植物生态学报 ›› 2019, Vol. 43 ›› Issue (9): 762-773.DOI: 10.17521/cjpe.2018.0088
收稿日期:
2018-04-16
接受日期:
2018-09-06
出版日期:
2019-09-20
发布日期:
2020-01-03
通讯作者:
张峰
基金资助:
QIN Hao1,2,ZHANG Yin-Bo3,DONG Gang4,ZHANG Feng2,*()
Received:
2018-04-16
Accepted:
2018-09-06
Online:
2019-09-20
Published:
2020-01-03
Contact:
ZHANG Feng
Supported by:
摘要:
探索和揭示生物多样性的空间格局和维持机制是生态学和生物地理学研究的热点内容, 但综合物种、系统进化和功能属性等方面的多样性海拔格局研究很少。该文以关帝山森林群落为研究对象, 综合物种、谱系和功能α和β多样性指数, 旨在初步探讨关帝山森林群落多样性海拔格局及其维持机制。研究结果表明: 随着海拔的升高(1 409-2 150 m), 关帝山森林群落物种丰富度指数(S)、谱系多样性指数(PD)和功能丰富度指数(FRic)整体上表现出上升的趋势, 特别是海拔1 800 m以上区域。随着海拔的升高, 总β多样性(βtotal)和更替(βrepl)上升趋势明显, 而丰富度差异(βrich)则逐渐下降。不同生活型植物的物种、谱系和功能多样性海拔格局差异较大。随着海拔的升高, 草本植物S和物种多样性指数(H′)上升趋势高于木本植物。影响草本植物S分布的主要因素是地形因子, 而影响木本植物S分布的主要因素是历史过程。随着海拔的升高, 木本植物βtotal上升趋势要比草本植物明显。随着海拔的升高, 木本植物βrepl和βrich分别表现出单峰格局和“U”形格局, 而草本植物βrepl和βrich则分别表现出单调递增和单调递减的格局。随着环境差异和地理距离的增加, 群落间物种、谱系和功能β多样性显著增加。环境差异(环境过滤)对木本植物的β多样性具有相对较强的作用; 而环境差异(环境过滤)和地理距离(扩散限制)共同作用于草本植物的β多样性。
秦浩, 张殷波, 董刚, 张峰. 山西关帝山森林群落物种、谱系和功能多样性海拔格局[J]. 植物生态学报, 2019, 43(9): 762-773.
QIN Hao, ZHANG Yin-Bo, DONG Gang, ZHANG Feng. Altitudinal patterns of taxonomic, phylogenetic and functional diversity of forest communities in Mount Guandi, Shanxi, China[J]. Chin J Plant Ecol, 2019, 43(9): 762-773.
图3 地形因子、群落结构和历史过程对关帝山森林群落物种丰富度的解释。
Fig. 3 Variance in species richness of forest communities explained by topography, community structure and historical process factors in Mount Guandi.
图4 关帝山森林群落所有植物(A、D、G)、木本植物(B、E、H)和草本植物(C、F、I)物种、谱系和功能β多样性海拔格局。
Fig. 4 Altitudinal patterns of taxonomic (Tβ), phylogenetic (Pβ) and functional (Fβ) β diversity for all plants (A, D, G), woody plants (B, E, H) and herbaceous plants (C, F, I) of forest communities in Mount Guandi.
图5 关帝山森林群落所有植物(A、D、G)、木本植物(B、E、H)和草本植物(C、F、I)物种、谱系和功能β多样性随环境距离的变化趋势。
Fig. 5 Variance in taxonomic (Tβ), phylogenetic (Pβ) and functional (Fβ) β diversity along the environmental distance for all plants (A, D, G), woody plants (B, E, H) and herbaceous plants (C, F, I) of forest communities in Mount Guandi.
图6 关帝山森林群落所有植物(A、D、G)、木本植物(B、E、H)和草本植物(C、F、I)物种、谱系和功能β多样性随地理距离的变化趋势。
Fig. 6 Variance in taxonomic (Tβ), phylogenetic (Pβ) and functional (Fβ) β diversity along the geographical distance for all plants (A, D, G), woody plants (B, E, H) and herbaceous plants (C, F, I) of forest communities in Mount Guandi.
图7 环境距离和地理距离对关帝山森林群落物种(Tβ)、谱系(Pβ)和功能(Fβ) β多样性的解释。AS, 所有物种; HS, 草本植物; WS, 木本植物。
Fig. 7 Variance in taxonomic (Tβ), phylogenetic (Pβ) and functional (Fβ) β diversity of forest communities explained by environmental distance and geographical distance in Mount Guandi. AS, all species; HS, herbaceous species; WS, woody species.
[1] | Antonio Vázquez GJ, Givnish TJ ( 1998). Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manantlán. Journal of Ecology, 86, 999-1020. |
[2] | Austrheim G ( 2002). Plant diversity patterns in semi-natural grasslands along an elevational gradient in southern Norway. Plant Ecology, 161, 193-205. |
[3] | Begon M, Harper JL, Townsend CR ( 1996). Ecology: Individuals, Populations and Communities. Blackwell Science, Oxford, UK. |
[4] | Butterfield BJ, Suding KN ( 2013). Single-trait functional indices outperform multi-trait indices in linking environmental gradients and ecosystem services in a complex landscape. Journal of Ecology, 101, 9-17. |
[5] | Cardoso P, Rigal F, Carvalho JC ( 2015). BAT-Biodiversity Assessment Tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods in Ecology and Evolution, 6, 232-236. |
[6] | Casanoves F, Pla L, di Rienzo JA, Díaz S ( 2011). FDiversity: A software package for the integrated analysis of functional diversity. Methods in Ecology and Evolution, 2, 233-237. |
[7] | Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW ( 2009). The merging of community ecology and phylogenetic biology. Ecology Letters, 12, 693-715. |
[8] | Chen TG, Zhang JT, Shangguan TL, Zhang F, Wang QX ( 2000). The study of diversity in Shenweigou of Guandi Mountain, Shanxi Province. Acta Botanica Boreali-Occidentalia Sinica, 20, 638-646. |
[ 陈廷贵, 张金屯, 上官铁梁, 张峰, 王巧仙 ( 2000). 山西关帝山神尾沟植物群落多样性研究. 西北植物学报, 20, 638-646.] | |
[9] | Chi XL, Tang ZY, Fang JY ( 2014). Patterns of phylogenetic beta diversity in China’s grasslands in relation to geographical and environmental distance. Basic and Applied Ecology, 15, 416-425. |
[10] | Faith DP ( 1992). Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1-10. |
[11] | Fang JY, Wang XP, Shen ZH, Tang ZY, He JS, Yu D, Jiang Y, Wang ZH, Zheng CY, Zhu JL, Guo ZD ( 2009). Methods and protocols for plant community inventory. Biodiversity Science, 17, 533-548. |
[ 方精云, 王襄平, 沈泽昊, 唐志尧, 贺金生, 于丹, 江源, 王志恒, 郑成洋, 朱江玲, 郭兆迪 ( 2009). 植物群落清查的主要内容、方法和技术规范. 生物多样性, 17, 533-548.] | |
[12] | Fernandez-Going BM, Harrison SP, Anacker BL, Safford HD ( 2013). Climate interacts with soil to produce beta diversity in Californian plant communities. Ecology, 94, 2007-2018. |
[13] | Gao JF, Zhang YX ( 2006). Distributional patterns of species diversity of main plant communities along altitudinal gradient in secondary forest region, Guandi Mountain, China. Journal of Forestry Research, 17, 111-115. |
[14] | Itow S ( 1991). Species turnover and diversity patterns along an evergreen broad-leaved forest coenocline. Journal of Vegetation Science, 2, 477-484. |
[15] | Jump AS, Mátyás C, Peñuelas J ( 2009). The altitude-for- latitude disparity in the range retractions of woody species. Trends in Ecology & Evolution, 24, 694-701. |
[16] | Kluge J, Kessler M ( 2011). Phylogenetic diversity, trait diversity and niches: Species assembly of ferns along a tropical elevational gradient. Journal of Biogeography, 38, 394-405. |
[17] | Mason NWH, Mouillot D, Lee WG, Wilson JB ( 2005). Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos, 111, 112-118. |
[18] | Ohsawa M ( 1991). Structural comparison of tropical montane rain forests along latitudinal and altitudinal gradients in south and east Asia. Vegetatio, 97, 1-10. |
[19] | Ohsawa M ( 1995). Latitudinal comparison of altitudinal changes in forest structure, leaf-type, and species richness in humid monsoon Asia. Vegetatio, 121, 3-10. |
[20] | Pausas JG, Austin MP ( 2001). Patterns of plant species richness in relation to different environments: An appraisal. Journal of Vegetation Science, 12, 153-166. |
[21] | Qian H ( 2009). Beta diversity in relation to dispersal ability for vascular plants in North America. Global Ecology and Biogeography, 18, 327-332. |
[22] | Qian H, Field R, Zhang JL, Zhang J, Chen SB ( 2016). Phylogenetic structure and ecological and evolutionary determinants of species richness for angiosperm trees in forest communities in China. Journal of Biogeography, 43, 603-615. |
[23] | Qian H, Hao ZQ, Zhang J ( 2014). Phylogenetic structure and phylogenetic diversity of angiosperm assemblages in forests along an elevational gradient in Changbaishan, China. Journal of Plant Ecology, 7, 154-165. |
[24] | Qin H, Dong G, Zhang F ( 2013). Distribution patterns of dominant populations of forest communities in Pangquangou National Nature Reserve, Shanxi. Bulletin of Botanical Research, 33, 605-609. |
[ 秦浩, 董刚, 张峰 ( 2013). 庞泉沟自然保护区森林群落优势种群分布格局研究. 植物研究, 33, 605-609.] | |
[25] | Rapoport EH ( 1982). Areography, Geographical Strategies of Species. Pergamon Press, New York. |
[26] | Tang ZY, Fang JY, Zhang L ( 2004). Patterns of woody plant species diversity along environmental gradients on Mt. Taibai, Qinling Mountains. Biodiversity Science, 12, 115-122. |
[ 唐志尧, 方精云, 张玲 ( 2004). 秦岭太白山木本植物物种多样性的梯度格局及环境解释. 生物多样性, 12, 115-122.] | |
[27] | Wang GH, Zhou GS, Yang LZ, Li ZQ ( 2002). Distribution, species diversity and life-form spectra of plant communities along an altitudinal gradient in the northern slopes of Qilianshan Mountains, Gansu, China. Plant Ecology, 165, 169-181. |
[28] | Watkins Jr JE, Cardelús C, Colwell RK, Moran RC ( 2006). Species richness and distribution of ferns along an elevational gradient in Costa Rica. American Journal of Botany, 93, 73-83. |
[29] | Webb CO, Ackerly DD, Kembel SW ( 2008). Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics, 24, 2098-2100. |
[30] | Whittaker RH, Niering WA ( 1975). Vegetation of the Santa Catalina Mountains, Arizona. V. Biomass, production, and diversity along the elevation gradient. Ecology, 56, 771-790. |
[31] | Zhang F, Qiao LP, Zhang GP, Wu YZ, Han H ( 2007). Quantitative analysis on interspecific relationships among the dominant of plant communities populations of abandoned land in Guandi Mountains, Shanxi. Journal of Shanxi University (Natural Science Edition), 30, 290-294. |
[ 张峰, 乔利鹏, 张桂萍, 武玉珍, 韩虹 ( 2007). 关帝山撂荒地植物群落种间关系数量分析. 山西大学学报(自然科学版), 30, 290-294.] | |
[32] | Zhang JT, Zhang BY, Qian ZY ( 2015). Functional diversity of Cercidiphyllum japonicum, communities in the Shennongjia Reserve, central China. Journal of Forestry Research, 26, 171-177. |
[33] | Zhao XN, Qin XJ, Dong G, Zhang F ( 2014). Taxonomic diversity of the plant communities in Pangquangou Nature Reserve, Shanxi Province, China. Chinese Journal of Applied Ecology, 25, 3437-3442. |
[ 赵小娜, 秦晓娟, 董刚, 张峰 ( 2014). 庞泉沟自然保护区植物群落分类学多样性. 应用生态学报, 25, 3437-3442.] | |
[34] | Zhu XZ, Zhang JT ( 2005). Altitudinal patterns of plant diversity of China Mountains. Acta Botanica Boreali- Occidentalia Sinica, 25, 1480-1486. |
[ 朱珣之, 张金屯 ( 2005). 中国山地植物多样性的垂直变化格局. 西北植物学报, 25, 1480-1486.] |
[1] | 包新康, 王亮, 卢梦洁, 裴鹏祖, 李建亮, 马东辉, 李佳琦. 利用红外相机监测甘肃安西极旱荒漠国家级自然保护区鸟兽物种多样性[J]. 生物多样性, 2020, 28(9): 1141-1146. |
[2] | 李林妙, 池辉云, 万雅琼, 周佳滨, 张礼标, 何向阳, 黄文忠, 张伯军, 徐湛荣, 刘昌传, 赖任燕, 朱秀芳, 李友余, 李佳琦, 陈金平. 广东云开山国家级自然保护区鸟兽红外相机调查初报[J]. 生物多样性, 2020, 28(9): 1154-1159. |
[3] | 陈梦悦, 吴雨恒, 廖承清, 马方舟, 王星. 八大公山国家级自然保护区不同生境蝶类群落特征与月动态[J]. 生物多样性, 2020, 28(8): 950-957. |
[4] | 刘凌 樊英杰 宋晓彤 李敏 邵小明 王晓蕊. 色季拉山不同腐解等级华山松倒木上的苔藓植物组合[J]. 植物生态学报, 2020, 44(8): 0-0. |
[5] | 胡宜峰, 王晓云, 邓学建, 吴华, 黄正澜懿, 岳阳, 黎舫, 张秋萍, 郭伟健, 李锋, 陈柏承, 徐忠鲜, 周全, 余文华, 吴毅. 罗霄山脉翼手目物种多样性及适生区预测[J]. 生物多样性, 2020, 28(7): 876-888. |
[6] | 刘鹏, 付明霞, 齐敦武, 宋心强, 韦伟, 杨琬婧, 陈玉祥, 周延山, 刘家斌, 马锐, 余吉, 杨洪, 陈鹏, 侯蓉. 利用红外相机监测四川大相岭自然保护区鸟兽物种多样性[J]. 生物多样性, 2020, 28(7): 905-912. |
[7] | 王宇彤, 牛克昌. 青藏高原高寒草甸土壤环境对线虫功能多样性的影响[J]. 生物多样性, 2020, 28(6): 707-717. |
[8] | 衣海燕, 曾源, 赵玉金, 郑朝菊, 熊杰, 赵旦. 利用聚类算法监测森林乔木物种多样性[J]. 植物生态学报, 2020, 44(6): 598-615. |
[9] | 刘丹, 郭忠玲, 崔晓阳, 范春楠. 5种东北红豆杉植物群丛及其物种多样性的比较[J]. 生物多样性, 2020, 28(3): 340-349. |
[10] | 李霞,朱万泽,孙守琴,舒树淼,盛哲良,张军,刘亭,张志才. 大渡河中游干暖河谷区生境对植物群落分布格局和多样性的影响[J]. 生物多样性, 2020, 28(2): 117-127. |
[11] | 刘旻霞,李全弟,蒋晓轩,夏素娟,南笑宁,张娅娅,李博文. 甘南亚高寒草甸稀有种对物种多样性和物种多度分布格局的贡献[J]. 生物多样性, 2020, 28(2): 107-116. |
[12] | 刘振元,孟星亮,李正飞,张君倩,徐靖,银森录,谢志才. 南洞庭湖区软体动物物种多样性评估及保护对策[J]. 生物多样性, 2020, 28(2): 155-165. |
[13] | 丁威,王玉冰,向官海,迟永刚,鲁顺保,郑淑霞. 小叶锦鸡儿灌丛化对典型草原群落结构与生态系统功能的影响[J]. 植物生态学报, 2020, 44(1): 33-43. |
[14] | 王玉冰,孙毅寒,丁威,张恩涛,李文怀,迟永刚,郑淑霞. 长期氮添加对典型草原植物多样性与初级生产力的影响及途径[J]. 植物生态学报, 2020, 44(1): 22-32. |
[15] | 方文静, 蔡琼, 朱江玲, 吉成均, 岳明, 郭卫华, 张峰, 高贤明, 唐志尧, 方精云. 华北地区落叶松林的分布、群落结构和物种多样性[J]. 植物生态学报, 2019, 43(9): 742-752. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2018 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19