixed forest |
CB06 | 128.17 | 42.19 | 1 010 | 云冷杉林 Picea and Abies forest |
CB07 | 128.11 | 42.12 | 1 270 | 阔叶红松林 Pinus koraiensis and broadleaf mixed forest |
CB08 | 128.26 | 42.07 | 1 420 | 云冷杉林 Picea and Abies forest |
CB09 | 128.09 | 42.10 | 1 420 | 长白落叶松林 Larix olgensis forest |
CB10 | 128.24 | 42.08 | 1 440 | 长白落叶松林 Larix olgensis forest |
CB11 | 128.08 | 42.09 | 1 530 | 长白落叶松林 Larix olgensis forest |
CB12 | 128.07 | 42.07 | 1 660 | 长白落叶松林 Larix olgensis forest |
CB13 | 128.07 | 42.06 | 1 885 | 岳桦林 Betula ermanii forest |
CB14 | 128.07 | 42.06 | 1 940 | 岳桦林 Betula ermanii forest |
|
附录II 长白山地区47物种谱系树, 基于Zanne等(2014)系统树作图。黑色实线进行的是90百万年以前(Mya)谱系组的划分(n = 19), 黑色虚线进行的是60 Mya谱系组的划分(n = 30)
Appendix II Phylogenetic tree for 47 species in this study, based on the phylogenetic tree of Zanne et al. (2014). Showing the phylogenetic divisions at the 90 and 60 million years ago (Mya)
|
氮 Nitrogen | 磷 Phosphorus | N:P | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
df | %SS | p | df | %SS | p | df | %SS | p | |||||||||||||
气候 Climate | |||||||||||||||||||||
年平均气温 Mean annual temperature | 1 | 1.21 | 0.001** | 1 | 0.33 | 0.146 | 1 | 1.65 | 0.002** | ||||||||||||
年降水量 Mean annual precipitation | 1 | 0.61 | 0.022* | 1 | 0.45 | 0.089 | 1 | 1.28 | 0.007** | ||||||||||||
植物功能型 Plant functional groups | |||||||||||||||||||||
生活型 Life form | 1 | 1.54 | 0.000*** | 1 | 0.22 | 0.237 | 1 | 0.27 | 0.214 | ||||||||||||
叶型 Leaf shape | 1 | 22.60 | 0.000*** | 1 | 5.70 | 0.000*** | 1 | 2.24 | 0.000*** | ||||||||||||
叶片习性 Leaf habit | 1 | 9.34 | 0.000*** | 1 | 6.46 | 0.000*** | 1 | 0.02 | 0.767 | ||||||||||||
系统发育关系 Taxonomy | |||||||||||||||||||||
科 Family | 17 | 11.50 | 0.000*** | 17 | 9.85 | 0.000*** | 17 | 9.81 | 0.000*** | ||||||||||||
属 Genus | 10 | 3.11 | 0.003** | 10 | 8.79 | 0.000*** | 10 | 6.30 | 0.000*** | ||||||||||||
种 Species | 18 | 6.29 | 0.000*** | 18 | 8.83 | 0.000*** | 18 | 11.73 | 0.000*** | ||||||||||||
残差 Residuals | 380 | 43.81 | 380 | 59.36 | 380 | 66.72 |
附录III 气候、植物功能型、分类群科属种对叶性状影响的一般线性模型
Appendix III Summary of general linear models for the effects of environmental variation (mean annual temperature and mean annual precipitation), plant functional groups and taxonomic variation (family, genus, and species) on individual leaf traits
氮 Nitrogen | 磷 Phosphorus | N:P | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
df | %SS | p | df | %SS | p | df | %SS | p | |||||||||||||
气候 Climate | |||||||||||||||||||||
年平均气温 Mean annual temperature | 1 | 1.21 | 0.001** | 1 | 0.33 | 0.146 | 1 | 1.65 | 0.002** | ||||||||||||
年降水量 Mean annual precipitation | 1 | 0.61 | 0.022* | 1 | 0.45 | 0.089 | 1 | 1.28 | 0.007** | ||||||||||||
植物功能型 Plant functional groups | |||||||||||||||||||||
生活型 Life form | 1 | 1.54 | 0.000*** | 1 | 0.22 | 0.237 | 1 | 0.27 | 0.214 | ||||||||||||
叶型 Leaf shape | 1 | 22.60 | 0.000*** | 1 | 5.70 | 0.000*** | 1 | 2.24 | 0.000*** | ||||||||||||
叶片习性 Leaf habit | 1 | 9.34 | 0.000*** | 1 | 6.46 | 0.000*** | 1 | 0.02 | 0.767 | ||||||||||||
系统发育关系 Taxonomy | |||||||||||||||||||||
科 Family | 17 | 11.50 | 0.000*** | 17 | 9.85 | 0.000*** | 17 | 9.81 | 0.000*** | ||||||||||||
属 Genus | 10 | 3.11 | 0.003** | 10 | 8.79 | 0.000*** | 10 | 6.30 | 0.000*** | ||||||||||||
种 Species | 18 | 6.29 | 0.000*** | 18 | 8.83 | 0.000*** | 18 | 11.73 | 0.000*** | ||||||||||||
残差 Residuals | 380 | 43.81 | 380 | 59.36 | 380 | 66.72 |
1 |
Aerts R, Champion FS (1999). The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns.Advances in Ecological Research, 30, 1-67.
DOI URL |
2 |
Balvanera P, Pfisterer AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D, Schmid B (2006). Quantifying the evidence for biodiversity effects on ecosystem functioning and services.Ecology Letters, 9, 1146-1156.
DOI URL |
3 |
Chapin FS, Schulze ED, Mooney HA (1990). The ecology and economics of plants.Annual Review of Ecology & Systematics, 21, 423-447.
DOI URL |
4 |
Chen YH, Han WX, Tang LY, Tang ZY, Fang JY (2013). Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form.Ecography, 36, 178-184.
DOI URL |
5 |
Cordell S, Goldstein G, Meinzer FC, Vitousek PM (2001). Morphological and physiological adjustment to N and P fertilization in nutrient-limited Metrosideros polymorpha canopy trees in Hawaii.Tree Physiology, 21, 43-50.
DOI URL PMID |
6 | Crawley MJ (2007). The R Book. Wiley Publishing. London. |
7 |
Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003). Growth rate-stoichiometry couplings in diverse biota.Ecology Letters, 6, 936-943.
DOI URL |
8 | Fan JW, Zhang LX, Zhang WY, Zhong HP (2014). The spatial pattern of plant nitrogen and phosphorus in relation to climate factors in Chinese grassland transect. Acta Agrestia Sinica, 22, 1-6.(in Chinese with English abstract) [樊江文, 张良侠, 张文彦, 钟华平 (2014). 中国草地样带植物氮磷元素空间格局及其与气候因子的关系. 草地学报, 22, 1-6.] |
9 | Fang JY (1992). Study on the geographic elements affecting temperature distribution in China.Acta Ecologica Sinica, 12, 97-104.(in Chinese with English abstract) [方精云 (1992). 地理要素对我国气温分布影响的数量评价. 生态学报, 12, 97-104.] |
10 |
Fang JY, Wang XP, Shen ZH, Tang ZY, He JS, Yu D, Jiang Y, Wang ZH, Zheng CY, Zhu JL, Guo ZD (2009). Methods and protocols for plant community inventory.Biodiversity Science, 17, 533-548.(in Chinese with English abstract) [方精云, 王襄平, 沈泽昊, 唐志尧, 贺金生, 于丹, 江源, 王志恒, 郑成洋, 朱江玲, 郭兆迪 (2009). 植物群落清查的主要内容、方法和技术规范. 生物多样性, 17, 533-548.]
DOI URL |
11 |
Fisher JB, Malhi Y, Torres IC, Metcalfe DB, van de Weg MJ, Meir P, Silva-Espejo JE, Huasco WH (2013). Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes.Oecologia, 172, 889-902.
DOI URL |
12 |
Güsewell S (2004). N:P ratios in terrestrial plants: Variation and functional significance.New Phytologist, 164, 243-266.
DOI URL |
13 |
Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China.New Phytologist, 168, 377-385.
DOI URL |
14 |
Han WX, Fang JY, Reich PB, Woodward FI, Wang ZH (2011). Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China.Ecology Letters, 14, 788-796.
DOI URL |
15 |
He JS, Fang JY, Wang ZH, Guo DL, Flynn DFB, Geng Z (2006). Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China.Oecologia, 149, 115-122.
DOI URL PMID |
16 | He JS, Han XG (2010). Ecological stoichiometry: Searching for unifying principles from individuals to ecosystem.Chinese Journal of Plant Ecology, 34, 2-6.(in Chinese with English abstract) [贺金生, 韩兴国 (2010). 生态化学计量学: 探索从个体到生态系统的统一化理论. 植物生态学报, 34, 2-6.] |
17 |
He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes.Oecologia, 155, 301-310.
DOI URL PMID |
18 |
He JS, Wang XP, Schmid B, Flynn DFB, Li XF, Reich PB, Fang JY (2010). Taxonomic identity, phylogeny, climate and soil fertility as drivers of leaf traits across Chinese grassland biomes.Journal of Plant Research, 123, 551-561.
DOI URL |
19 |
He JS, Wang XP, Flynn DFB, Wang L, Schmid B, Fang JY (2009). Taxonomic, phylogenetic, and environmental trade-offs between leaf productivity and persistence.Ecology, 90, 2779-2791.
DOI URL PMID |
20 |
Hedin LO (2004). Global organization of terrestrial plant- nutrient interactions.Proceedings of the National Academy of Sciences of the United States of America, 101, 10849-10850.
DOI URL PMID |
21 |
Kay AD, Ashton IW, Gorokhova E, Kerkhoff AJ, Liess A, Litchman E (2005). Toward a stoichiometric framework for evolutionary biology.Oikos, 109, 6-17.
DOI URL |
22 |
Koerselman W, Meuleman AFM (1996). The vegetation N:P: A new tool to detect the nature of nutrient limitation.Journal of Applied Ecology, 33, 1441-1450.
DOI URL |
23 |
K?rner C (1989). The nutritional status of plants from high altitudes.Oecologia, 81, 379-391.
DOI URL |
24 |
Liu C, Wang XP, Wu X, Dai S, He JS, Yin WL (2013). Relative effects of phylogeny, biological characters and environments on leaf traits in shrub biomes across central Inner Mongolia, China.Journal of Plant Ecology, 5, 220-231.
DOI URL |
25 |
Lovelock CE, Feller IC, Ball MC, Ellis J, Sorrell B (2007). Testing the growth rate vs. geochemical hypothesis for latitudinal variation in plant nutrients.Ecology Letters, 10, 1154-1163.
DOI URL |
26 |
Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude.Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
DOI URL PMID |
27 |
Ren SJ, Yu GR, Tao B, Wang SQ (2007). Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC.Chinese Journal of Environmental Science, 28, 2665-2673.(in Chinese with English abstract) [任书杰, 于贵瑞, 陶波, 王绍强 (2007). 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究. 环境科学, 28, 2665-2673.]
DOI URL |
28 |
Shi WQ, Wang GA, Han WX (2012). Altitudinal variation in leaf nitrogen concentration on the eastern slope of Mount Gongga on the Tibetan Plateau, China.PLOS ONE, 7, e44628. doi: 10.1371/journal.pone.0044628.
DOI URL PMID |
29 |
Smeck NE (1985). Phosphorus dynamics in soils and landscapes.Geoderma, 36, 185-199.
DOI URL |
30 |
Sun H, Wang XP, Fan YW, Liu C, Wu P, Li QY, Yin WL (2017). Effects of biophysical constraints, climate and phylogeny on forest shrub allometries along an altitudinal gradient in Northeast China.Scientific Reports, 7, 43769. doi: 10.1038/srep43769.
DOI URL PMID |
31 | van de Weg MJ, Meir P, Grace J, Atkin OK (2009). Altitudinal variation in leaf mass per unit area, leaf tissue density and foliar nitrogen and phosphorus content along an Amazon-Andes gradient in Peru.Plant Ecology & Diversity, 2, 243-254. |
32 |
Wang XP, Fang JY, Zhu B (2008). Forest biomass and root-shoot allocation in northeast China.Forest Ecology and Management, 255, 4007-4020.
DOI URL |
33 | Wang Z, Xu ZB, Li X, Peng DS, Tan ZX (1980). The main forest types and their features of community structure in northern slope of Changbai Mountain.Research of Forest Ecosystem, 1, 1-8.(in Chinese with English abstract) [王战, 徐振邦, 李昕, 彭定山, 谭征详 (1980). 长白山北坡主要森林类型及其群落结构特点. 森林生态系统研究,1, 1-8.] |
34 |
Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH, Niinemets ü, Oleksyn J, Osada N, Poorter H, Warton DI, Westoby M (2005). Modulation of leaf economic traits and trait relationships by climate.Global Ecology & Biogeography, 14, 411-421.
DOI |
35 |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum.Nature, 428, 821-827.
DOI URL |
36 | Wu TG, Chen BF, Xiao YH, Pan YJ, Chen Y, Xiao JH (2010). Leaf stoichiometry of trees in three forest types in Pearl River Delta, South China. Chinese Journal of Plant Ecology, 34, 58-63.(in Chinese with English abstract) [吴统贵, 陈步峰, 肖以华, 潘勇军, 陈勇, 萧江华 (2010). 珠江三角洲3种典型森林类型乔木叶片生态化学计量学. 植物生态学报, 34, 58-63.] |
37 |
Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, Aarssen L, Bertin RI, Calaminus A, Govaerts R, Hemmings F, Leishman MR, Oleksyn J, Soltis PS, Swenson NG, Warman L, Beaulieu JM (2014). Three keys to the radiation of angiosperms into freezing environments.Nature, 506, 89-92.
DOI URL |
38 |
Zhao N, He NP, Wang QF, Zhang XY, Wang RL, Xu ZW, Yu GR (2014). The altitudinal patterns of leaf C:N:P stoichiometry are regulated by plant growth form, climate and soil on Changbai Mountain, China.PLOS ONE, 9, e95196. doi: 10.1371/journal.pone.0095196.
DOI URL |
39 |
Zhao SQ, Fang JY, Zong ZJ, Zhu B, Shen HH (2004). Composition, structure and species diversity of plant communities along an altitudinal gradient on the northern slope of Mt. Changbai, Northeast China.Biodiversity Science, 12, 164-173.(in Chinese with English abstract) [赵淑清, 方精云, 宗占江, 朱彪, 沈海花 (2004). 长白山北坡植物群落组成、结构及物种多样性的垂直分布. 生物多样性, 12, 164-173.]
DOI URL |
40 |
Zhu B, Wang XP, Fang JY, Piao SL, Shen HH, Zhao SQ, Peng CH (2010). Altitudinal changes in carbon storage of temperate forests on Mt. Changbai, Northeast China.Journal of Plant Research, 123, 439-452.
DOI URL PMID |
[1] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[2] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[3] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[4] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[5] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[6] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[7] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[8] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[9] | 白雨鑫, 苑丹阳, 王兴昌, 刘玉龙, 王晓春. 东北地区3种桦木木质部导管特征对气候变化响应的趋同与差异[J]. 植物生态学报, 2023, 47(8): 1144-1158. |
[10] | 冯珊珊, 黄春晖, 唐梦云, 蒋维昕, 白天道. 细叶云南松针叶形态和显微性状地理变异及其环境解释[J]. 植物生态学报, 2023, 47(8): 1116-1130. |
[11] | 余继梅, 吴福忠, 袁吉, 金遐, 魏舒沅, 袁朝祥, 彭艳, 倪祥银, 岳楷. 全球尺度上凋落物初始酚类含量特征及影响因素[J]. 植物生态学报, 2023, 47(5): 608-617. |
[12] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[13] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[14] | 余海霞, 曲鲁平, 汤行昊, 刘南, 张子雷, 王浩, 王艺璇, 邵长亮, 董刚, 胡亚林. 闽楠和木荷非结构性碳水化合物对不同模式热浪的差异性响应[J]. 植物生态学报, 2023, 47(2): 249-261. |
[15] | 张尧, 陈岚, 王洁莹, 李益, 王俊, 郭垚鑫, 任成杰, 白红英, 孙昊田, 赵发珠. 太白山不同海拔森林根际土壤微生物碳利用效率差异性及其影响因素[J]. 植物生态学报, 2023, 47(2): 275-288. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19