植物生态学报 ›› 2021, Vol. 45 ›› Issue (5): 456-466.DOI: 10.17521/cjpe.2020.0140
所属专题: 植物功能性状
向响, 黄永梅*(), 杨崇曜, 李泽卿, 陈慧颖, 潘莹萍, 霍佳璇, 任梁
收稿日期:
2020-05-11
接受日期:
2020-08-23
出版日期:
2021-05-20
发布日期:
2021-01-05
通讯作者:
黄永梅
作者简介:
*(ymhuang@bnu.edu.cn)基金资助:
XIANG Xiang, HUANG Yong-Mei*(), YANG Chong-Yao, LI Ze-Qing, CHEN Hui-Ying, PAN Ying-Ping, HUO Jia-Xuan, REN Liang
Received:
2020-05-11
Accepted:
2020-08-23
Online:
2021-05-20
Published:
2021-01-05
Contact:
HUANG Yong-Mei
Supported by:
摘要:
海拔变化会引起气压、温度、降水、土壤湿度和风速等环境因子发生急剧变化, 植物功能性状-海拔的相互关系对于预测全球变化背景下山地植物的适应方式具有重要意义。该研究在青海湖流域海拔3 400-4 200 m范围内布设了5个样地(海拔间隔约200 m), 通过植物群落调查, 测定植物功能性状和土壤理化性质, 结合气象数据, 探讨了海拔对青海湖流域群落水平植物功能性状的影响。结果如下: (1)群落加权平均植株高度(H)、叶片干物质含量(LDMC)、叶片碳氮比(C:N)和叶片氮磷比(N:P)随海拔升高显著降低, 比根表面积(SRA)随海拔升高波动下降, 比叶面积(SLA)、叶片氮含量(LNC)和叶片磷含量(LPC)随海拔升高显著升高, 叶片碳含量(LCC)、比根长(SRL)和根组织密度(RTD)随海拔未发生显著变化。(2)所有性状的变异来源以物种组成变化为主, N:P和LPC的种内性状变异与物种组成变化呈现正的协变效应, 其余性状为负的协变效应。(3)降水和0- 10 cm土层土壤养分含量对SLA变化的解释率较高, 温度和10-20 cm土层土壤养分含量对其余性状随海拔变化的解释率较高。以上结果表明青海湖流域植物群落主要通过物种更替来适应随海拔升高而剧烈变化的环境, 且各群落中的非优势种倾向于占据与优势种相反的性状空间来提高资源利用率, 随海拔变化的热量和深层土壤养分含量是群落水平植物功能性状变化的主要影响因子。
向响, 黄永梅, 杨崇曜, 李泽卿, 陈慧颖, 潘莹萍, 霍佳璇, 任梁. 海拔对青海湖流域群落水平植物功能性状的影响. 植物生态学报, 2021, 45(5): 456-466. DOI: 10.17521/cjpe.2020.0140
XIANG Xiang, HUANG Yong-Mei, YANG Chong-Yao, LI Ze-Qing, CHEN Hui-Ying, PAN Ying-Ping, HUO Jia-Xuan, REN Liang. Effect of altitude on community-level plant functional traits in the Qinghai Lake Basin, China. Chinese Journal of Plant Ecology, 2021, 45(5): 456-466. DOI: 10.17521/cjpe.2020.0140
序号 Serial number | 海拔 Altitude (m) | 群系 Alliance | 优势种 Dominant species | 坡度 Slope (°) | 土壤类型 Soil type |
---|---|---|---|---|---|
1 | 3 373 | 紫花针茅+西北针茅草地 Stipa purpurea + S. sareptana Tussock Grassland Aliance | 紫花针茅、西北针茅 S. purpurea, S. sareptana | <5 | 砂质壤土 Sandy loam |
2 | 3 626 | 紫花针茅草地 S. purpurea Tussock Grassland Aliance | 紫花针茅 S. purpurea | 11 | 砂质壤土 Sandy loam |
3 | 3 719 | 高山嵩草+紫花针茅草地 Kobresia pygmaea + S. purpurea Tussock Grassland Aliance | 高山嵩草、紫花针茅 K. pygmaea, S. purpurea | <5 | 砂质壤土 Sandy loam |
4 | 3 973 | 高山嵩草草地 K. pygmaea Tussock Grassland Aliance | 高山嵩草 K. pygmaea | 13 | 壤质细砂土 Loam fine sand |
5 | 4 222 | 唐古红景天高山垫状植被 Rhodiola tangutica Alpine Cushion Vegetation | 唐古红景天 R. tangutica | <5 | 砂质壤土 Sandy loam |
表1 青海湖流域研究样地的地理位置和植被特征
Table 1 Geographical and vegetation characteristics of each site in the Qinghai Lake Basin, China
序号 Serial number | 海拔 Altitude (m) | 群系 Alliance | 优势种 Dominant species | 坡度 Slope (°) | 土壤类型 Soil type |
---|---|---|---|---|---|
1 | 3 373 | 紫花针茅+西北针茅草地 Stipa purpurea + S. sareptana Tussock Grassland Aliance | 紫花针茅、西北针茅 S. purpurea, S. sareptana | <5 | 砂质壤土 Sandy loam |
2 | 3 626 | 紫花针茅草地 S. purpurea Tussock Grassland Aliance | 紫花针茅 S. purpurea | 11 | 砂质壤土 Sandy loam |
3 | 3 719 | 高山嵩草+紫花针茅草地 Kobresia pygmaea + S. purpurea Tussock Grassland Aliance | 高山嵩草、紫花针茅 K. pygmaea, S. purpurea | <5 | 砂质壤土 Sandy loam |
4 | 3 973 | 高山嵩草草地 K. pygmaea Tussock Grassland Aliance | 高山嵩草 K. pygmaea | 13 | 壤质细砂土 Loam fine sand |
5 | 4 222 | 唐古红景天高山垫状植被 Rhodiola tangutica Alpine Cushion Vegetation | 唐古红景天 R. tangutica | <5 | 砂质壤土 Sandy loam |
植物功能性状 Plant functional trait | 简写 Abbreviation | 单位 Unit | 计算公式 Equation |
---|---|---|---|
植株高度 Plant height | H | cm | - |
比叶面积 Specific leaf area | SLA | cm2·g-1 | 叶面积/叶片干质量 Leaf area/dry mass |
叶片干物质含量 Leaf dry matter content | LDMC | g·g-1 | 叶干质量/叶饱和鲜质量 Leaf dry mass/saturated fresh mass |
叶片氮含量 Leaf nitrogen content | LNC | mg·g-1 | - |
叶片磷含量 Leaf phosphorus content | LPC | mg·g-1 | - |
叶片碳含量 Leaf carbon content | LCC | mg·g-1 | - |
叶片碳氮比 Leaf C:N ratio | C:N | - | - |
叶片氮磷比 Leaf N:P ratio | N:P | - | - |
比根长 Specific root length | SRL | cm·g-1 | 细根长度/细根干质量 Fine root length/dry mass |
比根表面积 Specific root surface area | SRA | cm2·g-1 | 细根表面积/细根干质量 Fine root surface area/dry mass |
根组织密度 Root tissue density | RTD | g·cm-3 | 细根干质量/细根体积 Fine root dry mass/volume |
表2 本研究选取的植物功能性状指标及计算公式
Table 2 Plant functional traits and their equations selected in this study
植物功能性状 Plant functional trait | 简写 Abbreviation | 单位 Unit | 计算公式 Equation |
---|---|---|---|
植株高度 Plant height | H | cm | - |
比叶面积 Specific leaf area | SLA | cm2·g-1 | 叶面积/叶片干质量 Leaf area/dry mass |
叶片干物质含量 Leaf dry matter content | LDMC | g·g-1 | 叶干质量/叶饱和鲜质量 Leaf dry mass/saturated fresh mass |
叶片氮含量 Leaf nitrogen content | LNC | mg·g-1 | - |
叶片磷含量 Leaf phosphorus content | LPC | mg·g-1 | - |
叶片碳含量 Leaf carbon content | LCC | mg·g-1 | - |
叶片碳氮比 Leaf C:N ratio | C:N | - | - |
叶片氮磷比 Leaf N:P ratio | N:P | - | - |
比根长 Specific root length | SRL | cm·g-1 | 细根长度/细根干质量 Fine root length/dry mass |
比根表面积 Specific root surface area | SRA | cm2·g-1 | 细根表面积/细根干质量 Fine root surface area/dry mass |
根组织密度 Root tissue density | RTD | g·cm-3 | 细根干质量/细根体积 Fine root dry mass/volume |
序号 Serial number | 年平均气温 Mean annual air temperature (℃) | 年降水量 Mean annual precipitation (mm) | 0-10 cm土壤全氮含量 Soil total nitrogen content in 0-10 cm layer (mg·g-1) | 0-10 cm土壤全磷含量 Soil total phosphorus content in 0-10 cm layer (mg·g-1) | 10-20 cm土壤全氮含量 Soil total nitrogen content in 10-20 cm layer (mg·g-1) | 10-20 cm土壤全磷含量 Soil total phosphorus content in 10-20 cm layer (mg·g-1) |
---|---|---|---|---|---|---|
1 | 1 | 348 | 0.39 ± 0.003c | 0.66 ± 0.164a | 0.34 ± 0.033b | 0.62 ± 0.001ab |
2 | -1 | 434 | 0.39 ± 0.003c | 0.62 ± 0.008a | 0.31 ± 0.033c | 0.63 ± 0.004a |
3 | -2 | 430 | 0.43 ± 0.003b | 0.65 ± 0.004a | 0.26 ± 0.000d | 0.57 ± 0.015bc |
4 | -4 | 401 | 0.49 ± 0.001a | 0.59 ± 0.004a | 0.38 ± 0.000a | 0.59 ± 0.002b |
5 | -6 | 371 | 0.32 ± 0.003d | 0.53 ± 0.005a | 0.18 ± 0.033e | 0.53 ± 0.007d |
表3 青海湖流域各样地的气候和土壤营养元素含量特征(平均值±标准误, n = 3)
Table 3 Climate and soil nutrient content characteristics of each site in the Qinghai Lake Basin, China (mean ± SE, n = 3)
序号 Serial number | 年平均气温 Mean annual air temperature (℃) | 年降水量 Mean annual precipitation (mm) | 0-10 cm土壤全氮含量 Soil total nitrogen content in 0-10 cm layer (mg·g-1) | 0-10 cm土壤全磷含量 Soil total phosphorus content in 0-10 cm layer (mg·g-1) | 10-20 cm土壤全氮含量 Soil total nitrogen content in 10-20 cm layer (mg·g-1) | 10-20 cm土壤全磷含量 Soil total phosphorus content in 10-20 cm layer (mg·g-1) |
---|---|---|---|---|---|---|
1 | 1 | 348 | 0.39 ± 0.003c | 0.66 ± 0.164a | 0.34 ± 0.033b | 0.62 ± 0.001ab |
2 | -1 | 434 | 0.39 ± 0.003c | 0.62 ± 0.008a | 0.31 ± 0.033c | 0.63 ± 0.004a |
3 | -2 | 430 | 0.43 ± 0.003b | 0.65 ± 0.004a | 0.26 ± 0.000d | 0.57 ± 0.015bc |
4 | -4 | 401 | 0.49 ± 0.001a | 0.59 ± 0.004a | 0.38 ± 0.000a | 0.59 ± 0.002b |
5 | -6 | 371 | 0.32 ± 0.003d | 0.53 ± 0.005a | 0.18 ± 0.033e | 0.53 ± 0.007d |
图2 群落加权平均性状随海拔变化的单因素方差分析(平均值±标准误)。不同小写字母表示该性状在不同海拔间具有显著差异(p < 0.05)。C:N, 叶片碳氮比; H, 植株高度; LCC, 叶片碳含量; LDMC, 叶片干物质含量; LNC, 叶片氮含量; LPC, 叶片磷含量; N:P, 叶片氮磷比; RTD, 根组织密度; SLA, 比叶面积; SRA, 比根表面积; SRL, 比根长。
Fig. 2 The one-way ANOVA of community-weighted mean functional traits along altitude (mean ± SE). Different lowercase letters indicate significant differences between different altitudes (p < 0.05). C:N, leaf carbon to nitrogen ratio; H, plant height; LCC, leaf carbon content; LDMC, leaf dry matter content; LNC, leaf nitrogen content; LPC, leaf phosphorus content; N:P, leaf nitrogen to phosphorus ratio; RTD, root tissue density; SLA, specific leaf area; SRA, specific root surface area; SRL, specific root length.
图3 群落加权平均性状变异来源分解。竖线与方框顶部(种内性状变异+物种组成变化)的距离代表协变效应量, 竖线与方框相交时协变效应为负, 不相交时协变效应为正。*, p < 0.05; **, p < 0.01。性状简写见表2。
Fig. 3 Decomposition of total variability in community- weighted mean functional traits. The space between the top of the column and the bar corresponds to the effect of covariation. If the bar is above the column, the covariation is positive, if the bar crosses the column, the covariation is negative. *, p < 0.05; **, p < 0.01. See Table 2 for abbreviation of traits.
图4 六个环境因子的主成分分析。MAP, 年降水量(mm); N10, 0-10 cm土壤全氮含量(mg·g-1); N20, 10-20 cm土壤全氮含量(mg·g-1); P10, 0-10 cm土壤全磷含量(mg·g-1); P20, 10-20 cm土壤全磷含量(mg·g-1); t, 年平均气温(℃)。
Fig. 4 Principal component analysis (PCA) of six environmental factors. MAP, mean annual precipitation (mm); N10, soil total nitrogen content in 0-10 cm layer (mg·g-1); N20, soil total nitrogen content in 10-20 cm layer (mg·g-1); P10, soil total phosphorus content in 0-10 cm layer (mg·g-1); P20, soil total phosphorus content in 10-20 cm layer (mg·g-1); t, mean annual air temperature (°C).
图5 环境因子PC1与PC2对群落加权平均性状变化的解释率。PC1, 热量和深层养分因子; PC2, 降水和表层养分因子。性状简写见表2。
Fig. 5 Proportion of variance in community-weighted mean functional traits explained by PC1 and PC2. PC1, temperature and deep soil nutrient content; PC2, precipitation and surface soil nutrient content. See Table 2 for abbreviation of traits.
[1] |
Asner GP,Martin RE(2016).Convergent elevation trends in canopy chemical traits of tropical forests.Global Change Biology,22, 2216-2227.
DOI URL |
[2] |
Both S,Riutta T,Timothy Paine CE,Elias DMO,Cruz RS,Jain A,Johnson D,Kritzler UH,Kuntz M,Majalap-Lee N,Mielke N,Montoya Pillco MX,Ostle NJ,Teh YA,Malhi Y,Burslem DFRP(2019).Logging and soil nutrients independently explain plant trait expression in tropical forests.New Phytologist,221, 1853-1865.
DOI URL |
[3] |
Campetella G,Chelli S,Wellstein C,Farris E,Calvia G,Simonetti E,Borsukiewicz L,Vanderplank S,Marignani M(2019).Contrasting patterns in leaf traits of Mediterranean shrub communities along an elevation gradient: measurements matter.Plant Ecology,220, 765-776.
DOI |
[4] |
Chapin III FS(1980).The mineral nutrition of wild plants.Annual Review of Ecology and Systematics,11, 233-260.
DOI URL |
[5] | Chen GC,Peng M(1993).Types and distribution of vegetation in Qinhai Lake region.Acta Phytoecologica et Geobotanica Sinica,17, 71-81. |
[陈桂琛,彭敏(1993).青海湖地区植被及其分布规律.植物生态学与地植物学学报,17, 71-81.] | |
[6] |
Chen HY,Huang YM,He KJ,Qi Y,Li EG,Jiang ZY,Sheng ZL,Li XY(2019).Temporal intraspecific trait variability drives responses of functional diversity to interannual aridity variation in grasslands.Ecology and Evolution,9, 5731-5742.
DOI URL |
[7] | Chevan A,Sutherland M(1991).Hierarchical partitioning.American Statistician,45, 90-96. |
[8] |
Cingolani AM,Cabido M,Gurvich DE,Renison D,Díaz S(2007).Filtering processes in the assembly of plant communities: Are species presence and abundance driven by the same traits?Journal of Vegetation Science,18, 911-920.
DOI URL |
[9] |
Cornelissen JHC,Lavorel S,Garnier E,Díaz S,Buchmann N,Gurvich DE,Reich PB,ter Steege H,Morgan HD,van der Heijden MGA,Pausas JG,Poorter H(2003).A handbook of protocols for standardised and easy measurement of plant functional traits worldwide.Australian Journal of Botany,51, 335-380.
DOI URL |
[10] |
de Bello F,Lavorel S,Díaz S,Harrington R,Cornelissen JHC,Bardgett RD,Berg MP,Cipriotti P,Feld CK,Hering D,da Silva PM,Potts SG,Sandin L,Sousa JP,Storkey J,Wardle DA,Harrison PA(2010).Towards an assessment of multiple ecosystem processes and services via functional traits.Biodiversity and Conservation,19, 2873-2893.
DOI URL |
[11] |
de Bello F,Lavorel S,Albert CH,Thuiller W,Grigulis K,Dolezal J,Janeček Š,Lepš J(2011).Quantifying the relevance of intraspecific trait variability for functional diversity.Methods in Ecology and Evolution,2, 163-174.
DOI URL |
[12] |
de Frenne P,Graae BJ,Rodríguez-Sánchez F,Kolb A,Chabrerie O,Decocq G,de Kort H,De Schrijver A,Diekmann M,Eriksson O,Gruwez R,Hermy M,Lenoir J,Plue J,Coomes DA,Verheyen K(2013).Latitudinal gradients as natural laboratories to infer speciesʼ responses to temperature.Journal of Ecology,101, 784-795.
DOI URL |
[13] |
de la Riva E,Pérez-Ramos IM,Tosto A,Navarro-Fernández C,Olmo M,Marañón T,Villar R(2016).Disentangling the relative importance of species occurrence, abundance and intraspecific variability in community assembly: a trait- based approach at the whole-plant level in Mediterranean forests.Oikos,125, 354-363.
DOI URL |
[14] |
de Oliveira ACP,Nunes A,Rodrigues RG,Branquinho C(2020).The response of plant functional traits to aridity in a tropical dry forest.Science of the Total Environment,747, 141177. DOI:10.1016/j.scitotenv.2020.141177.
DOI URL |
[15] | Díaz S,Lavorel S,de Bello F,Quétier F,Grigulis K,Robson TM(2007).Incorporating plant functional diversity effects in ecosystem service assessments.Proceedings of the National Academy of Sciences of the United States of America,104, 20684-20689. |
[16] |
Garnier E,Cortez J,Billès G,Navas ML,Roumet C,Debussche M,Laurent G,Blanchard A,Aubry D,Bellmann A,Neill C,Toussaint JP(2004).Plant functional markers capture ecosystem properties during secondary succession.Ecology,85, 2630-2637.
DOI URL |
[17] |
Geng Y,Wang L,Jin DM,Liu HY,He JS(2014).Alpine climate alters the relationships between leaf and root morphological traits but not chemical traits.Oecologia,175, 445-455.
DOI PMID |
[18] |
Graae BJ,de Frenne P,Kolb A,Brunet J,Chabrerie O,Verheyen K,Pepin N,Heinken T,Zobel M,Shevtsova A,Nijs I,Milbau A(2012).On the use of weather data in ecological studies along altitudinal and latitudinal gradients.Oikos,121, 3-19.
DOI URL |
[19] |
Güsewell S(2004).N:P ratios in terrestrial plants: variation and functional significance.New Phytologist,164, 243-266.
DOI URL |
[20] | He J,Yang K(2011).China Meteorological Forcing Dataset.Cold and Arid Regions Science Data Center,Lanzhou. |
[何杰,阳坤(2011).中国区域高时空分辨率地面气象要素驱动数据集.中国科学院寒区旱区科学数据中心,兰州.] | |
[21] | Hu H,Bao WK,Li FL(2020).Differencial vertical distribuction of functional traits of fine roots of four cultivated tree species in the upper reaches of Minjiang River.Chinese Journal of Ecology,39, 46-56. |
[胡慧,包维楷,李芳兰(2020).岷江上游4个栽培树种细根功能性状垂直分布的差异性.生态学杂志,39, 46-56.] | |
[22] | Huang JJ,Wang XH(2003).Leaf nutrient and structural characteristics of 32 evergreen broad-leaved species.Journal of East China Normal University (Natural Science),1, 92-97. |
[黄建军,王希华(2003).浙江天童32种常绿阔叶树叶片的营养及结构特征.华东师范大学学报(自然科学版),1, 92-97.] | |
[23] | Huang YM,Chen HY,Zhang JH,Sheng ZL,Li EG,Liu HY(2018).Advances and prospects of plant trait biogeography.Progress in Geography,37, 93-101. |
[黄永梅,陈慧颖,张景慧,盛芝露,李恩贵,刘鸿雁(2018).植物属性地理的研究进展与展望.地理科学进展,37, 93-101.] | |
[24] |
Jung V,Albert CH,Violle C,Kunstler G,Loucougaray G,Spiegelberger T(2014).Intraspecific trait variability mediates the response of subalpine grassland communities to extreme drought events.Journal of Ecology,102, 45-53.
DOI URL |
[25] |
Kergunteuil A,Descombes P,Glauser G,Pellissier L,Rasmann S(2018).Plant physical and chemical defence variation along elevation gradients: a functional trait-based approach.Oecologia,187, 561-571.
DOI PMID |
[26] |
Kichenin E,Wardle DA,Peltzer DA,Morse CW,Freschet GT(2013).Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient.Functional Ecology,27, 1254-1261.
DOI URL |
[27] |
Klimešová J,de Bello F(2009).CLO-PLA: the database of clonal and bud bank traits of Central European flora.Journal of Vegetation Science,20, 511-516.
DOI URL |
[28] |
Kleyer M,Bekker RM,Knevel IC,Bakker JP,Thompson K,Sonnenschein M,Poschlod P,van Groenendael JM,Klimeš L,Klimešová J,Klotz S,Rusch GM,Hermy M,Adriaens D,Boedeltje G,et al.(2008).The LEDA Traitbase: a database of life-history traits of the Northwest European flora.Journal of Ecology,96, 1266-1274.
DOI URL |
[29] |
Körner C(2007).The use of “altitude” in ecological research.Trends in Ecology & Evolution,22, 569-574.
DOI URL |
[30] |
Laliberté E,Legendre P(2010).A distance-based framework for measuring functional diversity from multiple traits.Ecology,91, 299-305.
PMID |
[31] | Lamarque P,Lavorel S,Mouchet M,Quétier F(2014).Plant trait-based models identify direct and indirect effects of climate change on bundles of grassland ecosystem services.Proceedings of the National Academy of Sciences of the United States of America,111, 13751-13756. |
[32] |
Lepš J,de Bello F,Šmilauer P,Doležal J(2011).Community trait response to environment: disentangling species turnover vs intraspecific trait variability effects.Ecography,34, 856-863.
DOI URL |
[33] |
Midolo G,de Frenne P,Hölzel N,Wellstein C(2019).Global patterns of intraspecific leaf trait responses to elevation.Global Change Biology,25, 2485-2498.
DOI URL |
[34] |
Mitchell RM,Ames GM,Wright JP(2020).Intraspecific trait variability shapes leaf trait response to altered fire regimes.Annals of Botany,126, mcaa179. DOI:10.1093/aob/mcaa179.
DOI |
[35] |
Moles AT,Warton DI,Warman L,Swenson NG,Laffan SW,Zanne AE,Pitman A,Hemmings FA,Leishman MR(2009).Global patterns in plant height.Journal of Ecology,97, 923-932.
DOI URL |
[36] |
Mooney HA,Billings WD(1961).Comparative physiological ecology of arctic and alpine populations of Oxyria digyna.Ecological Monographs,31, 1-29.
DOI URL |
[37] |
Mouillot D,Graham NAJ,Villéger S,Mason NWH,Bellwood DR(2013).A functional approach reveals community responses to disturbances.Trends in Ecology and Evolution,28, 167-177.
DOI PMID |
[38] | Nian K,Zhang DS,Zhang YS,Chen JF,Huang M(1997).Distribution characteristics of plant communities in Qinghai Lake Basin.Science and Technology of Qinghai Agriculture and Forestry, (4), 9-12. |
[年奎,张登山,张有生,陈进福,荒漠(1997).青海湖流域植物群落分布特点.青海农林科技, (4), 9-12.] | |
[39] |
Niu KC,He JS,Lechowicz MJ(2016).Grazing-induced shifts in community functional composition and soil nutrient availability in Tibetan alpine meadows.Journal of Applied Ecology,53, 1554-1564.
DOI URL |
[40] |
Nunes A,Köbel M,Pinho P,Matos P,de Bello F,Correia O,Branquinho C(2017).Which plant traits respond to aridity? A critical step to assess functional diversity in Mediterranean drylands.Agricultural and Forest Meteorology,239, 176-184.
DOI URL |
[41] |
Pfennigwerth AA,Bailey JK,Schweitzer JA(2017).Trait variation along elevation gradients in a dominant woody shrub is population-specific and driven by plasticity.AoB Plants,9, plx027. DOI:10.1093/aobpla/plx027.
DOI |
[42] |
Poorter H,Niinemets Ü,Poorter L,Wright IJ,Villar R(2009).Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis.New Phytologist,182, 565-588.
DOI URL |
[43] | R Core Team(2019).R: a language and environment for statistical computing. [2020-05-11]. https://www.R-project.org/. |
[44] | Reich PB,Oleksyn J(2004).Global patterns of plant leaf N and P in relation to temperature and latitude.Proceedings of the National Academy of Sciences of the United States of America,101, 11001-11006. |
[45] | Reich PB,Rich RL,Lu X,Wang YP,Oleksyn J(2014).Biogeographic variation in evergreen conifer needle longevity and impacts on boreal forest carbon cycle projections.Proceedings of the National Academy of Sciences of the United States of America,111, 13703-13708. |
[46] |
Roche P,Díaz-Burlinson N,Gachet S(2004).Congruency analysis of species ranking based on leaf traits: Which traits are the more reliable?Plant Ecology,174, 37-48.
DOI URL |
[47] |
Siefert A,Ritchie ME(2016).Intraspecific trait variation drives functional responses of old-field plant communities to nutrient enrichment.Oecologia,181, 245-255.
DOI PMID |
[48] |
Siefert A,Violle C,Chalmandrier L,Albert CH,Taudiere A,Fajardo A,Aarssen LW,Baraloto C,Carlucci MB,Cianciaruso MV,Dantas VdL,de Bello F,Duarte LDS,Fonseca CR,Freschet GT,et al.(2015).A global meta-analysis of the relative extent of intraspecific trait variation in plant communities.Ecology Letters,18, 1406-1419.
DOI PMID |
[49] |
Valencia E,Maestre FT,Le Bagousse-Pinguet Y,Quero LJ,Tamme R,Bӧrger L,García-Gómez M,Gross N(2015).Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands.New Phytologist,206, 660-671.
DOI PMID |
[50] |
van Wijk MT,Williams M,Gough L,Hobbie SE,Shaver GR(2003).Luxury consumption of soil nutrients: a possible competitive strategy in above-ground and below-ground biomass allocation and root morphology for slow-growing arctic vegetation?Journal of Ecology,91, 664-676.
DOI URL |
[51] |
Violle C,Navas ML,Vile D,Kazakou E,Fortunel C,Hummel I,Garnier E(2007).Let the concept of trait be functional!Oikos,116, 882-892.
DOI URL |
[52] | Violle C,Reich PB,Pacala SW,Enquist BJ,Kattge J(2014).The emergence and promise of functional biogeography.Proceedings of the National Academy of Sciences of the United States of America,111, 13690-13696. |
[53] |
Volf M,Redmond C,Albert ÁJ,Le Bagousse-Pinguet Y,Biella P,Götzenberger L,Hrázský Z,Janeček Š,Klimešová J,Lepš J,Šebelíková L,Vlasatá T,de Bello F(2016).Effects of long- and short-term management on the functional structure of meadows through species turnover and intraspecific trait variability.Oecologia,180, 941-950.
DOI URL |
[54] |
Wang RL,Yu GR,He NP,Wang QF,Zhao N,Xu ZW(2016).Latitudinal variation of leaf morphological traits from species to communities along a forest transect in eastern China.Journal of Geographical Sciences,26,15-26.
DOI URL |
[55] |
Zhou XL,Guo Z,Zhang PF,Du GZ(2018).Shift in community functional composition following nitrogen fertilization in an alpine meadow through intraspecific trait variation and community composition change.Plant and Soil,431, 289-302.
DOI URL |
[1] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[2] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[3] | 陈雪纯, 刘虹, 朱少琦, 孙铭遥, 宇振荣, 王庆刚. 漓江流域不同弃耕年限下4种常见草本植物功能性状种内变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 559-570. |
[4] | 张尧, 陈岚, 王洁莹, 李益, 王俊, 郭垚鑫, 任成杰, 白红英, 孙昊田, 赵发珠. 太白山不同海拔森林根际土壤微生物碳利用效率差异性及其影响因素[J]. 植物生态学报, 2023, 47(2): 275-288. |
[5] | 何茜, 冯秋红, 张佩佩, 杨涵, 邓少军, 孙小平, 尹华军. 基于叶片和土壤酶化学计量的川西亚高山岷江冷杉林养分限制海拔变化规律[J]. 植物生态学报, 2023, 47(12): 1646-1657. |
[6] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[7] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[8] | 秦慧君, 焦亮, 周怡, 薛儒鸿, 柒常亮, 杜达石. 祁连山优势树木碳水化合物资源分配的海拔和树种效应[J]. 植物生态学报, 2022, 46(2): 208-219. |
[9] | 牟文博, 徐当会, 王谢军, 敬文茂, 张瑞英, 顾玉玲, 姚广前, 祁世华, 张龙, 苟亚飞. 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征[J]. 植物生态学报, 2022, 46(11): 1422-1431. |
[10] | 刘润红, 白金连, 包含, 农娟丽, 赵佳佳, 姜勇, 梁士楚, 李月娟. 桂林岩溶石山青冈群落主要木本植物功能性状变异与关联[J]. 植物生态学报, 2020, 44(8): 828-841. |
[11] | 解梦怡, 冯秀秀, 马寰菲, 胡汗, 王洁莹, 郭垚鑫, 任成杰, 王俊, 赵发珠. 秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素[J]. 植物生态学报, 2020, 44(8): 885-894. |
[12] | 周雄, 孙鹏森, 张明芳, 刘世荣. 西南高山亚高山区植被水分利用效率时空特征及其与气候因子的关系[J]. 植物生态学报, 2020, 44(6): 628-641. |
[13] | 李蕾, 王一峰, 苟文霞, 马文梅, 蒋春玲. 狮牙草状风毛菊果期资源分配对海拔的响应[J]. 植物生态学报, 2020, 44(11): 1164-1171. |
[14] | 秦浩, 张殷波, 董刚, 张峰. 山西关帝山森林群落物种、谱系和功能多样性海拔格局[J]. 植物生态学报, 2019, 43(9): 762-773. |
[15] | 章异平, 海旭莹, 徐军亮, 吴文霞, 曹鹏鹤, 安文静. 秦岭东段栓皮栎枝条非结构性碳水化合物含量的季节动态[J]. 植物生态学报, 2019, 43(6): 521-531. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19