植物生态学报 ›› 2021, Vol. 45 ›› Issue (5): 444-455.DOI: 10.17521/cjpe.2020.0135
所属专题: 青藏高原植物生态学:生态系统生态学
宗宁1, 石培礼1,2,*(), 赵广帅3, 郑莉莉1,2, 牛犇1, 周天财1,2, 侯阁1,2
收稿日期:
2020-05-08
接受日期:
2020-08-10
出版日期:
2021-05-20
发布日期:
2020-11-02
通讯作者:
石培礼
作者简介:
*石培礼:ORCID: 0000-0002-1120-0003(shipl@igsnrr.ac.cn)基金资助:
ZONG Ning1, SHI Pei-Li1,2,*(), ZHAO Guang-Shuai3, ZHENG Li-Li1,2, NIU Ben1, ZHOU Tian-Cai1,2, HOU Ge1,2
Received:
2020-05-08
Accepted:
2020-08-10
Online:
2021-05-20
Published:
2020-11-02
Contact:
SHI Pei-Li
Supported by:
摘要:
生态系统净初级生产养分限制的模式是现代生态学关注的重要问题。养分的可利用性是草原生态系统生产力动态变化的关键决定因素, 但土壤养分可利用性与整个生态系统中养分限制之间的关系尚不清楚。该研究通过在藏北降水梯度上4种类型高寒草地(从东到西依次是高寒草甸、高寒草甸草原、高寒草原和高寒荒漠草原)设置氮磷养分添加试验, 系统研究氮磷养分添加对不同类型高寒草地的影响, 并探讨降水梯度上高寒草地的氮磷限制模式。结果表明: (1)氮磷添加对不同高寒草地的影响存在差异: 氮添加显著提高了高寒草甸和高寒草甸草原地上生产力, 而对高寒草原和高寒荒漠草原无影响; 单独磷添加对4种高寒草地均无显著影响, 而氮磷添加对4种高寒草地地上生产力均有促进作用。(2)通过计算氮磷共同限制指数发现: 随着降水量减少, 高寒草地氮限制指数从1.18逐渐降低到0.52-0.64, 养分限制模式从氮限制过渡到氮磷共同限制; 磷限制指数在高寒草甸草原和高寒草原为负值, 说明单独磷添加对高寒草甸的生产力有负向作用, 高寒草甸主要受氮限制; 高寒草甸草原介于氮限制与氮磷限制之间, 受到氮磷共同限制, 单独磷添加有负向作用; 高寒荒漠草原受到氮磷共同限制。研究表明, 高寒草地氮磷限制模式存在环境梯度上的递变规律, 随着降水量减少, 高寒草地养分限制模式从氮限制逐渐过渡到氮磷共同限制。由此推断, 未来气候变化条件下氮沉降增加对不同类型高寒草地的影响可能存在差异。同时, 利用养分添加恢复不同类型退化高寒草地时也应将氮磷限制模式的差异考虑进去。
宗宁, 石培礼, 赵广帅, 郑莉莉, 牛犇, 周天财, 侯阁. 降水量变化对藏北高寒草地养分限制的影响. 植物生态学报, 2021, 45(5): 444-455. DOI: 10.17521/cjpe.2020.0135
ZONG Ning, SHI Pei-Li, ZHAO Guang-Shuai, ZHENG Li-Li, NIU Ben, ZHOU Tian-Cai, HOU Ge. Variations of nitrogen and phosphorus limitation along the environmental gradient in alpine grasslands on the Northern Xizang Plateau. Chinese Journal of Plant Ecology, 2021, 45(5): 444-455. DOI: 10.17521/cjpe.2020.0135
图1 4种主要氮磷限制类型的生态系统生产响应模式。假定营养添加没有负面影响。CK, 对照; +A, 添加资源A; +B, 添加资源B; +AB, A和B共同添加。
Fig. 1 Biomass response patterns of the four main types of nitrogen and phosphorus co-limitation. Assuming that nutritional additions have no negative effects. CK, control (no resource addition); +A, adding resource A; +B, adding resource B; +AB, adding A and B together.
研究站点 Study site | ||||
---|---|---|---|---|
高寒草甸 Alpine meadow | 高寒草甸草原 Alpine meadow-steppe | 高寒草原 Alpine steppe | 高寒荒漠草原 Alpine desert-steppe | |
经纬度 Latitude and longitude | 31.57° N, 92.57° E | 31.38° N, 90.23° E | 31.78° N, 87.23° E | 32.37° N, 82.27° E |
海拔 Altitude (m) | 4 570 | 4 590 | 4 580 | 4 520 |
年平均气温 Mean annual air temperature (℃) | -0.9 | -1.0 | -1.4 | -1.4 |
年降水量 Mean annual precipitation (mm) | 444.9 | 335.4 | 327.4 | 175.2 |
群落盖度 Coverage (%) | 70-80 | 40-50 | 20-30 | 15-25 |
优势种群 Dominant species | 高山嵩草 Kobresia pygmaea | 紫花针茅、窄叶薹草 Stipa purpurea, Carex montis-everesti | 紫花针茅 S. purpurea | 紫花针茅、小叶棘豆 S. purpurea, Oxytropis microphylla |
表1 藏北高寒草地试验样地概况
Table 1 Description of study sites in alpine grasslands on the Northern Xizang Plateau
研究站点 Study site | ||||
---|---|---|---|---|
高寒草甸 Alpine meadow | 高寒草甸草原 Alpine meadow-steppe | 高寒草原 Alpine steppe | 高寒荒漠草原 Alpine desert-steppe | |
经纬度 Latitude and longitude | 31.57° N, 92.57° E | 31.38° N, 90.23° E | 31.78° N, 87.23° E | 32.37° N, 82.27° E |
海拔 Altitude (m) | 4 570 | 4 590 | 4 580 | 4 520 |
年平均气温 Mean annual air temperature (℃) | -0.9 | -1.0 | -1.4 | -1.4 |
年降水量 Mean annual precipitation (mm) | 444.9 | 335.4 | 327.4 | 175.2 |
群落盖度 Coverage (%) | 70-80 | 40-50 | 20-30 | 15-25 |
优势种群 Dominant species | 高山嵩草 Kobresia pygmaea | 紫花针茅、窄叶薹草 Stipa purpurea, Carex montis-everesti | 紫花针茅 S. purpurea | 紫花针茅、小叶棘豆 S. purpurea, Oxytropis microphylla |
图2 藏北高原不同类型高寒草地降水量年际变化与土壤氮(N)、磷(P)含量背景值随降水量变化的趋势。ADS, 高寒荒漠草原; AM, 高寒草甸; AMS, 高寒草甸草原; AS, 高寒草原。
Fig. 2 Inter-annual variations of precipitation in different types of alpine grasslands and the relationship between soil nitrogen (N) and phosphorus (P) content and precipitation on the Northern Xizang Plateau. ADS, alpine desert-steppe; AM, alpine meadow; AMS, alpine meadow-steppe; AS, alpine steppe.
功能群 Functional group | 年份 Year | 施肥 Fertilization | 草地类型 Grassland | 年份×施肥 Year × Fertilization | 年份×草地 Year × Grassland | 草地×施肥 Grassland × Fertilization | 年份×草地×施肥 Year × Grassland × Fertilization | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
df = 2 | df = 3 | df = 3 | df = 6 | df = 6 | df = 9 | df = 18 | ||||||||
F | p | F | p | F | p | F | p | F | p | F | p | F | p | |
群落 Community | 14.81 | <0.001 | 24.70 | <0.001 | 336.91 | <0.001 | 0.83 | 0.55 | 2.92 | 0.014 | 2.78 | 0.016 | 0.77 | 0.73 |
禾草 Grasses | 16.98 | <0.001 | 33.60 | <0.001 | 30.68 | <0.001 | 5.64 | <0.001 | 12.59 | <0.001 | 6.92 | <0.001 | 4.19 | <0.001 |
莎草 Sedges | 2.63 | 0.080 | 3.82 | 0.019 | 403.75 | <0.001 | 0.53 | 0.79 | 2.07 | 0.069 | 3.04 | 0.01 | 0.56 | 0.91 |
豆科 Legumes | 11.57 | <0.001 | 3.64 | 0.023 | 24.66 | <0.001 | 0.92 | 0.48 | 11.34 | <0.001 | 6.81 | <0.001 | 1.29 | 0.48 |
杂类草 Forbs | 6.49 | 0.003 | 7.38 | 0.001 | 52.69 | <0.001 | 2.15 | 0.060 | 7.23 | 0.003 | 1.44 | 0.21 | 3.27 | <0.001 |
表2 以年份为重复因子, 利用重复测定方差分析氮磷添加对不同草地类型高寒草地植物功能群地上生产力的影响
Table 2 Using year as the repeated factor, Repeated Measure ANOVA analysis of the effects of nitrogen and phosphorus addition on the aboveground biomass of different types of alpine grasslands
功能群 Functional group | 年份 Year | 施肥 Fertilization | 草地类型 Grassland | 年份×施肥 Year × Fertilization | 年份×草地 Year × Grassland | 草地×施肥 Grassland × Fertilization | 年份×草地×施肥 Year × Grassland × Fertilization | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
df = 2 | df = 3 | df = 3 | df = 6 | df = 6 | df = 9 | df = 18 | ||||||||
F | p | F | p | F | p | F | p | F | p | F | p | F | p | |
群落 Community | 14.81 | <0.001 | 24.70 | <0.001 | 336.91 | <0.001 | 0.83 | 0.55 | 2.92 | 0.014 | 2.78 | 0.016 | 0.77 | 0.73 |
禾草 Grasses | 16.98 | <0.001 | 33.60 | <0.001 | 30.68 | <0.001 | 5.64 | <0.001 | 12.59 | <0.001 | 6.92 | <0.001 | 4.19 | <0.001 |
莎草 Sedges | 2.63 | 0.080 | 3.82 | 0.019 | 403.75 | <0.001 | 0.53 | 0.79 | 2.07 | 0.069 | 3.04 | 0.01 | 0.56 | 0.91 |
豆科 Legumes | 11.57 | <0.001 | 3.64 | 0.023 | 24.66 | <0.001 | 0.92 | 0.48 | 11.34 | <0.001 | 6.81 | <0.001 | 1.29 | 0.48 |
杂类草 Forbs | 6.49 | 0.003 | 7.38 | 0.001 | 52.69 | <0.001 | 2.15 | 0.060 | 7.23 | 0.003 | 1.44 | 0.21 | 3.27 | <0.001 |
图3 氮(N)、磷(P)添加对高寒草地不同植物功能群地上生产力的影响。图中不同大写字母代表群落地上生产力在不同施肥处理之间差异显著(p < 0.05)。F和p代表不同功能群在施肥处理之间的差异性。A-C, 高寒草甸。D-F, 高寒草甸草原。G-I, 高寒草原。J-L, 高寒荒漠草原。
Fig. 3 Effects of nitrogen (N) and phosphorus (P) addition on the aboveground biomass of different plant functional groups of alpine grasslands. Different uppercase letters in the same year represent significant differences among fertilization treatments (p < 0.05). F and P represent the differences in different functional groups among fertilization treatments. A-C, Alpine meadow. D-F, Alpine meadow-steppe. G-I, Alpine steppe. J-L, Alpine desert-steppe.
图4 不同类型高寒草地氮磷相对共同限制指数。ADS, 高寒荒漠草原; AM, 高寒草甸; AMS, 高寒草甸草原; AS, 高寒草原。图中不同大写字母代表相同年份养分限制指数在不同群落之间差异显著(p < 0.05)。
Fig. 4 Relative co-limitation index of nitrogen and phosphorus for different types of alpine grasslands. ADS, alpine desert-steppe; AM, alpine meadow; AMS, alpine meadow-steppe; AS, alpine steppe. RCIN, nitrogen limitation index; RCIP, phosphorus limitation index. Different uppercase letters in the same year represent significant differences among grassland types (p < 0.05).
图5 藏北高原高寒草地氮磷限制指数与降水量以及土壤养分含量的关系。
Fig. 5 Relationships between relative co-limitation index and precipitation as well as soil nutrient content in alpine grasslands on the Northern Xizang Plateau. RCIN, nitrogen limitation index; RCIP, phosphorus limitation index.
[1] |
Bowman WD,Theodose TA,Schardt JC,Conant RT(1993).Constraints of nutrient availability on primary production in two alpine tundra communities.Ecology,74, 2085-2097.
DOI URL |
[2] |
Brant AN,Chen HYH(2015).Patterns and mechanisms of nutrient resorption in plants.Critical Reviews in Plant Sciences,34, 471-486.
DOI URL |
[3] | Chapin III FS,Matson PA(2011).Principles of Terrestrial Ecosystem Ecology. 2nd ed.Springer-Verlag,New York. |
[4] |
Clark CM,Tilman D(2008).Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands.Nature,451, 712-715.
DOI URL |
[5] |
Craine JM,Jackson RD(2010).Plant nitrogen and phosphorus limitation in 98 North American grassland soils.Plant and Soil,334, 73-84.
DOI URL |
[6] |
Craine JM,Morrow C,Stock WD(2008).Nutrient concentration ratios and co-limitation in South African grasslands.New Phytologist,179, 829-836.
DOI URL |
[7] |
Crowley KF,McNeil BE,Lovett GM,Canham CD,Driscoll CT,Rustad LE,Denny E,Hallett RA,Arthur MA,Boggs JL,Goodale CL,Kahl JS,McNulty SG,Ollinger SV,Pardo LH,Schaberg PG,Stoddard JL,Weand MP,Weathers KC(2012).Do nutrient limitation patterns shift from nitrogen toward phosphorus with increasing nitrogen deposition across the Northeastern United States?Ecosystems,15, 940-957.
DOI URL |
[8] |
Du EZ,Terrer C,Pellegrini AFA,Ahlstrom A,van Lissa CJ,Zhao X,Xia N,Wu XH,Jackson RB(2020).Global patterns of terrestrial nitrogen and phosphorus limitation.Nature Geoscience,13, 221-226.
DOI URL |
[9] |
Elser JJ,Bracken MES,Cleland EE,Gruner DS,Harpole WS,Hillebrand H,Ngai JT,Seabloom EW,Shurin JB,Smith JE(2007).Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems.Ecology Letters,10, 1135-1142.
DOI URL |
[10] |
Galloway JN,Dentener FJ,Capone DG,Boyer EW,Howarth RW,Seitzinger SP,Asner GP,Cleveland CC,Green PA,Holland EA,Karl DM,Michaels AF,Porter JH,Townsend AR,Vöosmarty CJ(2004).Nitrogen cycles: past, present, and future.Biogeochemistry,70, 153-226.
DOI URL |
[11] |
Gao QZ,Li YE,Wan YF(2006).Grassland degradation in Northern Tibet based on remote sensing data.Journal of Geographical Sciences,16, 165-173.
DOI URL |
[12] |
Gao YH,Cooper DJ,Ma XX(2016).Phosphorus additions have no impact on plant biomass or soil nitrogen in an alpine meadow on the Qinghai-Tibetan Plateau, China.Applied Soil Ecology,106, 18-23.
DOI URL |
[13] |
Gao YH,Cooper DJ,Zeng XY(2018).Nitrogen, not phosphorus, enrichment controls biomass production in alpine wetlands on the Tibetan Plateau, China.Ecological Engineering,116, 31-34.
DOI URL |
[14] |
Gleeson SK,Tilman D(1992).Plant allocation and the multiple limitation hypothesis.The American Naturalist,139, 1322-1343.
DOI URL |
[15] |
Gusewell S(2004).N:P ratios in terrestrial plants: variation and functional significance.New Phytologist,164, 243-266.
DOI URL |
[16] |
Han WX,Tang LY,Chen YH,Fang JY(2013).Relationship between the relative limitation and resorption efficiency of nitrogen vs phosphorus in woody plants.PLOS ONE,8, e83366. DOI:10.1371/journal.pone.0083366.
DOI URL |
[17] |
Harpole WS,Ngai JT,Cleland EE,Seabloom EW,Borer ET,Bracken MES,Elser JJ,Gruner DS,Hillebrand H,Shurin JB,Smith JE(2011).Nutrient co-limitation of primary producer communities.Ecology Letters,14, 852-862.
DOI URL |
[18] |
Hautier Y,Niklaus PA,Hector A(2009).Competition for light causes plant biodiversity loss after eutrophication.Science,324, 636-638.
DOI PMID |
[19] | Huang J,Wang GF,An SZ,Yun J,Li H,Zhang RH(2009).Effect of nitrogen fertilization on the vegetation structure and biomass of degraded meadow and soil fertility.Pratacultural Science,26, 75-78. |
[黄军,王高峰,安沙舟,贠静,李海,张荣华(2009).施氮对退化草甸植被结构和生物量及土壤肥力的影响.草业科学,26, 75-78.] | |
[20] |
Lamarque JF,Hess P,Emmons L,Buja L,Washington W,Granier C(2005).Tropospheric ozone evolution between 1890 and 1990.Journal of Geophysical Research,110, D08304. DOI:10.1029/2004jd005537.
DOI |
[21] |
LeBauer DS,Treseder KK(2008).Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed.Ecology,89, 371-379.
PMID |
[22] | Li MS(2000).Rational exploitation of grassland resources in the Northern Xizang Plateau.Journal of Natural Resources,15, 335-339. |
[李明森(2000).藏北高原草地资源合理利用.自然资源学报,15, 335-339.] | |
[23] | Liebig J(1855).Principles of Agricultural Chemistry. 2nd ed.Walton and Maberly,London. |
[24] | Odum EP,Barrett GW(2005).Fundamentals of Ecology. 5th ed.Thomson Brooks/Cole, Belmont,USA. |
[25] |
Peñuelas J,Poulter B,Sardans J,Ciais P,van der Velde M,Bopp L,Boucher O,Godderis Y,Hinsinger P,Llusia J,Nardin E,Vicca S,Obersteiner M,Janssens IA(2013).Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe.Nature Communications,4, 2934. DOI:10.1038/ncomms3934.
DOI PMID |
[26] | Shen ZX,Zhou XM,Chen ZZ,Zhou HK(2002).Response of plant groups to simulated rainfall and nitrogen supply in alpine Kobresia humilis meadow.Acta Phytoecologica Sinica,26, 288-294. |
[沈振西,周兴民,陈佐忠,周华坤(2002).高寒矮嵩草草甸植物类群对模拟降水和施氮的响应.植物生态学报,26, 288-294.] | |
[27] |
Song MH,Yu FH,Ouyang H,Cao GM,Xu XL,Cornelissen JHC(2012).Different inter-annual responses to availability and form of nitrogen explain species coexistence in an alpine meadow community after release from grazing.Global Change Biology,18, 3100-3111.
DOI URL |
[28] |
Song MH,Zong N,Jiang J,Shi PL,Zhang XZ,Gao JQ,Zhou HK,Li YK,Loreau M(2019).Nutrient-induced shifts of dominant species reduce ecosystem stability via increases in species synchrony and population variability.Science of the Total Environment,692, 441-449.
DOI URL |
[29] |
Sullivan BW,Alvarez-Clare S,Castle SC,Porder S,Reed SC,Schreeg L,Townsend AR,Cleveland CC(2014).Assessing nutrient limitation in complex forested ecosystems: alternatives to large-scale fertilization experiments.Ecology,95, 668-681.
DOI URL |
[30] | Tilman D(1982).Resource Competition and Community Structure.Princeton University Press,Princeton. |
[31] | Vitousek PM(2004).Nutrient Cycling and Limitation: Hawai'i as a Model System.Princeton University Press,Princeton. |
[32] |
Vitousek PM,Porder S,Houlton BZ,Chadwick OA(2010).Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions.Ecological Applications,20, 5-15.
DOI URL |
[33] |
Wieder WR,Cleveland CC,Smith WK,Todd-Brown K(2015).Future productivity and carbon storage limited by terrestrial nutrient availability.Nature Geoscience,8, 441-444.
DOI URL |
[34] |
Wu JS,Zhang XZ,Shen ZX,Shi PL,Xu XL,Li XJ(2013).Grazing-exclusion effects on aboveground biomass and water-use efficiency of alpine grasslands on the Northern Tibetan Plateau.Rangeland Ecology and Management,66, 454-461.
DOI URL |
[35] |
Yan ZB,Tian D,Han WX,Tang ZY,Fang JY(2017).An assessment on the uncertainty of the nitrogen to phosphorus ratio as a threshold for nutrient limitation in plants.Annals of Botany,120, 937-942.
DOI URL |
[36] |
Yang XX,Ren F,Zhou HK,He JS(2014).Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau.Chinese Journal of Plant Ecology,38, 159-166.
DOI URL |
[杨晓霞,任飞,周华坤,贺金生(2014).青藏高原高寒草甸植物群落生物量对氮、磷添加的响应.植物生态学报,38, 159-166.] | |
[37] |
Yuan ZY,Chen HYH(2009).Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation.Global Ecology and Biogeography,18, 11-18.
DOI URL |
[38] |
Zhao GS,Shi PL,Wu JS,Xiong DP,Zong N,Zhang XZ(2017).Foliar nutrient resorption patterns of four functional plants along a precipitation gradient on the Tibetan Changtang Plateau.Ecology and Evolution,7, 7201-7212.
DOI URL |
[39] | Zhou XM(2001).Chinese Kobresia Meadows.Science Press,Beijing. |
[周兴民(2001).中国嵩草草甸,科学出版社,北京.] | |
[40] | Zong N,Shi PL,Niu B,Jiang J,Song MH,Zhang XZ,He YT(2014).Effects of nitrogen and phosphorous fertilization on community structure and productivity of degraded alpine meadows in northern Tibet, China.Chinese Journal of Applied Ecology,25, 3458-3468. |
[宗宁,石培礼,牛犇,蒋婧,宋明华,张宪洲,何永涛(2014).氮磷配施对藏北退化高寒草甸群落结构和生产力的影响.应用生态学报,25, 3458-3468.] | |
[41] |
Zong N,Song MH,Zhao GS,Shi PL(2020).Nitrogen economy of alpine plants on the north Tibetan Plateau: nitrogen conservation by resorption rather than open sources through biological symbiotic fixation.Ecology and Evolution,10, 2051-2061.
DOI URL |
[1] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[3] | 嘎玛达尔基, 杨泽, 谭星儒, 王珊珊, 李伟晶, 游翠海, 王彦兵, 张兵伟, 任婷婷, 陈世苹. 凋落物输入变化和氮添加对半干旱草原群落生产力及功能群组成的影响[J]. 植物生态学报, 2020, 44(8): 791-806. |
[4] | 符义稳, 田大栓, 汪金松, 牛书丽, 赵垦田. 内蒙古和青藏高原草原植物叶片与根系氮利用效率空间格局及影响因素[J]. 植物生态学报, 2019, 43(7): 566-575. |
[5] | 刘媛媛, 马进泽, 卜兆君, 王升忠, 张雪冰, 张婷玉, 刘莎莎, 付彪, 康媛. 地理来源与生物化学属性对泥炭地植物残体分解的影响[J]. 植物生态学报, 2018, 42(7): 713-722. |
[6] | 杨倩, 王娓, 曾辉. 氮添加对内蒙古退化草地植物群落多样性和生物量的影响[J]. 植物生态学报, 2018, 42(4): 430-441. |
[7] | 王晶, 王姗姗, 乔鲜果, 李昂, 薛建国, 哈斯木其尔, 张学耀, 黄建辉. 氮素添加对内蒙古退化草原生产力的短期影响[J]. 植物生态学报, 2016, 40(10): 980-990. |
[8] | 宋彦涛, 周道玮, 李强, 王平, 黄迎新. 松嫩草地80种草本植物叶片氮磷化学计量特征[J]. 植物生态学报, 2012, 36(3): 222-230. |
[9] | 刘超, 王洋, 王楠, 王根轩. 陆地生态系统植被氮磷化学计量研究进展[J]. 植物生态学报, 2012, 36(11): 1205-1216. |
[10] | 张志东, 臧润国. 海南岛霸王岭热带天然林景观中主要木本植物关键种的潜在分布[J]. 植物生态学报, 2007, 31(6): 1079-1091. |
[11] | 白永飞, 张丽霞, 张焱, 陈佐忠. 内蒙古锡林河流域草原群落植物功能群组成沿水热梯度变化的样带研究[J]. 植物生态学报, 2002, 26(3): 308-316. |
[12] | 白永飞, 陈佐忠. 锡林河流域羊草草原植物种群和功能群的长期变异性及其对群落稳定性的影响[J]. 植物生态学报, 2000, 24(6): 641-647. |
[13] | 肖明, 安沙舟. 干旱区不同草地土壤植物系统水盐的特征[J]. 植物生态学报, 1996, 20(5): 397-403. |
[14] | 何立新, 李卫军, 许鹏. 新疆呼图壁种牛场天然草地类型数量分析研究[J]. 植物生态学报, 1995, 19(2): 175-182. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19