植物生态学报 ›› 2018, Vol. 42 ›› Issue (5): 562-572.DOI: 10.17521/cjpe.2017.0270
所属专题: 植物功能性状
钟巧连1,2,3,刘立斌1,2,4,许鑫1,2,3,杨勇1,2,3,郭银明1,2,3,许海洋1,2,3,蔡先立1,2,3,倪健1,2,4,*()
收稿日期:
2017-10-29
修回日期:
2018-03-27
出版日期:
2018-05-20
发布日期:
2018-07-20
通讯作者:
倪健
基金资助:
ZHONG Qiao-Lian1,2,3,LIU Li-Bin1,2,4,XU Xin1,2,3,YANG Yong1,2,3,GUO Yin-Ming1,2,3,XU Hai-Yang1,2,3,CAI Xian-Li1,2,3,NI Jian1,2,4,*()
Received:
2017-10-29
Revised:
2018-03-27
Online:
2018-05-20
Published:
2018-07-20
Contact:
Jian NI
Supported by:
摘要:
性状变异反映了植物的生活史对策。该研究以贵州普定县天龙山10种木本植物为对象, 通过分析枝叶和根系9个功能性状的种间与种内变异, 揭示植物对喀斯特生境的适应策略。结果表明: (1) 9个性状变异程度不同, 细根组织密度的种间和种内变异系数最大, 分别达96.47%和51.44%, 小枝干物质含量的种间与种内变异最小, 分别为11.67%和6.83%。(2)种间水平的细根组织密度在不同物种中没有显著的差异, 比根长、叶厚度、叶面积、比叶面积、叶干物质含量、叶组织密度、小枝干物质含量和小枝组织密度均表现出显著的差异。在种内, 比叶面积差异显著, 其他性状差异不显著。(3)绝大多数叶和枝性状间显著相关, 比根长与比叶面积显著负相关, 其他根系性状与枝叶性状相关性不显著。总之, 与同纬度非喀斯特地区植物相比, 普定喀斯特地区植物具有较小的叶面积和比根长度, 较大的叶干物质含量、叶组织密度等一系列有利于减小蒸腾和储存养分的功能性状组合, 这可能是其适应干旱贫瘠的喀斯特环境的主要生态策略。
钟巧连, 刘立斌, 许鑫, 杨勇, 郭银明, 许海洋, 蔡先立, 倪健. 黔中喀斯特木本植物功能性状变异及其适应策略. 植物生态学报, 2018, 42(5): 562-572. DOI: 10.17521/cjpe.2017.0270
ZHONG Qiao-Lian, LIU Li-Bin, XU Xin, YANG Yong, GUO Yin-Ming, XU Hai-Yang, CAI Xian-Li, NI Jian. Variations of plant functional traits and adaptive strategy of woody species in a karst forest of central Guizhou Province, southwestern China. Chinese Journal of Plant Ecology, 2018, 42(5): 562-572. DOI: 10.17521/cjpe.2017.0270
物种 Species | 生长型 Growth form | 生活型 Life form | 采样株数 Sample individuals | 叶质地 Leaf texture |
---|---|---|---|---|
安顺润楠 Machilus cavaleriei | 乔木 Tree | 常绿 Evergreen | 20 | 革质 Leathery |
云南鼠刺 Itea yunnanensis | 乔木 Tree | 常绿 Evergreen | 20 | 薄革质 Thinly leathery |
窄叶石栎 Lithocarpus confinis | 乔木 Tree | 常绿 Evergreen | 21 | 厚纸质 Thickly papery |
化香树 Platycarya strobilacea | 乔木 Tree | 落叶 Deciduous | 25 | 纸质 Papery |
云贵鹅耳枥 Carpinus pubescens | 乔木 Tree | 落叶 Deciduous | 20 | 厚纸质 Thickly papery |
刺异叶花椒 Zanthoxylum ovalifolium | 灌木 Shrub | 常绿 Evergreen | 20 | 革质 Leathery |
倒卵叶旌节花 Stachyurus obovatus | 灌木 Shrub | 常绿 Evergreen | 20 | 革质或亚革质 Leathery or subcoriaceous |
异叶鼠李 Rhamnus heterophylla | 灌木 Shrub | 常绿 Evergreen | 20 | 纸质 Papery |
小果蔷薇 Rosa cymosa | 藤本 Liana | 常绿 Evergreen | 20 | 薄纸质 Thinly papery |
藤黄檀 Dalbergia hancei | 藤本 Liana | 落叶 Deciduous | 20 | 膜质 Membranous |
表1 黔中喀斯特常绿与落叶阔叶混交林的10种优势木本植物
Table 1 The selected ten dominant woody species in a karst evergreen and deciduous broad-leaved mixed forest in central Guizhou Province, China
物种 Species | 生长型 Growth form | 生活型 Life form | 采样株数 Sample individuals | 叶质地 Leaf texture |
---|---|---|---|---|
安顺润楠 Machilus cavaleriei | 乔木 Tree | 常绿 Evergreen | 20 | 革质 Leathery |
云南鼠刺 Itea yunnanensis | 乔木 Tree | 常绿 Evergreen | 20 | 薄革质 Thinly leathery |
窄叶石栎 Lithocarpus confinis | 乔木 Tree | 常绿 Evergreen | 21 | 厚纸质 Thickly papery |
化香树 Platycarya strobilacea | 乔木 Tree | 落叶 Deciduous | 25 | 纸质 Papery |
云贵鹅耳枥 Carpinus pubescens | 乔木 Tree | 落叶 Deciduous | 20 | 厚纸质 Thickly papery |
刺异叶花椒 Zanthoxylum ovalifolium | 灌木 Shrub | 常绿 Evergreen | 20 | 革质 Leathery |
倒卵叶旌节花 Stachyurus obovatus | 灌木 Shrub | 常绿 Evergreen | 20 | 革质或亚革质 Leathery or subcoriaceous |
异叶鼠李 Rhamnus heterophylla | 灌木 Shrub | 常绿 Evergreen | 20 | 纸质 Papery |
小果蔷薇 Rosa cymosa | 藤本 Liana | 常绿 Evergreen | 20 | 薄纸质 Thinly papery |
藤黄檀 Dalbergia hancei | 藤本 Liana | 落叶 Deciduous | 20 | 膜质 Membranous |
性状 Trait | 平均值±标准偏差 Mean ± SD | 最小值 Minimum | 最大值 Maximum | 变异系数 Coefficient of variation (%) |
---|---|---|---|---|
叶片厚度 Leaf thickness (mm) | 0.17 ± 0.07 | 0.03 | 0.33 | 39.41 |
叶面积 Leaf area (cm2) | 17.74 ± 10.44 | 2.15 | 69.28 | 58.85 |
比叶面积 Specific leaf area (cm2?g-1) | 134.44 ± 45.80 | 55.35 | 281.34 | 34.07 |
叶干物质含量 Leaf dry-matter content (g?g-1) | 0.40 ± 0.06 | 0.28 | 0.69 | 14.79 |
叶组织密度 Leaf tissue density (g?cm-3) | 0.54 ± 0.13 | 0.27 | 1.07 | 24.07 |
小枝干物质含量 Twig dry-matter content of branchlets (g?g-1) | 0.48 ± 0.06 | 0.37 | 0.64 | 11.67 |
小枝组织密度 Twig tissue density (g?cm-3) | 0.69 ± 0.19 | 0.28 | 2.50 | 27.53 |
比根长 Specific root length (cm?g-1) | 251.91 ± 128.79 | 54.56 | 987.41 | 51.12 |
细根组织密度 Fine root tissue density (g?cm-3) | 0.85 ± 0.82 | 0.12 | 7.33 | 96.47 |
表2 喀斯特森林优势木本植物的功能性状特征
Table 2 Characteristics of dominant woody plant functional traits in the karst forest
性状 Trait | 平均值±标准偏差 Mean ± SD | 最小值 Minimum | 最大值 Maximum | 变异系数 Coefficient of variation (%) |
---|---|---|---|---|
叶片厚度 Leaf thickness (mm) | 0.17 ± 0.07 | 0.03 | 0.33 | 39.41 |
叶面积 Leaf area (cm2) | 17.74 ± 10.44 | 2.15 | 69.28 | 58.85 |
比叶面积 Specific leaf area (cm2?g-1) | 134.44 ± 45.80 | 55.35 | 281.34 | 34.07 |
叶干物质含量 Leaf dry-matter content (g?g-1) | 0.40 ± 0.06 | 0.28 | 0.69 | 14.79 |
叶组织密度 Leaf tissue density (g?cm-3) | 0.54 ± 0.13 | 0.27 | 1.07 | 24.07 |
小枝干物质含量 Twig dry-matter content of branchlets (g?g-1) | 0.48 ± 0.06 | 0.37 | 0.64 | 11.67 |
小枝组织密度 Twig tissue density (g?cm-3) | 0.69 ± 0.19 | 0.28 | 2.50 | 27.53 |
比根长 Specific root length (cm?g-1) | 251.91 ± 128.79 | 54.56 | 987.41 | 51.12 |
细根组织密度 Fine root tissue density (g?cm-3) | 0.85 ± 0.82 | 0.12 | 7.33 | 96.47 |
图1 喀斯特地区优势木本植物功能性状值。箱线图上的圆圈指示异常值; 图中百分数据为变异系数; 纵坐标的1-10代表物种; 1, 安顺润楠; 2, 云南鼠刺; 3, 窄叶石栎; 4, 化香树; 5, 云贵鹅耳枥; 6, 刺异叶花椒; 7, 倒卵叶旌节花; 8, 异叶鼠李; 9, 小果蔷薇; 10, 藤黄檀。A, 叶片厚度(LT)。B, 叶面积(LA)。C, 比叶面积(SLA)。D, 叶片干物质含量(LDMC)。E, 叶片组织密度(LTD)。F, 小枝干物质含量(TDMC)。G , 小枝组织密度(TTD)。H, 比根长(SRL)。I, 细根组织密度(FRTD)。
Fig. 1 Functional traits value of dominant woody species in the karst forest. The circle in the box plot indicates the abnormal value; the percentage of data in the figure is the coefficient of variation; 1-10 represent species in the ordinate; the species number 1, Machilus cavaleriei; 2, Itea yunnanensis; 3, Lithocarpus confinis; 4, Carpinus pubescens; 5, Platycarya strobilacea; 6, Zanthoxylum ovalifolium; 7, Rhamnus heterophylla; 8, Stachyurus obovatus; 9, Rosa cymosa; 10, Dalbergia hancei. A, leaf thickness (LT). B, leaf area (LA). C, specific leaf area (SLA). D, leaf dry-matter content (LDMC). E, leaf tissue density (LTD). F, twig dry-matter content of branchlets (TDMC). G , twig tissue density (TTD). H, specific root length (SRL). I, fine root tissue density (FRTD).
LT (mm) | LA (cm2) | SLA (cm2?g-1) | LDMC (g?g-1) | LTD (g?cm-3) | TDMC (g?g-1) | TTD (g?cm-3) | SRL (cm?g-1) | FRTD (g?cm-3) | |
---|---|---|---|---|---|---|---|---|---|
乔木 Tree | 0.19 ± 0.06a (33.25%/ 16.52%) | 24.66 ± 9.02a (36.59%/ 22.63%) | 115.64 ± 44.16a (28.18%/ 19.33%) | 0.42 ± 0.05a (11.59%/ 6.26%) | 0.53 ± 0.10a (19.19%/ 10.05%) | 0.48 ± 0.06a (11.48%/ 6.36%) | 0.71 ± 0.11a (15.50%/ 12.52%) | 237.89 ± 89.59a (37.66%/ 32.72%) | 0.90 ± 0.93a (102.97%/ 68.94%) |
灌木 Shrub | 0.16±0.06b (41.51%/ 14.41%) | 12.3 ± 6.62b (53.85%/ 20.10%) | 143.49 ± 35.369b (24.64%/ 11.73%) | 0.35 ± 0.05b (14.31%/ 6.11%) | 0.50 ± 0.15a (30.47%/ 13.83%) | 0.49 ± 0.06a (12.66%/ 7.01%) | 0.68 ± 0.17a (24.70%/ 13.26%) | 271.09 ± 179.73a (66.30%/ 62.05%) | 0.88 ± 0.89a (100.61%/ 31.27%) |
藤本 Liana | 0.11 ± 0.04c (35.94%/ 24.26%) | 7.43 ± 1.48c (19.95%/ 17.33%) | 169.689 ± 40.13c (23.65%/ 23.17%) | 0.41 ± 0.06c (13.86%/ 12.77%) | 0.61 ± 0.15b (24.52%/ 15.23%) | 0.46 ± 0.04b (9.80%/ 7.70%) | 0.63 ± 0.32a (50.94%/ 43.33%) | 255.17 ± 110.55a (43.32%/ 37.93%) | 0.69 ± 0.21a (30.37%/ 25.04%) |
常绿植物 Evergreen | 0.17 ± 0.07d (39.34%/ 14.81%) | 18.15 ± 10.18d (56.12%/ 17.12%) | 131.19 ± 43.38d (34.47%/ 13.99%) | 0.39 ± 0.06d (16.29%/ 7.06%) | 0.54 ± 0.13d (27.98%/ 12.12%) | 0.48 ± 0.05d (11.73%/ 7.17%) | 0.71 ± 0.14d (20.81%/ 13.38%) | 238.14 ± 145.15d (60.95%/ 45.90%) | 0.88 ± 0.92d (93.11%/ 59.18%) |
落叶植物 Deciduous | 0.14 ± 0.04e (29.49%/ 23.57%) | 16.84 ± 11.08e (65.79%/ 29.42%) | 145.85 ± 41.79e (30.12%/ 26.66%) | 0.43 ± 0.04e (9.60%/ 8.56%) | 0.55 ± 0.08d (16.58%/ 12.52%) | 0.50 ± 0.05e (10.65%/ 6.02%) | 0.72 ± 0.27d (36.91%/ 31.61%) | 237.66 ± 94.71d (34.61%/ 34.23%) | 0.91 ± 0.963d (102.4%2/ 52.96%) |
表3 不同生长型和生活型的植物性状(平均值±标准偏差)及(种间/种内)变异系数
Table 3 Plant functional traits in different growth and life forms (mean ± SD) and (interspecific-intraspecific) coefficient of variation
LT (mm) | LA (cm2) | SLA (cm2?g-1) | LDMC (g?g-1) | LTD (g?cm-3) | TDMC (g?g-1) | TTD (g?cm-3) | SRL (cm?g-1) | FRTD (g?cm-3) | |
---|---|---|---|---|---|---|---|---|---|
乔木 Tree | 0.19 ± 0.06a (33.25%/ 16.52%) | 24.66 ± 9.02a (36.59%/ 22.63%) | 115.64 ± 44.16a (28.18%/ 19.33%) | 0.42 ± 0.05a (11.59%/ 6.26%) | 0.53 ± 0.10a (19.19%/ 10.05%) | 0.48 ± 0.06a (11.48%/ 6.36%) | 0.71 ± 0.11a (15.50%/ 12.52%) | 237.89 ± 89.59a (37.66%/ 32.72%) | 0.90 ± 0.93a (102.97%/ 68.94%) |
灌木 Shrub | 0.16±0.06b (41.51%/ 14.41%) | 12.3 ± 6.62b (53.85%/ 20.10%) | 143.49 ± 35.369b (24.64%/ 11.73%) | 0.35 ± 0.05b (14.31%/ 6.11%) | 0.50 ± 0.15a (30.47%/ 13.83%) | 0.49 ± 0.06a (12.66%/ 7.01%) | 0.68 ± 0.17a (24.70%/ 13.26%) | 271.09 ± 179.73a (66.30%/ 62.05%) | 0.88 ± 0.89a (100.61%/ 31.27%) |
藤本 Liana | 0.11 ± 0.04c (35.94%/ 24.26%) | 7.43 ± 1.48c (19.95%/ 17.33%) | 169.689 ± 40.13c (23.65%/ 23.17%) | 0.41 ± 0.06c (13.86%/ 12.77%) | 0.61 ± 0.15b (24.52%/ 15.23%) | 0.46 ± 0.04b (9.80%/ 7.70%) | 0.63 ± 0.32a (50.94%/ 43.33%) | 255.17 ± 110.55a (43.32%/ 37.93%) | 0.69 ± 0.21a (30.37%/ 25.04%) |
常绿植物 Evergreen | 0.17 ± 0.07d (39.34%/ 14.81%) | 18.15 ± 10.18d (56.12%/ 17.12%) | 131.19 ± 43.38d (34.47%/ 13.99%) | 0.39 ± 0.06d (16.29%/ 7.06%) | 0.54 ± 0.13d (27.98%/ 12.12%) | 0.48 ± 0.05d (11.73%/ 7.17%) | 0.71 ± 0.14d (20.81%/ 13.38%) | 238.14 ± 145.15d (60.95%/ 45.90%) | 0.88 ± 0.92d (93.11%/ 59.18%) |
落叶植物 Deciduous | 0.14 ± 0.04e (29.49%/ 23.57%) | 16.84 ± 11.08e (65.79%/ 29.42%) | 145.85 ± 41.79e (30.12%/ 26.66%) | 0.43 ± 0.04e (9.60%/ 8.56%) | 0.55 ± 0.08d (16.58%/ 12.52%) | 0.50 ± 0.05e (10.65%/ 6.02%) | 0.72 ± 0.27d (36.91%/ 31.61%) | 237.66 ± 94.71d (34.61%/ 34.23%) | 0.91 ± 0.963d (102.4%2/ 52.96%) |
变量 Variables | LT (mm) | LA (cm2) | SLA (cm2?g-1) | LDMC (g?g-1) | LTD (g?cm-3) | TDMC (g?g-1) | TTD (g?cm-3) | SRL (cm?g-1) | FRTD (g?cm-3) |
---|---|---|---|---|---|---|---|---|---|
物种 Species | 0.86 | 0.78 | 0.67 | 0.75 | 0.74 | 0.64 | 0.19 | 0.18 | 0.08 |
生长型 Growth form | 0.13 | 0.50 | 0.16 | 0.31 | 0.02 | 0.06 | 0.03 | 0.02 | 0.01 |
生活型 Life form | 0.08 | 0.01 | 0.03 | 0.12 | 0.01 | 0.04 | 0.00 | 0.02 | 0.00 |
生长型×生活型 Growth form × Life form | 0.07 | 0.55 | 0.49 | 0.35 | 0.19 | 0.02 | 0.17 | 0.37 | 0.04 |
表4 物种、生长型和生活型对性状变异的影响(R2值)
Table 4 Effects of species, growth form and life form on trait variations (R2 value)
变量 Variables | LT (mm) | LA (cm2) | SLA (cm2?g-1) | LDMC (g?g-1) | LTD (g?cm-3) | TDMC (g?g-1) | TTD (g?cm-3) | SRL (cm?g-1) | FRTD (g?cm-3) |
---|---|---|---|---|---|---|---|---|---|
物种 Species | 0.86 | 0.78 | 0.67 | 0.75 | 0.74 | 0.64 | 0.19 | 0.18 | 0.08 |
生长型 Growth form | 0.13 | 0.50 | 0.16 | 0.31 | 0.02 | 0.06 | 0.03 | 0.02 | 0.01 |
生活型 Life form | 0.08 | 0.01 | 0.03 | 0.12 | 0.01 | 0.04 | 0.00 | 0.02 | 0.00 |
生长型×生活型 Growth form × Life form | 0.07 | 0.55 | 0.49 | 0.35 | 0.19 | 0.02 | 0.17 | 0.37 | 0.04 |
LT | LA | SLA | LDMC | LTD | TDMC | TTD | SRL | |
---|---|---|---|---|---|---|---|---|
LA | 0.65** | |||||||
SLA | -0.83** | -0.56** | ||||||
LDMC | -0.21** | 0.01 | -0.22** | |||||
LTD | -0.70** | -0.47** | 0.34** | 0.64** | ||||
TDMC | -0.38** | 0.41** | 0.17* | 0.43** | 0.45** | |||
TTD | -0.17* | 0.10 | -0.02 | 0.28** | 0.29** | 0.34** | ||
SRL | 0.12 | -0.00 | -0.18* | 0.12 | -0.13 | 0.09 | 0.04 | |
FRTD | 0.02 | -0.31** | -0.09 | 0.10 | 0.12 | 0.02 | -0.01 | -0.00 |
表5 喀斯特森林10种优势木本植物功能性状之间的相关系数
Table 5 Correlation coefficient between plant functiolal traits of ten dominant woody species in the karst forest
LT | LA | SLA | LDMC | LTD | TDMC | TTD | SRL | |
---|---|---|---|---|---|---|---|---|
LA | 0.65** | |||||||
SLA | -0.83** | -0.56** | ||||||
LDMC | -0.21** | 0.01 | -0.22** | |||||
LTD | -0.70** | -0.47** | 0.34** | 0.64** | ||||
TDMC | -0.38** | 0.41** | 0.17* | 0.43** | 0.45** | |||
TTD | -0.17* | 0.10 | -0.02 | 0.28** | 0.29** | 0.34** | ||
SRL | 0.12 | -0.00 | -0.18* | 0.12 | -0.13 | 0.09 | 0.04 | |
FRTD | 0.02 | -0.31** | -0.09 | 0.10 | 0.12 | 0.02 | -0.01 | -0.00 |
[1] |
Ackerly DD, Reich PB ( 1999). Convergence and correlations among leaf size and function in seed plants: A comparative test using independent contrasts. American Journal of Botany, 86, 1272-1281.
DOI URL PMID |
[2] |
Albert CH, Thuiller W, Yoccoz NG, Soudant A, Boucher F, Saccone P, Lavorel S ( 2010). Intraspecific functional variability: Extent, structure and sources of variation. Journal of Ecology, 98, 604-613.
DOI URL |
[3] |
Auger S, Shipley B ( 2013). Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest. Journal of Vegetation Science, 24, 419-428.
DOI URL |
[4] | Bauhus J, Khanna PK, Menden N ( 2000). Aboveground and belowground interactions in mixed plantations of Eucalyptus globulus and Acacia mearnsii. Canadian Journal of Forest Research, 30, 1886-1894. |
[5] |
Bu WS, Schmid B, Liu XJ, Li Y, Hardtle W, von Oheimb G, Liang Y, Sun ZK, Huang YY, Bruelheide H, Ma KP ( 2017). Interspecific and intraspecific variation in specific root length drives aboveground biodiversity effects in young experimental forest stands. Journal of Plant Ecology, 10, 158-169.
DOI URL |
[6] |
Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE ( 2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351-366.
DOI URL PMID |
[7] |
Chen L, Yang XG, Song NP, Yang XM, Xiao XP, Wang X ( 2014). A study on variations in leaf trait of 35 plants in the arid region of middle Ningxia, China. Acta Prataculturae Sinica, 23, 41-49.
DOI URL |
[ 陈林, 杨新国, 宋乃平杨明秀, 肖绪培, 王兴 ( 2014). 宁夏中部干旱带主要植物叶性状变异特征研究. 草业学报, 23, 41-49.]
DOI URL |
|
[8] |
Chen W, Wang JH, Ma RJ, Qi W, Liu K, Zhang LN, Chen XL ( 2016). Variance in leaf functional traits of 89 species from the eastern Guangdong of China. Chinese Journal of Ecology, 35, 2101-2109.
DOI URL |
[ 陈文, 王桔红, 马瑞君, 齐威, 刘坤, 张丽娜, 陈学林 ( 2016). 粤东89种常见植物叶功能性状变异特征. 生态学杂志, 35, 2101-2109.]
DOI URL |
|
[9] |
Comas LH, Eissenstat DM ( 2004). Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species. Functional Ecology, 18, 388-397.
DOI URL |
[10] | Comstock J, Mencuccini M ( 1998). Control of stomatal conductance by leaf water potential in Hymenoclea salsola(T. & G.), a desert subshrub. Plant, Cell & Environment, 21, 1029-1038. |
[11] |
Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H ( 2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
DOI URL |
[12] |
Corner EJH ( 1949). The durian theory or the origin of the modern tree. Annals of Botany, 13, 367-414.
DOI URL |
[13] |
Craine JM, Lee WG, Bond WJ, Williams RJ, Johnson LC ( 2005). Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology, 86, 12-19.
DOI URL |
[14] |
Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Hamzehee GFB, Khoshnevi M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany A, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, de Torres-Espuny L, Falczuk V, Guerrero-?Campo J, Thompson K, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martínez M, Romo-Díez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR ( 2004). The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science, 15, 295-304.
DOI URL |
[15] |
Díaz S, Kattge J, Cornelissen JH, Wright IJ, Lavorel S, Dray B, Reu B, Kleyer M, Wirth C, Prentice IC, Garnier E, Bonisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Wright SJ, Sheremetev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné L ( 2016). The global spectrum of plant form and function. Nature, 529, 167-171.
DOI URL PMID |
[16] |
Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL ( 2000). Building roots in a changing environment: Implications for root longevity. New Phytologist, 147, 33-42.
DOI URL |
[17] |
Figueroa JA, Armesto JJ ( 2001). Community-wide germination strategies in a temperate rainforest of Southern Chile: Ecological and evolutionary correlates. Australian Journal of Botany, 49, 411-425.
DOI URL |
[18] |
Garnier E, Laurent G, Bellmann A, Debain S, Berthelier P, Ducout B, Roumet C, Navas ML ( 2001). Consistency of species ranking based on functional leaf traits. New Phytologist, 152, 69-83.
DOI URL |
[19] | Guo BQ ( 2016). Study on the Adaptation of Main Functional Fine Root Traits to the Altitude Gradient of Pinus taiwanensis. Master degree dissertation, Fujian Normal University,Fuzhou. |
[ 郭炳桥 ( 2016). 黄山松细根主要功能性状对海拔梯度的适应规律研究. 硕士学位论文, 福建师范大学, 福州.] | |
[20] |
Guo K, Liu CC, Dong M ( 2011). Ecological adaptation of plants and control of rocky-desertification on karst region of Southwest China. Chinese Journal of Plant Ecology, 35, 991-999.
DOI URL |
[ 郭柯, 刘长成, 董鸣 ( 2011). 我国西南喀斯特植物生态适应性与石漠化治理. 植物生态学报, 35, 991-999.]
DOI URL |
|
[21] | Jiang Y, Chen XB, Ma JM, Liang SC, Huang J, Liu RH, Pan YF ( 2016). Interspecific and intraspecific variation in functional traits of subtropical evergreen and deciduous broadleaved mixed forests in karst topography, Guilin, Southwest China. Tropical Conservation Science, 9(4). DOI:10.1177/1940082916680211. |
[22] |
Kerkhoff AJ, Fagan WF, Elser JJ, Enquist BJ ( 2006). Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. The American Naturalist, 168, E103-E122.
DOI URL PMID |
[23] |
Kramer-Walter KR, Bellingham PJ, Millar TR, Smissen RD, Richardson SJ, Laughlin DC ( 2016). Root traits are multidimensional: Specific root length is independent from root tissue density and the plant economic spectrum. Journal of Ecology, 104, 1299-1310.
DOI URL |
[24] |
Laughlin DC ( 2014). The intrinsic dimensionality of plant traits and its relevance to community assembly. Journal of Ecology, 102, 186-193.
DOI URL |
[25] |
Lavorel S, Garnier E ( 2002). Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Functional Ecology, 16, 545-556.
DOI URL |
[26] |
Liu HW, Liu WD, Wang W, Chai J, Tao JP ( 2015). Leaf traits and nutrient resorption of major woody species in the karst limestone area of Chongqing. Acta Ecologica Sinica, 35, 4071-4080.
DOI URL |
[ 刘宏伟, 刘文丹, 王微, 柴捷, 陶建平 ( 2015). 重庆石灰岩地区主要木本植物叶片性状及养分再吸收特征. 生态学报, 35, 4071-4081.]
DOI URL |
|
[27] |
Liu HW, Wang W, Zuo J, Tao JP ( 2014). Leaf traits of main plants on limestone area in Zhongliang Mountain. Journal of Southwest China Normal University (Natural Science Edition), 39, 50-55.
DOI URL |
[ 刘宏伟, 王微, 左娟, 陶建平 ( 2014). 中梁山石灰岩山地30种主要植物叶片性状研究. 西南大学学报(自然科学版), 39, 50-55.]
DOI URL |
|
[28] |
Liu LB, Wu YY, Hu G, Zhang ZH, Cheng AY, Wang SJ, Ni J ( 2016). Biomass of karst evergreen and deciduous broad-leaved mixed forest in central Guizhou Province, southwestern China: A comprehensive inventory of a 2 ha plot. Silva Fennica, 50, 1492. DOI: 10.14214/sf.1492.
DOI URL |
[29] |
Ma JM, Zhang XZ, Liang SC, Chen T, Huang QJ ( 2012). Leaf traits of common plants in Yaoshan Mountain of Guilin, China. Journal of Guangxi Normal University (Natural Science Edition), 30, 77-82.
DOI URL |
[ 马姜明, 张秀珍, 梁士楚, 陈婷, 黄秋菊 ( 2012). 桂林尧山常见植物叶片性状研究. 广西师范大学学报(自然科学版), 30, 77-82.]
DOI URL |
|
[30] |
Meng TT, Ni J, Wang GH ( 2007). Plant functional traits, environments and ecosystem functioning. Journal of Plant Ecology(Chinese Version), 31, 150-165.
DOI URL |
[ 孟婷婷, 倪健, 王国宏 ( 2007). 植物功能性状与环境和生态系统功能. 植物生态学报, 31, 150-165.]
DOI URL |
|
[31] |
Messier J, Lechowicz MJ, McGill BJ, Violle C, Enquist BJ ( 2017). Interspecific integration of trait dimensions at local scales: The plant phenotype as an integrated network. Journal of Ecology, 105, 1775-1790.
DOI URL |
[32] |
Ni J, Luo DH, Xia J, Zhang ZH, Hu G ( 2015). Vegetation in karst terrain of southwestern China allocates more biomass to roots. Solid Earth, 6, 799-810.
DOI URL |
[33] |
Niinemets Ü ( 2001). Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shurbs. Ecology, 82, 453-469.
DOI URL |
[34] |
Ohashi Y, Nakayama N, Saneoka H, Fujita K ( 2006). Effects of drought stress on photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean plants. Biologia Plantarum, 50, 138-141.
DOI URL |
[35] |
Reich PB, Walters MB, Ellsworth DS, Vose JM, Gresham C, Bowman WD ( 1998). Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: A test across biomes and functional group. Oecologia, 114, 471-482.
DOI URL |
[36] |
Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB ( 2003). The evolution of plant functional variation: Traits, spectra, and strategies. Internatinal Journal of Plant Sciences, 164, S143-S164.
DOI URL |
[37] |
Siefert A, Violle C, Chalmandrier L, Albert CH, Taudiere A, Fajardo A, Aarssen LW, Baraloto C, Carlucci MB, Cianciaruso MV, Dantas VD, DeBello F, Duarte LDS, Fonseca CR, Freschet GT, Gaucherand S, Gross N, Hikosaka K, Jackson B, Jung V, Kamiyama C, Katabuchui M, Kembel SW, Kichenin E, Kraft NJB, Lagerstrom A, Le Bagousse- Pinguer Y, Li YZ, Mason N, Messier J, Nakashizuka T, McC Overton J, Peltzer DA, Perez-Ramos IM, Pillar VD, Prentice HC, Richardson S, Sasaki T, Schamp BS, Vandewalle M, Wardle DA ( 2015). A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 18, 1406-1419.
DOI URL PMID |
[38] |
Stahl U, Kattge J, Reu B, Voigt W, Ogle K, Dickie J, Wirth C ( 2013). Whole-plant trait spectra of North American woody plant species reflect fundamental ecological strategies. Ecosphere, 4, 128.
DOI URL |
[39] | Su WH, Shi Z, Yang B, Yang JJ, Zhao GH, Zhou R ( 2015). Intraspecific functional trait variation in a tree species (Lithocarpus dealbatus) along latitude. Plant Diversity and Resources, 37, 309-317. |
[ 苏文华, 施展, 杨波, 杨建军, 赵冠华, 周睿 ( 2015). 滇石栎沿纬度梯度叶片功能性状的种内变化. 植物分类与资源学报, 37, 309-317.] | |
[40] | Tang QQ, Huang YT, Ding Y, Zang RG ( 2016). Interspecific and intraspecific variation in functional traits of subtropical evergreen and deciduous broad-leaved mixed forests. Biodiversity Science, 24, 262-270. |
[ 唐青青, 黄永涛, 丁易, 臧润国 ( 2016). 亚热带常绿落叶阔叶混交林植物功能性状的种间和种内变异. 生物多样性, 24, 262-270.] | |
[41] |
Verheijen LM, Aerts R, Bonisch G, Kattge J, van Bodegom PM ( 2016). Variation in trait trade-offs allows differentiation among predefined plant functional types: Implications for predictive ecology. New Phytologist, 209, 563-575.
DOI URL PMID |
[42] |
Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E ( 2007). Let the concept of trait be functional! Oikos, 116, 882-892.
DOI URL |
[43] |
Violle C, Enquist BJ, McGill BJ, Jiang L, Albert CH, Huishof C, Jung V, Messier J ( 2012). The return of the variance: Intraspecific variability in community ecology. Trends in Ecology & Evolution, 27, 244-252.
DOI URL PMID |
[44] |
Walker AP, Beckerman AP, Gu LH, Kattge J, Cermusak LA, Domingues TF, Scales JC, Wohlfahrt G, Wullschleger SD, Woodward FI ( 2014). The relationship of leaf photosynthetic traits—Vcmax and Jmax—to leaf nitrogen, leaf phosphorus, and specific leaf area: A meta-analysis and modeling study. Ecology and Evolution, 4, 3218-3235.
DOI URL PMID |
[45] | Wang SJ, Li YB, Li RL ( 2003). Karst rocky desertification: Formation background, evolution and comprehensive taming. Quaternary Sciences, 23, 657-666. |
[ 王世杰, 李阳兵, 李瑞玲 ( 2003). 喀斯特石漠化的形成背景、演化与治理. 第四纪研究, 23, 657-666.] | |
[46] |
Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ ( 2002). Plant ecological strategies: Some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159.
DOI URL |
[47] |
Westoby M, Wright IJ ( 2003). The leaf size-twig size spectrum and its relationship to other important spectra of variation among species. Oecologia, 135, 621-628.
DOI URL PMID |
[48] |
Westoby M, Wright IJ ( 2006). Land-plant ecology on the basis of functional traits. Trends in Ecology & Evolution, 21, 261-268.
DOI URL PMID |
[49] |
Wilson PJ, Thompson K, Hodgson JG ( 1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 143, 155-162.
DOI URL |
[50] |
Withington JM, Reich PB, Oleksyn J, Eissenstat DM ( 2006). Comparisons of structure and life span in roots and leaves among temperate trees. Ecological Monographs, 76, 381-397.
DOI URL |
[51] |
Wright IJ, Ackerly DD, Bongers F, Harms KE, Ibarra-?Manriquez G, Martine-Ramos M, Mazer SJ, Muller-?Landau HC, Paz H, Pitman NCA, Poorter L, Silman MR, Vriesendrop CF, Webb CO, Westoby M, Wright SJ ( 2007). Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Annals of Botany, 99, 1003-1015.
DOI URL PMID |
[52] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thonmas SC, Tjoelker MG, Veneklass EJ, Villar R ( 2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL |
[53] | Xi XQ, Zhao YJ, Liu YG, Wang X, Gao XM ( 2011). Variation and correlation of plant functional traits in karst area of central Guizhou Province, China. Chinese Journal of Plant Ecology, 35, 1000-1008. |
[ 习新强, 赵玉杰, 刘玉国, 王欣, 高贤明 ( 2011). 黔中喀斯特山区植物功能性状的变异与关联. 植物生态学报, 35, 1000-1008.] | |
[54] |
Xu MS, Zhao YT, Yang XD, Shi QR, Zhou LL, Zhang QQ, Arshad A, Yan ER ( 2016). Geostatistical analysis of spatial variations in leaf traits of woody plants in Tiantong, Zhejiang Province. Chinese Journal of Plant Ecology, 40, 48-59.
DOI URL |
[ 许洺山, 赵延涛, 杨晓东, 史青茹, 周刘丽, 张晴晴, Arshad A, 阎恩荣 ( 2016). 浙江天童木本植物叶片性状空间变异的地统计学分析. 植物生态学报, 40, 48-59.]
DOI URL |
|
[55] | Yao TT, Meng TT, Ni J, Yan S, Feng XH, Wang GH ( 2010). Leaf functional trait variation and its relationship with plant phylogenic background and the climate in Xinjiang Junggar Basin, NW China. Biodiversity Science, 18, 201-211. |
[ 尧婷婷, 孟婷婷, 倪健, 阎顺, 冯晓华, 王国宏 ( 2010). 新疆准噶尔荒漠植物叶片功能性状的进化和环境驱动机制初探. 生物多样性, 18, 201-211.] | |
[56] |
Zhan SX, Zhen SX, Wang Y, Bai YF ( 2016). Response and correlation of above- and below-ground functional traits of Leymus chinensis to nitrogen and phosphorus additions. Chinese Journal of Plant Ecology, 40, 36-47.
DOI URL |
[ 詹书侠, 郑淑霞, 王扬, 白永飞 ( 2016). 羊草的地上-地下功能性状对氮磷施肥梯度的响应及关联. 植物生态学报, 40, 36-47.]
DOI URL |
|
[57] |
Zhang ZH, Hu G, Zhu JD, Luo DH, Ni J ( 2010). Spatial patterns and interspecific associations of dominant tree species in two old-growth karst forests, SW China. Ecological Research, 25, 1151-1160.
DOI URL |
[58] | Zou B, Cai F, Zheng JM, Dai W ( 2015). Biomass vertical distribution of fine root and its traits of four tree species in subtropical natural forest. Journal of Northeast Forestry University, 43, 18-22. |
[ 邹斌, 蔡飞, 郑景明, 戴伟 ( 2015). 亚热带天然林4种树木细根生物量垂直分布和主要功能性状的差异. 东北林业大学学报, 43, 18-22.] |
[1] | 陈雪纯, 刘虹, 朱少琦, 孙铭遥, 宇振荣, 王庆刚. 漓江流域不同弃耕年限下4种常见草本植物功能性状种内变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 559-570. |
[2] | 周洁, 杨晓东, 王雅芸, 隆彦昕, 王妍, 李浡睿, 孙启兴, 孙楠. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076. |
[3] | 翟江维, 林馨慧, 武瑞哲, 徐义昕, 靳豪豪, 金光泽, 刘志理. 小兴安岭不同功能型阔叶植物的柄叶权衡[J]. 植物生态学报, 2022, 46(6): 700-711. |
[4] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
[5] | 师斌, 窦建德, 黄维, 李小伟. 宁夏贺兰山斑子麻黄荒漠群落特征[J]. 植物生态学报, 2022, 46(3): 362-367. |
[6] | 向响, 黄永梅, 杨崇曜, 李泽卿, 陈慧颖, 潘莹萍, 霍佳璇, 任梁. 海拔对青海湖流域群落水平植物功能性状的影响[J]. 植物生态学报, 2021, 45(5): 456-466. |
[7] | 贺露炎, 侯满福, 唐伟, 刘雨婷, 赵俊. 滇东菌子山喀斯特森林的植被类型及其特征[J]. 植物生态学报, 2021, 45(12): 1380-1390. |
[8] | 乔鲜果, 郭柯, 赵利清, 王孜, 刘长成. 中国长芒草群系的群落特征[J]. 植物生态学报, 2020, 44(9): 986-994. |
[9] | 刘润红, 白金连, 包含, 农娟丽, 赵佳佳, 姜勇, 梁士楚, 李月娟. 桂林岩溶石山青冈群落主要木本植物功能性状变异与关联[J]. 植物生态学报, 2020, 44(8): 828-841. |
[10] | 刘凌, 樊英杰, 宋晓彤, 李敏, 邵小明, 王晓蕊. 色季拉山不同腐解等级华山松倒木上的苔藓植物组合[J]. 植物生态学报, 2020, 44(8): 842-853. |
[11] | 陆帅志, 乔鲜果, 赵利清, 王孜, 高趁光, 王静, 郭柯. 中国西北针茅草原的基本群落特征[J]. 植物生态学报, 2020, 44(10): 1087-1094. |
[12] | 李紫晶, 莎娜, 史亚博, 佟旭泽, 董雷, 张小青, 孙蔷, 梁存柱. 内蒙古西鄂尔多斯地区半日花荒漠群落特征及其分类[J]. 植物生态学报, 2019, 43(9): 806-816. |
[13] | 高趁光, 乔鲜果, 王孜, 陆帅志, 侯东杰, 刘长成, 赵利清, 郭柯. 中国百里香草原的分布、群落特征和分类[J]. 植物生态学报, 2018, 42(9): 971-976. |
[14] | 蒋裕良, 李先琨, 郭屹立, 丁涛, 王斌, 向悟生. 广西弄岗喀斯特季节性雨林藤本种子植物多样性及繁殖习性[J]. 植物生态学报, 2017, 41(7): 716-728. |
[15] | 李道新, 李果, 沈泽昊, 徐慎东, 韩庆瑜, 王功芳, 田风雷. 植物生长型显著影响三峡大老岭地区木本植物种子质量的海拔格局[J]. 植物生态学报, 2017, 41(5): 539-548. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19