植物生态学报 ›› 2015, Vol. 39 ›› Issue (4): 398-406.DOI: 10.17521/cjpe.2015.0039
安东升1, 曹娟2, 黄小华1, 周娟1, 窦美安1,*()
收稿日期:
2014-10-10
接受日期:
2015-01-28
出版日期:
2015-04-01
发布日期:
2015-04-21
通讯作者:
窦美安
作者简介:
*作者简介:E-mail:
基金资助:
AN Dong-Sheng1, CAO Juan2, HUANG Xiao-Hua1, ZHOU Juan1, DOU Mei-An1,*()
Received:
2014-10-10
Accepted:
2015-01-28
Online:
2015-04-01
Published:
2015-04-21
Contact:
Mei-An DOU
About author:
# Co-first authors
摘要:
为从能量平衡及分配的角度研究干旱胁迫下甘蔗(Saccharum officinarum)苗期光系统的运转状况, 进而为丰富不同甘蔗品种的抗旱性评价指标及实现对季节性干旱胁迫的快速诊断提供理论依据, 该研究通过对基于Lake模型的叶绿素荧光参数在不同入射光强下变化的动态分析, 研究光合电子传递链中能量平衡状态对不同水分梯度(40%、25%、10%、8%)的响应。结果表明: 两个供试品种(耐旱品种‘ROC22’和非耐旱品种‘ROC16’)的最大光能利用效率(Fv/Fm)、相对电子传递速率(rETR)、光系统II(PSII)量子效率(ΦII)和光化学猝灭(qL)均随着干旱胁迫程度的增加而下降, 可调节性能量耗散(ΦNPQ)和非调节性能量耗散(ΦNO)则随着干旱胁迫程度的增加而上升。除ΦNO之外的叶绿素荧光参数的变化幅度均随着光合有效辐射(PAR)的增加而增大。在干旱胁迫的前中期, 相对于‘ROC22’, ‘ROC16’的PSII反应中心能够维持较高的开放程度; 但‘ROC22’调节能量耗散的能力和对干旱胁迫的敏感程度均高于‘ROC16’, 说明较强的光保护能力是‘ROC22’的抗旱性高于‘ROC16’的主要原因之一。对干旱胁迫敏感且在不同PAR下较为稳定的ΦNO可作为甘蔗苗期抗旱性的快速诊断和评价指标。rETR对递增的PAR的响应表现为随着干旱胁迫程度的增加而提前出现峰值或下降趋势, 但是不同水分梯度下的rETR在PAR较低时并无显著差异, 表明干旱胁迫下光抑制现象的提早出现是造成光系统损伤的首要因素, 高光强对干旱胁迫信号起放大作用。
安东升, 曹娟, 黄小华, 周娟, 窦美安. 基于Lake模型的叶绿素荧光参数在甘蔗苗期抗旱性研究中的应用. 植物生态学报, 2015, 39(4): 398-406. DOI: 10.17521/cjpe.2015.0039
AN Dong-Sheng,CAO Juan,HUANG Xiao-Hua,ZHOU Juan,DOU Mei-An. Application of Lake-model based indices from chlorophyll fluorescence on sugarcane seedling drought resistance study. Chinese Journal of Plant Ecology, 2015, 39(4): 398-406. DOI: 10.17521/cjpe.2015.0039
处理天数 Days after treatment | 品种 Cultivars | |||
---|---|---|---|---|
‘ROC22’ | ‘ROC16’ | |||
VWC (%) | 标准偏差 Standard deviation (%) | VWC (%) | 标准偏差 Standard deviation (%) | |
1 | 74.9 | 3.6 | 74.4 | 3.6 |
2 | 64.4 | 3.9 | 59.2 | 4.6 |
3 | 52.4 | 3.6 | 40.1 | 4.0 |
4 | 40.0 | 2.6 | 24.7 | 3.3 |
5 | 25.9 | 3.5 | 10.9 | 1.4 |
6 | 17.7 | 2.1 | 8.6 | 1.0 |
7 | 10.2 | 1.7 | 5.9 | 1.4 |
8 | 7.6 | 1.5 | 3.0 | 0.0 |
表1 断水后不同品种甘蔗土壤体积含水量(VWC)随干旱天数的变化
Table 1 Soil volumetric water content (VWC) of the two cultivars of Saccharum officinarum after drought treatment
处理天数 Days after treatment | 品种 Cultivars | |||
---|---|---|---|---|
‘ROC22’ | ‘ROC16’ | |||
VWC (%) | 标准偏差 Standard deviation (%) | VWC (%) | 标准偏差 Standard deviation (%) | |
1 | 74.9 | 3.6 | 74.4 | 3.6 |
2 | 64.4 | 3.9 | 59.2 | 4.6 |
3 | 52.4 | 3.6 | 40.1 | 4.0 |
4 | 40.0 | 2.6 | 24.7 | 3.3 |
5 | 25.9 | 3.5 | 10.9 | 1.4 |
6 | 17.7 | 2.1 | 8.6 | 1.0 |
7 | 10.2 | 1.7 | 5.9 | 1.4 |
8 | 7.6 | 1.5 | 3.0 | 0.0 |
图1 不同光强下光系统II活性对干旱胁迫的响应(平均值±标准偏差)。rETR, 相对电子传递速率; ΦII, 光系统II量子效率; PAR, 光合有效辐射; VWC, 体积含水量。
Fig. 1 Effects of drought stress on photosystem II activities under different light intensity (mean ± SD). rETR, relative electron transport rate; ΦII, quantum efficiency of photosystem II; PAR, photosynthetically active radiation; VWC, volumetric water content.
图2 不同光强下叶绿素荧光猝灭对干旱胁迫的响应(平均值±标准偏差)。qL, 基于Lake模型的光化学猝灭; ΦNPQ, 可调节性能量耗散; ΦNO, 非调节性能量耗散; PAR, 光合有效辐射; VWC, 体积含水量。
Fig. 2 Effects of drought stress on chlorophyll fluorescence quenching under different light intensity (mean ± SD). qL, photochemical quenching based on Lake-model; ΦNPQ, down-regulated energy dissipation; ΦNPQ, non-light induced energy dissipation; PAR, photo-synthetically active radiation; VWC, volumetric water content.
图3 最大光能利用效率(Fv/Fm)和非调节性能量耗散(ΦNO)对干旱胁迫的响应(平均值±标准偏差); VWC, 体积含水量。
Fig. 3 Effects of drought stress on the maximum quantum use efficiency (Fv/Fm) and the non-light induced energy dissipation (ΦNO) (mean ± SD); VWC, volumetric water content.
[1] | Bai ZY, Li CD, Zhao JF, Wu TY, Zheng JF, Bi CR (2011). Effect and preliminary analysis of chromosomal control on the chlorophyll fluorescence parameters of wheat substitution lines between synthetic hexaploid wheat and Chinese spring under drought stress.Scientia Agricultura Sinica, 44, 47-57.(in Chinese with English abstract) |
[白志英, 李存东, 赵金锋, 吴同彦, 郑金凤, 毕常锐 (2011). 干旱胁迫对小麦代换系叶绿素荧光参数的影响及染色体效应初步分析. 中国农业科学, 44, 47-57.] | |
[2] | Baker NR (2008). Chlorophyll fluorescence: A probe of photosynthesis in vivo.Annual Review of Plant Biology, 59, 89-113. |
[3] | Bussotti F, Pollastrini M, Cascio C, Desotgiu R, Gerosa G, Marzuoli R, Nali C, Lorenzini G, Pellegrini E, Carucci MG, Salvatori E, Fusaro L, Piccotto M, Malaspina P, Manfredi A, Roccotello E, Toscano S, Gottardini E, Cristofori A, Fini A, Weber D, Baldassarre V, Barbanti L, Monti A, Strasser RJ (2011). Conclusive remarks. Reliability and comparability of chlorophyll fluorescence data from several field teams.Environmental and Experimental Botany, 73, 116-119. |
[4] | Dias MC, Brüggemarm W (2010). Limitations of photosynthesis in Phaseolus vulgaris under drought stress: Gas exchange, chlorophyll fluorescence and Calvin cycle enzymes.Photosynthetica, 48, 96-102. |
[5] | Edwards GE, Baker NR (1993). Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis?Photosynthesis Research, 37, 89-102. |
[6] | Flexas J, Bota J, Escalona JM, Sampol B, Medrano H (2002). Effects of drought on photosynthesis in grapevines under field conditions; an evaluation of stomatal and mesophyll limitations.Functional Plant Biology, 29, 461-471. |
[7] | Flexas J, Briantais JM, Cerovic Z, Medrano H, Moya I (2000). Steady-state and maximum chlorophyll fluorescence responses to water stress in grapevine leaves: A new remote sensing system. Remote Sensing of Environment, 73, 283-297. |
[8] | Gu Y, Liu JN, Lin J (2010). Analysis on characteristics and situation of drought disasters during past 60 years in China.Water Resources and Hydropower Engineering, 41(1), 71-74.(in Chinese with English abstract) |
[顾颖, 刘静楠, 林锦 (2010). 近60年来我国干旱灾害特点和情势分析. 水利水电技术, 41(1), 71-74.] | |
[9] | Han W, Xu XW, Li L, Li SY, Luo YX, Zhou Y, Guo LL (2010). Variation of rapid light curves of Ulmus pumila leaves after high-light and low-light acclimation.Arid Zone Research, 27, 738-744.(in Chinese with English abstract) |
[韩炜, 徐新文, 李利, 李生宇, 罗玉新, 周艺, 郭灵丽 (2010). 白榆(Ulmus pumila L.)光驯化后的快速光曲线变化特征. 干旱区研究, 27, 738-744.] | |
[10] | Huang WH, Sui Y, Yang XG, Dai SW, Li MS (2013). Characteristics and adaptation of seasonal drought in southern China under the background of climate change. III. Spatiotemporal characteristics of seasonal drought in southern China based on the percentage of precipitation anomalies.Chinese Journal of Applied Ecology, 24, 397-406.(in Chinese with English abstract) |
[黄晚华, 隋月, 杨晓光, 代姝玮, 李茂松 (2013). 气候变化背景下中国南方地区季节性干旱特征与适应. III. 基于降水量距平百分率的南方地区季节性干旱时空特征. 应用生态学报, 24, 397-406.] | |
[11] | Huang WH, Yang XG, Li MS, Zhang XY, Wang MT, Dai ZW, Ma JH (2010). Evolution characteristics of seasonal drought in the south of China during the past 58 years based on standardized precipitation index.Transactions of the Chinese Society of Agricultural Engineering, 26(7), 50-58.(in Chinese with English abstract) |
[黄晚华, 杨晓光, 李茂松, 张晓煜, 王明田, 代姝玮, 马洁华 (2010). 基于标准化降水指数的中国南方季节性干旱近58a演变特征. 农业工程学报, 26(7), 50-58.] | |
[12] | Huseynova IM, Suleymanov SY, Aliyev JA (2007). Structural- functional state of thylakoid membranes of wheat genotypes under water stress.Biochimica et Biophysica Acta, 1767, 869-875. |
[13] | Kramer DM, Johnson G, Kiirats O, Edwards GE (2004). New fluorescence parameters for the determination of QA redox state and excitation energy fluxes.Photosynthesis Research, 79, 209-218. |
[14] | Lavergne J, Trissl HW (1995). Theory of fluorescence induction in Photosystem II: Derivation of analytical expressions in a model including exciton-radical-pair equilibrium and restricted energy transfer between photosynthetic units.Biophysical Journal, 68, 2474-2492. |
[15] | Lawlor DW, Comic G (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants.Plant, Cell & Environment, 25, 275-294. |
[16] | Li GH, Wan YS, Liu FZ, Zhang K (2014). Photosynthetic characteristics in different peanut cultivars under conditions of drought and re-watering at seedling stage.Chinese Journal of Plant Ecology, 38, 729-739.(in Chinese with English abstract) |
[厉广辉, 万勇善, 刘风珍, 张昆 (2014). 苗期干旱及复水条件下不同花生品种的光合特性. 植物生态学报, 38, 729-739.] | |
[17] | Li SZ, Fan TL, Wang Y, Zhao G, Wang L, Tang XM, Dang Y, Zhao H (2014). Effects of plastic film mulching and rain harvesting modes on chlorophyll fluorescence characteristics, yield and water use efficiency of dryland maize.Chinese Journal of Applied Ecology, 25, 458-466.(in Chinese with English abstract) |
[李尚中, 樊廷录, 王勇, 赵刚, 王磊, 唐小明, 党翼, 赵晖 (2014). 不同覆膜集雨种植方式对旱地玉米叶绿素荧光特性产量和水分利用效率的影响. 应用生态学报, 25, 458-466.] | |
[18] | Liu DH, Liu YH, Xiong H, Xu FX, Pang LY, Wang MT, Pan KW, Chen SH (2011). Research on the harmfulness, prevention and control of main agricultural weather disaster in south-west China.Chinese Journal of Agrometeorology, 32(Suppl. 1), 208-212.(in Chinese with English abstract) |
[刘定辉, 刘永红, 熊洪, 徐富贤, 庞良玉, 王明田, 潘开文, 陈尚洪 (1999). 西南地区农业重大气象灾害危害及监测防控研究. 中国农业气象, 32(增刊1), 208-212.] | |
[19] | Luo J, Zhang MQ, Lin YQ, Lü JL, Chen RK (1999). Chloroplast fluorescence parameters, MDA content and plasma membrane permeability in sugarcane and their relation to drought tolerance.Journal of Fujian Agricultural University, 28, 257-262.(in Chinese with English abstract) |
[罗俊, 张木清, 林彦铨, 吕建林, 陈如凯 (1999). 甘蔗叶绿体荧光参数、MDA含量及膜透性与耐旱性的关系. 福建农业大学学报, 28, 257-262.] | |
[20] | Luo J, Zhang MQ, Lin YQ, Zhang H, Chen RK (2004). Studies on the relationship of chlorophyll fluorescence characters and drought tolerance in seedling of sugarcane under water stress.Scientia Agriultura Sinica, 37, 1718-1721.(in Chinese with English abstract) |
[罗俊, 张木清, 林彦铨, 张华, 陈如凯 (2004). 甘蔗苗期叶绿素荧光参数与抗旱性关系研究. 中国农业科学, 37, 1718-1721.] | |
[21] | Massacci A, Nabiev SM, Pietrosanti L, Nematov SK, Chernikova TN, Thor K, Leipner J (2008). Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging.Plant Physiology and Biochemistry, 46, 189-195. |
[22] | Noctor G, Veljovic-Jovanovic S, Driscoll S, Novitskaya L, Foyer CH (2002). Drought and oxidative load in the leaves of C3 plants: A predominant role for photorespiration?Annals of Botany, 89, 841-850. |
[23] | Ort DR, Baker NR (2002). A photoprotective role for O2 as an alternative electron sink in photosynthesis?Current Opinion in Plant Biology, 5, 193-198. |
[24] | Oxborough K, Baker NR (1997). Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components-calculation of qP and Fv′/Fm′ without measuring Fo′.Photosynthesis Research, 54, 135-142. |
[25] | Pan FR, Yang JX, Wu WL, Liu FY, Wu JT, Peng DS, Chen YS (2012). Breeding and simple identification of drought- tolerant sugarcane lines.Guangdong Agricultural Sciences, (16), 10-12.(in Chinese with English abstract) |
[潘方胤, 杨俊贤, 吴文龙, 刘福业, 吴建涛, 彭冬永, 陈勇生 (2012). 甘蔗育种中抗旱品系筛选及简易鉴定. 广东农业科学, (16), 10-12.] | |
[26] | Papageorgiou GC, Govindjee S (2005). Chlorophyll A Fluorescence: A Signature of Photosynthesis. Springer-Verlag, New York. |
[27] | Schreiber U, Bilger W, Neubauer C (1994). Chlorophyll fluorescence as a non intrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze ED, Caldwell MM eds. Ecophysiology of Photosynthesis. Springer-Verlag, Berlin. 49-70. |
[28] | Shi SB, Zhang HG, Shi R, Li M, Chen WJ, Sun YN (2014). Assessment of photosynthetic photo-inhibition and recovery of PSII photochemical efficiency in leaves of wheat varieties in Qinghai-Xizang Plateau.Chinese Journal of Plant Ecology, 38, 375-386.(in Chinese with English abstract) |
[师生波, 张怀刚, 师瑞, 李妙, 陈文杰, 孙亚男 (2014). 青藏高原春小麦叶片光合作用的光抑制及PSII反应中心光化学效率的恢复分析. 植物生态学报, 38, 375-386.] | |
[29] | Souza RP, Machado EC, Silva JAB, Lagoa AMMA, Sliveira JAG (2004). Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery.Environmental and Experimental Botany, 51, 45-56. |
[30] | Tikkanen M, Mekala NR, Aro EM (2014). Photosystem II photoinhibition repair cycle protects photosystem I from irreversible damage.Biochimica et Biophysica Acta (BBA) —Bioenergetics, 1837, 210-215. |
[31] | Tong XQ, Wang SZ, Xia Y, Zhang Y, Liu YF, Pan XL (2013). Early-warning of drought stress for typical crops in Urumqi with chlorophyll fluorescence technique.Arid Zone Research, 30, 860-866.(in Chinese with English abstract) |
[童小芹, 王淑智, 夏咏, 张晔, 刘越芳, 潘响亮 (2013). 应用叶绿素荧光技术快速预警乌鲁木齐典型农作物干旱胁迫. 干旱区研究, 30, 860-866.] | |
[32] | Wang MT, Wang X, Huang WH, Zhang YF, Ma J (2012). Temporal and spatial distribution of seasonal drought in Southwest of China based on relative moisture index.Transactions of the Chinese Society of Agricultural Engineering, 28(19), 85-92.(in Chinese with English abstract) |
[王明田, 王翔, 黄晚华, 张玉芳, 马均 (2012). 基于相对湿润度指数的西南地区季节性干旱时空分布特征. 农业工程学报, 28(19), 85-92.] | |
[33] | Yang LT, Chen CJ, Li YR (2001). Studies on photosynthetic characteristics in sugarcane varieties under field growing conditions.Southwest China Journal of Agricultural Sciences, 14, 69-74.(in Chinese with English abstract) |
[杨丽涛, 陈超君, 李杨瑞 (2001). 田间生长条件甘蔗光合特性的研究. 南农业学报, 14, 69-74.] | |
[34] | Yao YL, Liu Y, Su JB, Lin XH (2013). The effects of photosynthetic characters and water use efficiency under drought stress in sugarcane materials.Sugarcane and Canesugar, (1), 14-18.(in Chinese with English abstract) |
[姚艳丽, 刘洋, 苏俊波, 林希昊 (2013). 干旱胁迫对甘蔗品种及野生近缘材料光合特性及水分利用率的影响. 甘蔗糖业, (1), 14-18.] | |
[35] | Yin Y, Li SM, Liao WQ, Lu QT, Wen XG, Lu CM (2010) Photosystem II photochemistry, photoinhibition, and the xanthophyll cycle in heat-stressed rice leaves.Journal of Plant Physiology, 167, 959-966. |
[1] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[2] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[3] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
[4] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[5] | 周洁, 杨晓东, 王雅芸, 隆彦昕, 王妍, 李浡睿, 孙启兴, 孙楠. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076. |
[6] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
[7] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[8] | 周稳, 迟永刚, 周蕾. 基于日光诱导叶绿素荧光的北半球森林物候研究[J]. 植物生态学报, 2021, 45(4): 345-354. |
[9] | 丁键浠, 周蕾, 王永琳, 庄杰, 陈集景, 周稳, 赵宁, 宋珺, 迟永刚. 叶绿素荧光主动与被动联合观测应用前景[J]. 植物生态学报, 2021, 45(2): 105-118. |
[10] | 刘丽燕, 冯锦霞, 刘文鑫, 万贤崇. 干旱胁迫对转PtPIP2;8基因84K杨苗木光合、生长和根系结构的影响[J]. 植物生态学报, 2020, 44(6): 677-686. |
[11] | 郭庆华, 胡天宇, 马勤, 徐可心, 杨秋丽, 孙千惠, 李玉美, 苏艳军. 新一代遥感技术助力生态系统生态学研究[J]. 植物生态学报, 2020, 44(4): 418-435. |
[12] | 刘校铭, 杨晓芳, 王璇, 张守仁. 暖温带落叶阔叶林辽东栎和五角枫生长和光合生理生态特征对模拟氮沉降的响应[J]. 植物生态学报, 2019, 43(3): 197-207. |
[13] | 徐丽娇, 郝志鹏, 谢伟, 李芳, 陈保冬. 丛枝菌根真菌根外菌丝跨膜H +和Ca 2+流对干旱胁迫的响应[J]. 植物生态学报, 2018, 42(7): 764-773. |
[14] | 王曦,胡红玲,胡庭兴,张城浩,王鑫,刘丹. 干旱胁迫对桢楠幼树渗透调节与活性氧代谢的影响及施氮的缓解效应[J]. 植物生态学报, 2018, 42(2): 240-251. |
[15] | 罗丹丹, 王传宽, 金鹰. 植物水分调节对策: 等水与非等水行为[J]. 植物生态学报, 2017, 41(9): 1020-1032. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19