植物生态学报 ›› 2017, Vol. 41 ›› Issue (5): 539-548.DOI: 10.17521/cjpe.2016.0285
李道新1, 李果2, 沈泽昊3,*(), 徐慎东1, 韩庆瑜1, 王功芳1, 田风雷1
出版日期:
2017-05-10
发布日期:
2017-06-22
通讯作者:
沈泽昊
作者简介:
* 通信作者Author for correspondence (E-mail:基金资助:
Dao-Xin LI1, Guo LI2, Ze-Hao SHEN3,*(), Shen-Dong XU1, Qing-Yu HAN1, Gong-Fang WANG1, Feng-Lei TIAN1
Online:
2017-05-10
Published:
2017-06-22
Contact:
Ze-Hao SHEN
About author:
KANG Jing-yao(1991-), E-mail: 摘要:
植物种子质量(大小)是植物的关键生态功能性状, 种子质量的海拔格局研究有助于理解物种分布的环境约束以及植物功能性状之间的相互联系。该研究通过野外收集长江三峡大老岭国家自然保护区内主要木本植物59科87属201种的成熟种子, 并测量其种子质量和长度、厚度值, 分析该地区木本植物种子大小的海拔格局及植物生长型之间的差别。结果表明: 1)大老岭地区常见木本植物种子质量、长度和厚度值均服从对数正态分布, 质量值变异性最大(跨5个数量级)。种子质量、长度和厚度值之间均显著正相关。2)乔木和小乔木的种子质量显著大于灌木和木质藤本的种子质量; 常绿阔叶种的种子质量显著大于落叶阔叶和针叶种。全部物种的种子质量随海拔上升而有较小但统计显著的减小趋势。3)不同生长型和叶性状的木本植物种子质量的海拔格局不一致。群落不同结构组分(按生长型和叶性状分)的木本植物种子质量(大小)海拔梯度格局差异意味着局域群落结构是理解宏观生态格局变异的一个重要方面。
李道新, 李果, 沈泽昊, 徐慎东, 韩庆瑜, 王功芳, 田风雷. 植物生长型显著影响三峡大老岭地区木本植物种子质量的海拔格局. 植物生态学报, 2017, 41(5): 539-548. DOI: 10.17521/cjpe.2016.0285
Dao-Xin LI, Guo LI, Ze-Hao SHEN, Shen-Dong XU, Qing-Yu HAN, Gong-Fang WANG, Feng-Lei TIAN. Growth-form regulates the altitudinal variation of interspecific seed mass of woody plants in Mt. Dalaoling, the Three Gorges Region, China. Chinese Journal of Plant Ecology, 2017, 41(5): 539-548. DOI: 10.17521/cjpe.2016.0285
图1 种子质量(A)、长度(B)和厚度(C)值的频率分布直方图及3个指标的对数转换值的经验累积频率分布(ECFD)与正态分布的累积密度函数(Normal CDF)拟合曲线的比较(D, E, F)。
Fig. 1 The frequency distribution of seed mass (A), seed length (B) and thickness (C), and a comparison between the curves of empirical cumulative frequency distribution (ECFD) and cumulative density function (CDF) of normal distribution, for log10-transformed seed mass, seed length and seed thickness (D, E, F).
图2 对数转换的种子质量与种子长度、厚度(A)及种子长度与厚度(B)的相关性。
Fig. 2 The correlation between seed mass (mg, log10-transformed) and the length and thickness (mm, both log10-transformed) (A), and the correlation between the length and thickness (B) of seeds.
图3 不同生长型(A)和叶片类型(B)的种子质量对数值。a、b代表显著性阈值p < 0.05下的不同水平值。
Fig. 3 Seed mass (log10-transformed) of different growth forms (A) and leaf types (B). a, and b indicate significantly different levels with p < 0.05.
图4 不同生长型植物种组的种子质量对数值的海拔格局。A, 全部种。B, 常绿阔叶种。C,落叶阔叶种。D, 针叶种。E, 乔木。F, 小乔木。G, 灌木。H, 木质藤本。
Fig. 4 Altitudinal patterns of seed mass (log10-transformed) of different growth-forms of plant species. A, All species. B, Evergreen-broadleaved species. C, Deciduous-broadleaved species. D, Coniferous species. E, Tree. F, Small tree. G, Shrub. H, Liana.
模型 Model | 自变量 Independent variables | 自由度 d.f. | R2 | F | p |
---|---|---|---|---|---|
M1 | Elevation, Leaf, GF | 194 | 0.186 | 8.543 | <0.001 |
M2 | Elevation, Leaf, GF, Leaf : GF | 191 | 0.192 | 6.218 | <0.001 |
M3 | Elevation, Leaf, GF, Elevation : GF | 191 | 0.198 | 6.414 | <0.001 |
M4 | Elevation, Leaf, GF, Elevation : Leaf | 192 | 0.216 | 7.815 | <0.001 |
表1 解释种子质量对数值的不同多元线性回归模型比较
Table 1 Comparison of linear regression models for seed mass (log10-transformed)
模型 Model | 自变量 Independent variables | 自由度 d.f. | R2 | F | p |
---|---|---|---|---|---|
M1 | Elevation, Leaf, GF | 194 | 0.186 | 8.543 | <0.001 |
M2 | Elevation, Leaf, GF, Leaf : GF | 191 | 0.192 | 6.218 | <0.001 |
M3 | Elevation, Leaf, GF, Elevation : GF | 191 | 0.198 | 6.414 | <0.001 |
M4 | Elevation, Leaf, GF, Elevation : Leaf | 192 | 0.216 | 7.815 | <0.001 |
变量 Variables | 系数 Coefficients | 标准误差 SE | t | p |
---|---|---|---|---|
截距 Intercept | -2.995 8 | 2.096 4 | -1.429 | 0.155 |
海拔 Elevation | 0.003 0 | 0.001 5 | 2.024 | 0.054 |
叶-落叶阔叶 Leaf-DB | 4.956 2 | 2.213 7 | 2.239 | <0.050 |
叶-常绿阔叶 Leaf-EB | 7.901 1 | 2.270 5 | 3.480 | <0.001 |
生长型-乔木 GF-Tree | 2.032 4 | 0.340 8 | 5.963 | <0.001 |
生长型-藤本 GF-Liana | 0.011 4 | 0.614 0 | 0.019 | 0.985 |
生长型-小乔 GF-Small tree | 1.552 6 | 0.388 5 | 3.997 | <0.001 |
海拔 : 落叶阔叶 Elevation : DB | -0.003 3 | 0.001 6 | -2.047 | <0.050 |
海拔 : 常绿阔叶 Elevation : EB | -0.005 0 | 0.001 7 | -2.982 | <0.010 |
表2 最优回归模型(M4)的参数估计
Table 2 Parameter estimate for the optimal regression model (M4)
变量 Variables | 系数 Coefficients | 标准误差 SE | t | p |
---|---|---|---|---|
截距 Intercept | -2.995 8 | 2.096 4 | -1.429 | 0.155 |
海拔 Elevation | 0.003 0 | 0.001 5 | 2.024 | 0.054 |
叶-落叶阔叶 Leaf-DB | 4.956 2 | 2.213 7 | 2.239 | <0.050 |
叶-常绿阔叶 Leaf-EB | 7.901 1 | 2.270 5 | 3.480 | <0.001 |
生长型-乔木 GF-Tree | 2.032 4 | 0.340 8 | 5.963 | <0.001 |
生长型-藤本 GF-Liana | 0.011 4 | 0.614 0 | 0.019 | 0.985 |
生长型-小乔 GF-Small tree | 1.552 6 | 0.388 5 | 3.997 | <0.001 |
海拔 : 落叶阔叶 Elevation : DB | -0.003 3 | 0.001 6 | -2.047 | <0.050 |
海拔 : 常绿阔叶 Elevation : EB | -0.005 0 | 0.001 7 | -2.982 | <0.010 |
[1] | Arssen LW (2005). Why don’t bigger plants have proportionately bigger seeds?Oikos, 111, 199-207. |
[2] | Baker HG (1972). Seed weight in relation to environmental conditions in California.Ecology, 53, 997-1010. |
[3] | Bolmgren K, Cowan PD (2008). Time-size tradeoffs: A phylogenetic comparative study of flowering time, plant height and seed mass in a north-temperate flora.Oikos, 117, 424-429. |
[4] | Bu HY, Cu XL, Xu XL, Liu K, Jia P, Du GZ (2006). Seed mass and germination in an alpine meadow on the eastern Tsinghai-Tibet Plateau.Plant Ecology, 191, 127-149. |
[5] | Castro-Díe P, Montserrat-Martí G, Cornelissen JHC (2003). Trade-offs between phenology, relative growth rate, life form and seed mass among 22 Mediterranean woody species.Plant Ecology, 166, 117-129. |
[6] | Dainese M, Sitzia T (2013). Assessing the influence of environmental gradients on seed mass variation in mountain grasslands using a spatial phylogenetic filtering approach.Perspectives in Plant Ecology, Evolution and Systematics, 15, 12-19. |
[7] | Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Wright SJ, Sheremet’ev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD (2016). The global spectrum of plant form and function.Nature, 529, 167-171. |
[8] | Du Y, He HJ, Zhang ZF, Yang YJ, Li LY, Yang XY (2014). Correlation of seed mass with elevation.Plant Diversity and Resources, 36, 109-115. (in Chinese with English abstract)[杜燕, 何华杰, 张志峰, 杨娅娟, 李涟漪, 杨湘云(2014). 种子重量与海拔的相关性分析. 植物分类与资源学报, 36, 109-115.] |
[9] | Fielding CA, Whittaker JB, Butterfield JEL, Coulson JC (1999). Predicting responses to climate change: The effect of altitude and latitude on the phenology of the SpittlebugNeophilaenus lineatus. Functional Ecology, 13(Suppl. 1), 65-73. |
[10] | Fu SX (2001-2002). Flora of Hubei. Vol. I, II, III. Hubei Press of Science and Technology., Wuhan (in Chinese)[傅书遐 (2001-2002). 湖北植物志. 第I, II, III卷. 湖北科学技术出版社.], 武汉 |
[11] | Garland T, Harvey PH, Ives AR (1992). Procedures for the analysis of comparative data using phylogenetically independent contrasts.Systematic Biology, 41, 18-32. |
[12] | Gentili R, Armiraglio S, Sgorbati S, Baroni C (2013). Geomorphological disturbance affects ecological driving forces and plant turnover along an altitudinal stress gradient on alpine slopes.Plant Ecology, 214, 571-586. |
[13] | Guo H, Mazer SJ, Du G (2010). Geographic variation in seed mass within and among nine species ofPedicularis(Orobanchaceae): Effects of elevation, plant size and seed number per fruit. Journal of Ecology, 98, 1232-1242. |
[14] | Guo SQ (2007). Relationship Between Seed Size and Climate Along Elevational Gradient on the Eastern Qinghai-Tibetan Plateau. Master degree dissertation, Lanzhou University, Lanzhou. (in Chinese with English abstract)[郭淑青 (2007). 青藏高原东部植物种子大小与海拔及气候关系研究. 硕士学位论文, 兰州大学, 兰州.] |
[15] | Hammond DS, Brown VK (1995). Seed size of woody plants in relation to disturbance, dispersal, soil type in wet neotropical forests.Ecology, 76, 2544-2561. |
[16] | Harper JL, Lovell PH, Moore KG (1970). The shapes and sizes of seeds.Annual Review of Ecology and Systematics, 1, 327-356. |
[17] | Howe HF, Smallwood J (1982). Ecology of seed dispersal.Annual Review of Ecology and Systematics, 13, 201-228. |
[18] | Huang ZL (2002). Biodiversity conservation for the Three Gorges Project.Biodiversity Science, 9, 472-481. (in Chinese with English abstract)[黄真理 (2002). 三峡工程中的生物多样性保护. 生物多样性, 9, 472-481.] |
[19] | Jiang Z, Ma K (2015). Environmental filtering drives herb community composition and functional trait changes across an elevational gradient.Plant Ecology and Evolution, 148, 301-310. |
[20] | Jin YX, Zheng Z, Chen ZL, Wang YM, Peng PS, Zhao ZE (1987). Studies on the strategies for the impacts of the Three Gorges Project on the valuable and rare plant species in the reservoir region. In: The Leading Group of the Chinese Academy of Sciences of the Project for the Ecology and Environment in the Three Gorges Project eds. Studies on the Strategies for the Impacts of the Three Gorges Project of the Yangtze River on the Ecology and Environment. Science Press, Beijing. 114-122. (in Chinese)[金义兴, 郑重, 陈卓良, 王映明, 彭蒲松, 赵子恩 (1987). 三峡工程对库区珍稀植物的影响及对策的研究. 见: 中国科学院三峡工程生态与环境项目领导小组编, 长江三峡工程对生态与环境影响及其对策研究. 科学出版社, 北京. 114-122.] |
[21] | Kitayama K, Aiba S (2002). Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo.Journal of Ecology, 90, 37-51. |
[22] | Kolb A, Barsch F, Diekmann M (2006). Determinants of local abundance and range size in forest vascular plants.Global Ecology and Biogeography, 15, 237-247. |
[23] | Ko?rner C (2000). Why are there global gradients in species richness? Mountains might hold the answer.Trends in Ecology and Evolution, 15, 513-514. |
[24] | Ko?rner C (2007). The use of “altitude” in ecological research.Trends in Ecology and Evolution, 22, 569-574. |
[25] | Leishman MR (2001). Does the seed size/number trade-off model determine plant community structure? An assessment of the model mechanisms and their generality.Oikos, 93, 294-302. |
[26] | Leishman MR, Murray BR (2001). The relationship between seed size and abundance in plant communities: Model predictions and observed patterns.Oikos, 94, 151-161. |
[27] | Luo L, Shen GZ, Xie ZQ, Yu J (2011). Leaf functional traits of four typical forests along the altitudinal gradient in Mt. Shennongjia.Acta Ecologica Sinica, 31, 6420-6428. (in Chinese with English abstract)[罗璐, 申国珍, 谢宗强, 喻杰 (2011). 神农架海拔梯度上4种典型森林的乔木叶片功能性状特征. 生态学报, 31, 6420-6428.] |
[28] | Moles AT, Warton DI, Stevens RD, Westoby M (2004). Does a latitudinal gradient in seedling survival favor larger seeds in the tropics?Ecology Letter, 7, 911-914. |
[29] | Moles AT, Westoby M (2003). Latitude, seed predation and seed mass.Journal of Biogeography, 30, 105-128. |
[30] | Moles AT, Westoby M (2006). Seed size and plant strategy across the whole life cycle.Oikos, 113, 91-105. |
[31] | Montaño-Centellas FA, Garitano-Zavala A (2015). Andean bird responses to human disturbances along an elevational gradient. Acta Oecologica, 65-66, 51-60. |
[32] | Pieter DF, Graae BJ, Annette K, Anna S, Ler B (2011). An intraspecific application of the leaf-height—Seed ecology strategy scheme to forest herbs along a latitudinal gradient.Ecography, 34, 132-140. |
[33] | Pluess AR, Schütz W, Stöcklin J (2005). Seed weight increases with altitude in the Swiss Alps between related species but not among populations of individual species.Oecologia, 144, 55-61. |
[34] | Qi W, Bu H, Cornelissen JHC, Zhang C, Guo S, Wang J, Zhou X, Li W, Du G (2015). Untangling interacting mechanisms of seed mass variation with elevation: Insights from the comparison of inter-specific and intra-specific studies on eastern Tibetan angiosperm species.Plant Ecology, 216, 283-292. |
[35] | Rahbek C (1997). The relationship among area, elevation, and regional species richness in Neotropical birds. The American Naturalist, 149, 875-902. |
[36] | Rees M, Venable DL (2007). Why do big plants make big seeds?Journal of Ecology, 95, 926-936. |
[37] | Rockwood LL (1985). Seed weight as a function of life form, elevation and life zone in Neotropical forests.Biotropica, 17, 32-39. |
[38] | Salisbury E (1974). Seed size and mass in relation to environment.Proceedings of the Royal Society of London. Series B, Biological Sciences, 186, 83-88. |
[39] | Shen ZH, Tang YY, Lü N, Zhao J, Li DX, Wang GF (2007). Community dynamics of seed rain in mixed evergreen broad-leaved and deciduous forests in a subtropical mountain of central China.Journal of Integrative Plant Biology, 49, 1294-1303. |
[40] | Shen ZH, Jin YX, Wu JQ, Zhao ZE, Huang HD (2000). A quantitative classification of the forest communities at Dalaoling Mountain in the Three Gorges.Journal of Wuhan Botanical Research, 18, 99-107. (in Chinese with English abstract)[沈泽昊, 金义兴, 吴金清, 赵子恩, 黄汉东 (2000). 三峡大老岭地区森林群落的数量分类. 武汉植物学研究, 18, 99-107.] |
[41] | Shen ZH, Wang GF, Li DX (2002). Gap related disturbance in mixed mountain forests at Mt. Dalaoling in the Three Gorges II. Topographic patterns.Acta Phytoecologica Sinica, 26, 149-156. (in Chinese with English abstract)[沈泽昊, 王功芳, 李道兴 (2002). 三峡大老岭山地常绿落叶阔叶混交林林隙干扰研究II. 林隙干扰的地形格局. 植物生态学报, 26, 149-156.] |
[42] | Shen ZH, Zhang XS, Jin YX (2001). A vertical gradient analysis of the flora of Dalaoling Mountain in the Three Gorges region, China.Acta Phytotaxonomica Sinica, 39, 260-268. (in Chinese with English abstract)[沈泽昊, 张新时, 金义兴 (2001). 三峡大老岭植物区系的垂直梯度分析. 植物分类学报, 39, 260-268.] |
[43] | Sidor CG, Popa I, Vlad R, Cherubini P (2015). Different tree-ring responses of Norway spruce to air temperature across an altitudinal gradient in the Eastern Carpathians (Romania).Trees, 29, 985-997. |
[44] | Singh SP, Adhikari BS, Zobel DB, Singh SP, Zobel DB (1994). Biomass, productivity, leaf longevity and forest structure in the Central Himalaya.Ecological Monographs, 64, 401-421. |
[45] | Stevenson PR, Pineda M, Samper T (2005). Influence of seed size on dispersal patterns of woolly monkeys (Lagothrix lagothricha) at Tinigua Park, Colombia. Oikos, 110, 435-440. |
[46] | Suzuki S (1998). Leaf phenology, seasonal changes in leaf quality and herbivory pattern ofSanguisorba tenuifolia at different altitudes. Oecologia, 117(1-2), 69-176. |
[47] | Walker JJ, Beurs KM, Wynne RH (2014). Dryland vegetation phenology across an elevation gradient in Arizona, USA, investigated with fused MODIS and Landsat data.Remote Sensing of Environment, 144, 85-97. |
[48] | Wang T, Ren H, Ma K (2005). Climatic signals in tree ring ofPicea schrenkiana along an altitudinal gradient in the central Tianshan Mountains, Northwestern China. Trees, 19, 735-741. |
[49] | Wang YF, Yue YC (2014). Effects of resource allocation and floral traits on the number and mass ofSaussurea undulate seeds from different elevations in eastern Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 38, 366-374. (in Chinese with English abstract)[王一峰, 岳永成 (2014). 青藏高原东缘不同海拔波缘风毛菊资源分配及花部特征对种子数目和质量的影响. 植物生态学报, 38, 366-374.] |
[50] | Westoby M, Jurado E, Leishman M (1992). Comparative evolutionary ecology of seed size.Trends in Ecology and Evolution, 7, 368-372. |
[51] | Ying JS, Zhang ZS (1984). Endemism in the flora of China: Studies on the endemic genera.Acta Phytotaxonomica Sinica, 22, 259-268. (in Chinese with English abstract)[应俊生, 张志松 (1984). 中国植物区系中的特有现象——特有属的研究. 植物分类学报, 22, 259-268.] |
[52] | Zhang ST, Du GZ, Chen JK (2003). The present situation and prospect of studies on evolutionary ecology of seed size variation.Acta Ecologica Sinica, 23, 353-364. (in Chinese with English abstract)[张世挺, 杜国祯, 陈家宽 (2003). 种子大小变异的进化生态学研究现状与展望. 生态学报, 23, 353-364.] |
[1] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[2] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[3] | 张尧, 陈岚, 王洁莹, 李益, 王俊, 郭垚鑫, 任成杰, 白红英, 孙昊田, 赵发珠. 太白山不同海拔森林根际土壤微生物碳利用效率差异性及其影响因素[J]. 植物生态学报, 2023, 47(2): 275-288. |
[4] | 何茜, 冯秋红, 张佩佩, 杨涵, 邓少军, 孙小平, 尹华军. 基于叶片和土壤酶化学计量的川西亚高山岷江冷杉林养分限制海拔变化规律[J]. 植物生态学报, 2023, 47(12): 1646-1657. |
[5] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[6] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[7] | 马艳泽, 杨熙来, 徐彦森, 冯兆忠. 四种常见树木叶片光合模型关键参数对臭氧浓度升高的响应[J]. 植物生态学报, 2022, 46(3): 321-329. |
[8] | 秦慧君, 焦亮, 周怡, 薛儒鸿, 柒常亮, 杜达石. 祁连山优势树木碳水化合物资源分配的海拔和树种效应[J]. 植物生态学报, 2022, 46(2): 208-219. |
[9] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
[10] | 于海英, 杨莉琳, 付素静, 张志敏, 姚琦馥. 暖温带森林木本植物展叶始期对低温和热量累积变化的响应[J]. 植物生态学报, 2022, 46(12): 1573-1584. |
[11] | 牟文博, 徐当会, 王谢军, 敬文茂, 张瑞英, 顾玉玲, 姚广前, 祁世华, 张龙, 苟亚飞. 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征[J]. 植物生态学报, 2022, 46(11): 1422-1431. |
[12] | 向响, 黄永梅, 杨崇曜, 李泽卿, 陈慧颖, 潘莹萍, 霍佳璇, 任梁. 海拔对青海湖流域群落水平植物功能性状的影响[J]. 植物生态学报, 2021, 45(5): 456-466. |
[13] | 解梦怡, 冯秀秀, 马寰菲, 胡汗, 王洁莹, 郭垚鑫, 任成杰, 王俊, 赵发珠. 秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素[J]. 植物生态学报, 2020, 44(8): 885-894. |
[14] | 周雄, 孙鹏森, 张明芳, 刘世荣. 西南高山亚高山区植被水分利用效率时空特征及其与气候因子的关系[J]. 植物生态学报, 2020, 44(6): 628-641. |
[15] | 李蕾, 王一峰, 苟文霞, 马文梅, 蒋春玲. 狮牙草状风毛菊果期资源分配对海拔的响应[J]. 植物生态学报, 2020, 44(11): 1164-1171. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19