植物生态学报 ›› 2019, Vol. 43 ›› Issue (9): 762-773.DOI: 10.17521/cjpe.2018.0088
收稿日期:
2018-04-16
接受日期:
2018-09-06
出版日期:
2019-09-20
发布日期:
2020-01-03
通讯作者:
张峰
基金资助:
QIN Hao1,2,ZHANG Yin-Bo3,DONG Gang4,ZHANG Feng2,*()
Received:
2018-04-16
Accepted:
2018-09-06
Online:
2019-09-20
Published:
2020-01-03
Contact:
ZHANG Feng
Supported by:
摘要:
探索和揭示生物多样性的空间格局和维持机制是生态学和生物地理学研究的热点内容, 但综合物种、系统进化和功能属性等方面的多样性海拔格局研究很少。该文以关帝山森林群落为研究对象, 综合物种、谱系和功能α和β多样性指数, 旨在初步探讨关帝山森林群落多样性海拔格局及其维持机制。研究结果表明: 随着海拔的升高(1 409-2 150 m), 关帝山森林群落物种丰富度指数(S)、谱系多样性指数(PD)和功能丰富度指数(FRic)整体上表现出上升的趋势, 特别是海拔1 800 m以上区域。随着海拔的升高, 总β多样性(βtotal)和更替(βrepl)上升趋势明显, 而丰富度差异(βrich)则逐渐下降。不同生活型植物的物种、谱系和功能多样性海拔格局差异较大。随着海拔的升高, 草本植物S和物种多样性指数(H′)上升趋势高于木本植物。影响草本植物S分布的主要因素是地形因子, 而影响木本植物S分布的主要因素是历史过程。随着海拔的升高, 木本植物βtotal上升趋势要比草本植物明显。随着海拔的升高, 木本植物βrepl和βrich分别表现出单峰格局和“U”形格局, 而草本植物βrepl和βrich则分别表现出单调递增和单调递减的格局。随着环境差异和地理距离的增加, 群落间物种、谱系和功能β多样性显著增加。环境差异(环境过滤)对木本植物的β多样性具有相对较强的作用; 而环境差异(环境过滤)和地理距离(扩散限制)共同作用于草本植物的β多样性。
秦浩, 张殷波, 董刚, 张峰. 山西关帝山森林群落物种、谱系和功能多样性海拔格局. 植物生态学报, 2019, 43(9): 762-773. DOI: 10.17521/cjpe.2018.0088
QIN Hao, ZHANG Yin-Bo, DONG Gang, ZHANG Feng. Altitudinal patterns of taxonomic, phylogenetic and functional diversity of forest communities in Mount Guandi, Shanxi, China. Chinese Journal of Plant Ecology, 2019, 43(9): 762-773. DOI: 10.17521/cjpe.2018.0088
图3 地形因子、群落结构和历史过程对关帝山森林群落物种丰富度的解释。
Fig. 3 Variance in species richness of forest communities explained by topography, community structure and historical process factors in Mount Guandi.
图4 关帝山森林群落所有植物(A、D、G)、木本植物(B、E、H)和草本植物(C、F、I)物种、谱系和功能β多样性海拔格局。
Fig. 4 Altitudinal patterns of taxonomic (Tβ), phylogenetic (Pβ) and functional (Fβ) β diversity for all plants (A, D, G), woody plants (B, E, H) and herbaceous plants (C, F, I) of forest communities in Mount Guandi.
图5 关帝山森林群落所有植物(A、D、G)、木本植物(B、E、H)和草本植物(C、F、I)物种、谱系和功能β多样性随环境距离的变化趋势。
Fig. 5 Variance in taxonomic (Tβ), phylogenetic (Pβ) and functional (Fβ) β diversity along the environmental distance for all plants (A, D, G), woody plants (B, E, H) and herbaceous plants (C, F, I) of forest communities in Mount Guandi.
图6 关帝山森林群落所有植物(A、D、G)、木本植物(B、E、H)和草本植物(C、F、I)物种、谱系和功能β多样性随地理距离的变化趋势。
Fig. 6 Variance in taxonomic (Tβ), phylogenetic (Pβ) and functional (Fβ) β diversity along the geographical distance for all plants (A, D, G), woody plants (B, E, H) and herbaceous plants (C, F, I) of forest communities in Mount Guandi.
图7 环境距离和地理距离对关帝山森林群落物种(Tβ)、谱系(Pβ)和功能(Fβ) β多样性的解释。AS, 所有物种; HS, 草本植物; WS, 木本植物。
Fig. 7 Variance in taxonomic (Tβ), phylogenetic (Pβ) and functional (Fβ) β diversity of forest communities explained by environmental distance and geographical distance in Mount Guandi. AS, all species; HS, herbaceous species; WS, woody species.
[1] | Antonio Vázquez GJ, Givnish TJ ( 1998). Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manantlán. Journal of Ecology, 86, 999-1020. |
[2] | Austrheim G ( 2002). Plant diversity patterns in semi-natural grasslands along an elevational gradient in southern Norway. Plant Ecology, 161, 193-205. |
[3] | Begon M, Harper JL, Townsend CR ( 1996). Ecology: Individuals, Populations and Communities. Blackwell Science, Oxford, UK. |
[4] | Butterfield BJ, Suding KN ( 2013). Single-trait functional indices outperform multi-trait indices in linking environmental gradients and ecosystem services in a complex landscape. Journal of Ecology, 101, 9-17. |
[5] | Cardoso P, Rigal F, Carvalho JC ( 2015). BAT-Biodiversity Assessment Tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods in Ecology and Evolution, 6, 232-236. |
[6] | Casanoves F, Pla L, di Rienzo JA, Díaz S ( 2011). FDiversity: A software package for the integrated analysis of functional diversity. Methods in Ecology and Evolution, 2, 233-237. |
[7] | Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW ( 2009). The merging of community ecology and phylogenetic biology. Ecology Letters, 12, 693-715. |
[8] | Chen TG, Zhang JT, Shangguan TL, Zhang F, Wang QX ( 2000). The study of diversity in Shenweigou of Guandi Mountain, Shanxi Province. Acta Botanica Boreali-Occidentalia Sinica, 20, 638-646. |
[ 陈廷贵, 张金屯, 上官铁梁, 张峰, 王巧仙 ( 2000). 山西关帝山神尾沟植物群落多样性研究. 西北植物学报, 20, 638-646.] | |
[9] | Chi XL, Tang ZY, Fang JY ( 2014). Patterns of phylogenetic beta diversity in China’s grasslands in relation to geographical and environmental distance. Basic and Applied Ecology, 15, 416-425. |
[10] | Faith DP ( 1992). Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1-10. |
[11] | Fang JY, Wang XP, Shen ZH, Tang ZY, He JS, Yu D, Jiang Y, Wang ZH, Zheng CY, Zhu JL, Guo ZD ( 2009). Methods and protocols for plant community inventory. Biodiversity Science, 17, 533-548. |
[ 方精云, 王襄平, 沈泽昊, 唐志尧, 贺金生, 于丹, 江源, 王志恒, 郑成洋, 朱江玲, 郭兆迪 ( 2009). 植物群落清查的主要内容、方法和技术规范. 生物多样性, 17, 533-548.] | |
[12] | Fernandez-Going BM, Harrison SP, Anacker BL, Safford HD ( 2013). Climate interacts with soil to produce beta diversity in Californian plant communities. Ecology, 94, 2007-2018. |
[13] | Gao JF, Zhang YX ( 2006). Distributional patterns of species diversity of main plant communities along altitudinal gradient in secondary forest region, Guandi Mountain, China. Journal of Forestry Research, 17, 111-115. |
[14] | Itow S ( 1991). Species turnover and diversity patterns along an evergreen broad-leaved forest coenocline. Journal of Vegetation Science, 2, 477-484. |
[15] | Jump AS, Mátyás C, Peñuelas J ( 2009). The altitude-for- latitude disparity in the range retractions of woody species. Trends in Ecology & Evolution, 24, 694-701. |
[16] | Kluge J, Kessler M ( 2011). Phylogenetic diversity, trait diversity and niches: Species assembly of ferns along a tropical elevational gradient. Journal of Biogeography, 38, 394-405. |
[17] | Mason NWH, Mouillot D, Lee WG, Wilson JB ( 2005). Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos, 111, 112-118. |
[18] | Ohsawa M ( 1991). Structural comparison of tropical montane rain forests along latitudinal and altitudinal gradients in south and east Asia. Vegetatio, 97, 1-10. |
[19] | Ohsawa M ( 1995). Latitudinal comparison of altitudinal changes in forest structure, leaf-type, and species richness in humid monsoon Asia. Vegetatio, 121, 3-10. |
[20] | Pausas JG, Austin MP ( 2001). Patterns of plant species richness in relation to different environments: An appraisal. Journal of Vegetation Science, 12, 153-166. |
[21] | Qian H ( 2009). Beta diversity in relation to dispersal ability for vascular plants in North America. Global Ecology and Biogeography, 18, 327-332. |
[22] | Qian H, Field R, Zhang JL, Zhang J, Chen SB ( 2016). Phylogenetic structure and ecological and evolutionary determinants of species richness for angiosperm trees in forest communities in China. Journal of Biogeography, 43, 603-615. |
[23] | Qian H, Hao ZQ, Zhang J ( 2014). Phylogenetic structure and phylogenetic diversity of angiosperm assemblages in forests along an elevational gradient in Changbaishan, China. Journal of Plant Ecology, 7, 154-165. |
[24] | Qin H, Dong G, Zhang F ( 2013). Distribution patterns of dominant populations of forest communities in Pangquangou National Nature Reserve, Shanxi. Bulletin of Botanical Research, 33, 605-609. |
[ 秦浩, 董刚, 张峰 ( 2013). 庞泉沟自然保护区森林群落优势种群分布格局研究. 植物研究, 33, 605-609.] | |
[25] | Rapoport EH ( 1982). Areography, Geographical Strategies of Species. Pergamon Press, New York. |
[26] | Tang ZY, Fang JY, Zhang L ( 2004). Patterns of woody plant species diversity along environmental gradients on Mt. Taibai, Qinling Mountains. Biodiversity Science, 12, 115-122. |
[ 唐志尧, 方精云, 张玲 ( 2004). 秦岭太白山木本植物物种多样性的梯度格局及环境解释. 生物多样性, 12, 115-122.] | |
[27] | Wang GH, Zhou GS, Yang LZ, Li ZQ ( 2002). Distribution, species diversity and life-form spectra of plant communities along an altitudinal gradient in the northern slopes of Qilianshan Mountains, Gansu, China. Plant Ecology, 165, 169-181. |
[28] | Watkins Jr JE, Cardelús C, Colwell RK, Moran RC ( 2006). Species richness and distribution of ferns along an elevational gradient in Costa Rica. American Journal of Botany, 93, 73-83. |
[29] | Webb CO, Ackerly DD, Kembel SW ( 2008). Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics, 24, 2098-2100. |
[30] | Whittaker RH, Niering WA ( 1975). Vegetation of the Santa Catalina Mountains, Arizona. V. Biomass, production, and diversity along the elevation gradient. Ecology, 56, 771-790. |
[31] | Zhang F, Qiao LP, Zhang GP, Wu YZ, Han H ( 2007). Quantitative analysis on interspecific relationships among the dominant of plant communities populations of abandoned land in Guandi Mountains, Shanxi. Journal of Shanxi University (Natural Science Edition), 30, 290-294. |
[ 张峰, 乔利鹏, 张桂萍, 武玉珍, 韩虹 ( 2007). 关帝山撂荒地植物群落种间关系数量分析. 山西大学学报(自然科学版), 30, 290-294.] | |
[32] | Zhang JT, Zhang BY, Qian ZY ( 2015). Functional diversity of Cercidiphyllum japonicum, communities in the Shennongjia Reserve, central China. Journal of Forestry Research, 26, 171-177. |
[33] | Zhao XN, Qin XJ, Dong G, Zhang F ( 2014). Taxonomic diversity of the plant communities in Pangquangou Nature Reserve, Shanxi Province, China. Chinese Journal of Applied Ecology, 25, 3437-3442. |
[ 赵小娜, 秦晓娟, 董刚, 张峰 ( 2014). 庞泉沟自然保护区植物群落分类学多样性. 应用生态学报, 25, 3437-3442.] | |
[34] | Zhu XZ, Zhang JT ( 2005). Altitudinal patterns of plant diversity of China Mountains. Acta Botanica Boreali- Occidentalia Sinica, 25, 1480-1486. |
[ 朱珣之, 张金屯 ( 2005). 中国山地植物多样性的垂直变化格局. 西北植物学报, 25, 1480-1486.] |
[1] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[2] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[3] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[4] | 杨鑫, 任明迅. 环南海区域红树物种多样性分布格局及其形成机制[J]. 植物生态学报, 2023, 47(8): 1105-1115. |
[5] | 于笑, 纪若璇, 任天梦, 夏新莉, 尹伟伦, 刘超. 中国北方蒙古莸群落的分布、特征和分类[J]. 植物生态学报, 2023, 47(8): 1182-1192. |
[6] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[7] | 朱华, 谭运洪. 中国热带雨林的群落特征、研究现状及问题[J]. 植物生态学报, 2023, 47(4): 447-468. |
[8] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[9] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[10] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[11] | 曾凯娜, 孙浩然, 申益春, 任明迅. 海南羊山湿地的传粉网络及其季节动态[J]. 植物生态学报, 2022, 46(7): 775-784. |
[12] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
[13] | 陈丽, 田新民, 任正炜, 董六文, 谢晨笛, 周小龙. 养分添加对天山高寒草地植物多样性和地上生物量的影响[J]. 植物生态学报, 2022, 46(3): 280-289. |
[14] | 郝建锋, 周润惠, 姚小兰, 喻静, 陈聪琳, 向琳, 王姚瑶, 苏天成, 齐锦秋. 二代野猪放牧对夹金山针阔混交林物种多样性与土壤理化性质的影响[J]. 植物生态学报, 2022, 46(2): 197-207. |
[15] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19