植物生态学报 ›› 2018, Vol. 42 ›› Issue (5): 573-584.DOI: 10.17521/cjpe.2018.0041
申奥1,2,3,朱教君1,2,*(),闫涛1,2,3,卢德亮1,2,3,杨凯1,2
收稿日期:
2018-02-12
修回日期:
2018-05-09
出版日期:
2018-05-20
发布日期:
2018-07-20
通讯作者:
朱教君
基金资助:
SHEN Ao1,2,3,ZHU Jiao-Jun1,2,*(),YAN Tao1,2,3,LU De-Liang1,2,3,YANG Kai1,2
Received:
2018-02-12
Revised:
2018-05-09
Online:
2018-05-20
Published:
2018-07-20
Contact:
Jiao-Jun ZHU
Supported by:
摘要:
凋落物是森林生态系统养分的重要来源, 叶片脱落时间是影响其分解的关键因素。东北温带森林中蒙古栎(Quercus mongolica)落叶时间较其他树种晚, 在山脊等贫瘠立地叶片甚至第二年春天才脱落。我们假设: 相对于其他树种, 蒙古栎叶片养分元素含量过高、再吸收时间长, 导致叶片延迟脱落。为验证假设, 除蒙古栎外, 选择了落叶时间居中的色木槭(Acer mono)和落叶较早的胡桃楸(Juglans mandshurica)为对象, 持续监测叶片从成熟至凋落过程中叶片养分元素含量, 包括大量元素: 氮(N)、磷(P)、钾(K)、钙(Ca)和镁(Mg), 微量元素: 铁(Fe)、铜(Cu)、锰(Mn)和锌(Zn); 并分析养分再吸收率。结果表明: 蒙古栎成熟叶养分元素含量介于对照树种之间; 凋落叶N、P和K含量低于对照树种, Fe和Mn含量高于对照树种, 其余元素含量介于对照树种之间。该结果不支持“蒙古栎叶片养分含量过高”假设。蒙古栎叶片N、P和K再吸收率高于对照树种, 再吸收率高低与其落叶时间完全一致; 叶片Cu和Zn再吸收率与对照树种无显著差异; 叶片其余元素未发生再吸收, 其累积率与对照树种无显著差异; 说明养分再吸收与养分含量无关, 可能与树种的种专一性相关, 可能会影响叶片脱落时间。由于蒙古栎多生长在贫瘠土壤, 其成熟叶无法积累更多养分; 为避免叶片脱落后养分进入土壤被其他物种利用, 将养分尽量回收储存于自身, 即蒙古栎叶片养分再吸收过程较长, 叶片脱落较晚。生长在极端贫瘠立地的蒙古栎叶片次年春天才落叶, 可能是由于再吸收一直在进行, 来不及脱落而保留至新生长季开始。落叶晚的树种养分再吸收率高、有利于自身养分保存, 更能适应贫瘠土壤, 反之亦然。
申奥, 朱教君, 闫涛, 卢德亮, 杨凯. 辽东山区主要阔叶树种叶片养分含量和再吸收对落叶时间的影响. 植物生态学报, 2018, 42(5): 573-584. DOI: 10.17521/cjpe.2018.0041
SHEN Ao, ZHU Jiao-Jun, YAN Tao, LU De-Liang, YANG Kai. Effects of leaf nutrient concentration and resorption on leaf falling time of dominant broadleaved species in a montane region of eastern Liaoning Province, China. Chinese Journal of Plant Ecology, 2018, 42(5): 573-584. DOI: 10.17521/cjpe.2018.0041
林型 Forest type | 密度 Stem density (tree·hm-2) | 胸径 DBH (cm) | 坡向 Aspect (°) | 坡度 Slope (°) | 坡位 Slope position |
---|---|---|---|---|---|
次生林1 Secondary forest 1 (SF1) | 1425 | 23.0 ± 4.4 | 274 | 42 | 中坡 Middle slope |
次生林2 Secondary forest 2 (SF2) | 2050 | 21.4 ± 2.4 | 200 | 40 | 中坡 Middle slope |
次生林3 Secondary forest 3 (SF3) | 1500 | 22.6 ± 2.8 | 349 | 35 | 中坡 Middle slope |
次生林4 Secondary forest 4 (SF4) | 1700 | 25.3 ± 2.2 | 213 | 45 | 中坡 Middle slope |
表1 样地概况
Table 1 Site characteristics
林型 Forest type | 密度 Stem density (tree·hm-2) | 胸径 DBH (cm) | 坡向 Aspect (°) | 坡度 Slope (°) | 坡位 Slope position |
---|---|---|---|---|---|
次生林1 Secondary forest 1 (SF1) | 1425 | 23.0 ± 4.4 | 274 | 42 | 中坡 Middle slope |
次生林2 Secondary forest 2 (SF2) | 2050 | 21.4 ± 2.4 | 200 | 40 | 中坡 Middle slope |
次生林3 Secondary forest 3 (SF3) | 1500 | 22.6 ± 2.8 | 349 | 35 | 中坡 Middle slope |
次生林4 Secondary forest 4 (SF4) | 1700 | 25.3 ± 2.2 | 213 | 45 | 中坡 Middle slope |
蒙古栎 Querus mongolica | 色木槭 Acer mono | 胡桃楸 Juglans mandshurica | ||||
---|---|---|---|---|---|---|
2016 | 2017 | 2016 | 2017 | 2016 | 2017 | |
采样时间 Sampling time (Month-day) | 8-15 | 7-25 | 8-15 | 7-25 | 8-15 | 7-25 |
9-20 | 8-15 | 9-20 | 8-15 | 9-20 | 8-15 | |
10-01 | 9-05 | 10-01 | 9-05 | 9-05 | ||
10-10 | 9-25 | 9-25 | 9-25 | |||
10-20 | 10-15 | 10-15 | ||||
10-25 |
表2 采样时间
Table 2 Sampling time
蒙古栎 Querus mongolica | 色木槭 Acer mono | 胡桃楸 Juglans mandshurica | ||||
---|---|---|---|---|---|---|
2016 | 2017 | 2016 | 2017 | 2016 | 2017 | |
采样时间 Sampling time (Month-day) | 8-15 | 7-25 | 8-15 | 7-25 | 8-15 | 7-25 |
9-20 | 8-15 | 9-20 | 8-15 | 9-20 | 8-15 | |
10-01 | 9-05 | 10-01 | 9-05 | 9-05 | ||
10-10 | 9-25 | 9-25 | 9-25 | |||
10-20 | 10-15 | 10-15 | ||||
10-25 |
树种 Tree species | 年 Year | N | P | K | Ca | Mg | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
成熟叶 Mature leaves | 凋落叶 Senescent leaves | 成熟叶 Mature leaves | 凋落叶 Senescent leaves | 成熟叶 Mature leaves | 凋落叶 Senescent leaves | 成熟叶 Mature leaves | 凋落叶 Senescent leaves | 成熟叶 Mature leaves | 凋落叶 Senescent leaves | ||
蒙古栎 Quercus mongolica | 2016 | 25.01 ± 1.42a | 10.40 ± 0.42a | 1.55 ± 0.05a | 0.83 ± 0.07a | 9.63 ± 0.78a | 4.83 ± 0.16a | 9.61 ± 0.68a | 32.08 ± 1.34a | 2.04 ± 0.04a | 2.14 ± 0.13a |
2017 | 23.50 ± 0.70A | 10.19 ± 0.32A | 1.15 ± 0.03A | 0.37 ± 0.03A | 7.27 ± 0.30A | 2.87 ± 0.33A | 10.99 ± 0.62A | 15.45 ± 0.68A | 1.57 ± 0.09A | 1.53 ± 0.08A | |
色木槭 Acer mono | 2016 | 22.67 ± 0.38a | 16.16 ± 0.78b | 1.11 ± 0.05b | 0.56 ± 0.07b | 9.02 ± 1.16b | 6.82 ± 0.37b | 16.94 ± 1.76b | 21.00 ± 1.77b | 3.09 ± 0.32b | 3.10 ± 0.23b |
2017 | 22.31 ± 0.38A | 14.71 ± 1.17B | 1.10 ± 0.06A | 0.66 ± 0.06B | 8.54 ± 0.34B | 5.71 ± 0.40B | 17.56 ± 0.58B | 24.07 ± 0.59B | 2.93 ± 0.10B | 4.13 ± 0.04B | |
胡桃楸 Juglans mandshurica | 2016 | 26.32 ± 1.27a | 21.18 ± 1.60c | 1.54 ± 0.02a | 0.86 ± 0.03a | 14.94 ± 0.98b | 12.89 ± 0.88c | 17.63 ± 1.10b | 18.50 ± 0.89b | 2.66 ± 0.17a | 2.11 ± 0.23a |
2017 | 27.34 ± 0.72B | 23.64 ± 1.47C | 1.49 ± 0.07B | 1.19 ± 0.09C | 14.89 ± 0.37C | 12.87 ± 0.68C | 19.21 ± 1.11C | 21.45 ± 0.79B | 2.58 ± 0.18B | 2.53 ± 0.18C |
表3 不同树种成熟叶(8月中旬)与凋落叶大量养分元素含量(mg·g-1) (平均值±标准误差)
Table 3 Macroelement concentrations of mature (middle August) and senescent leaves of different tree species (mg·g-1) (mean ± SE)
树种 Tree species | 年 Year | N | P | K | Ca | Mg | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
成熟叶 Mature leaves | 凋落叶 Senescent leaves | 成熟叶 Mature leaves | 凋落叶 Senescent leaves | 成熟叶 Mature leaves | 凋落叶 Senescent leaves | 成熟叶 Mature leaves | 凋落叶 Senescent leaves | 成熟叶 Mature leaves | 凋落叶 Senescent leaves | ||
蒙古栎 Quercus mongolica | 2016 | 25.01 ± 1.42a | 10.40 ± 0.42a | 1.55 ± 0.05a | 0.83 ± 0.07a | 9.63 ± 0.78a | 4.83 ± 0.16a | 9.61 ± 0.68a | 32.08 ± 1.34a | 2.04 ± 0.04a | 2.14 ± 0.13a |
2017 | 23.50 ± 0.70A | 10.19 ± 0.32A | 1.15 ± 0.03A | 0.37 ± 0.03A | 7.27 ± 0.30A | 2.87 ± 0.33A | 10.99 ± 0.62A | 15.45 ± 0.68A | 1.57 ± 0.09A | 1.53 ± 0.08A | |
色木槭 Acer mono | 2016 | 22.67 ± 0.38a | 16.16 ± 0.78b | 1.11 ± 0.05b | 0.56 ± 0.07b | 9.02 ± 1.16b | 6.82 ± 0.37b | 16.94 ± 1.76b | 21.00 ± 1.77b | 3.09 ± 0.32b | 3.10 ± 0.23b |
2017 | 22.31 ± 0.38A | 14.71 ± 1.17B | 1.10 ± 0.06A | 0.66 ± 0.06B | 8.54 ± 0.34B | 5.71 ± 0.40B | 17.56 ± 0.58B | 24.07 ± 0.59B | 2.93 ± 0.10B | 4.13 ± 0.04B | |
胡桃楸 Juglans mandshurica | 2016 | 26.32 ± 1.27a | 21.18 ± 1.60c | 1.54 ± 0.02a | 0.86 ± 0.03a | 14.94 ± 0.98b | 12.89 ± 0.88c | 17.63 ± 1.10b | 18.50 ± 0.89b | 2.66 ± 0.17a | 2.11 ± 0.23a |
2017 | 27.34 ± 0.72B | 23.64 ± 1.47C | 1.49 ± 0.07B | 1.19 ± 0.09C | 14.89 ± 0.37C | 12.87 ± 0.68C | 19.21 ± 1.11C | 21.45 ± 0.79B | 2.58 ± 0.18B | 2.53 ± 0.18C |
树种 Tree species | 年 Year | Fe | Mn | Cu | Zn | ||||
---|---|---|---|---|---|---|---|---|---|
成熟叶 Mature leaves | 凋落叶 Senescent leaves | 成熟叶 Mature leaves | 凋落叶 Senescent leaves | 成熟叶 Mature leaves | 凋落叶 Senescent leaves | 成熟叶 Mature leaves | 凋落叶 Senescent leaves | ||
蒙古栎 Querus mongolica | 2016 | 128.60 ± 27.98a | 319.23 ± 16.72a | 247.51 ± 9.76a | 426.81 ± 36.44a | 6.64 ± 0.36a | 5.95 ± 0.11a | 46.20 ± 5.73a | 27.41 ± 2.93a |
2017 | 189.16 ± 14.65A | 240.12 ± 12.84A | 382.69 ± 33.60A | 409.22 ± 29.70A | 7.25 ± 0.22A | 5.27 ± 0.18A | 63.09 ± 4.47A | 58.76 ± 7.88A | |
色木槭 Acer mono | 2016 | 105.75 ± 28.32a | 195.57 ± 8.93b | 164.50 ± 32.73b | 205.60 ± 35.10b | 7.18 ± 0.32a | 4.90 ± 0.43a | 71.21 ± 21.53a | 33.81 ± 6.08a |
2017 | 208.29 ± 12.93A | 237.51 ± 12.49A | 205.24 ± 19.54B | 230.44 ± 23.07B | 5.88 ± 0.18B | 3.88 ± 0.19B | 63.15 ± 6.53A | 60.87 ± 7.15A | |
胡桃楸 Juglans mandshurica | 2016 | 75.33 ± 11.49a | 228.88 ± 32.49b | 135.91 ± 5.26b | 165.59 ± 14.71b | 9.01 ± 0.49b | 7.70 ± 0.30b | 29.91 ± 5.75a | 52.74 ± 2.84b |
2017 | 204.29 ± 28.80A | 166.45 ± 6.46B | 170.05 ± 12.11B | 217.08 ± 15.67B | 9.51 ± 0.55C | 8.21 ± 0.30C | 44.67 ± 5.18A | 49.65 ± 4.29A |
表4 不同树种成熟叶(8月中旬)与凋落叶微量养分元素含量(μg·g-1) (平均值±标准误差)
Table 4 Microelement concentrations of mature (middle August) and senescent leaves of different tree species(μg·g-1) (mean ± SE)
树种 Tree species | 年 Year | Fe | Mn | Cu | Zn | ||||
---|---|---|---|---|---|---|---|---|---|
成熟叶 Mature leaves | 凋落叶 Senescent leaves | 成熟叶 Mature leaves | 凋落叶 Senescent leaves | 成熟叶 Mature leaves | 凋落叶 Senescent leaves | 成熟叶 Mature leaves | 凋落叶 Senescent leaves | ||
蒙古栎 Querus mongolica | 2016 | 128.60 ± 27.98a | 319.23 ± 16.72a | 247.51 ± 9.76a | 426.81 ± 36.44a | 6.64 ± 0.36a | 5.95 ± 0.11a | 46.20 ± 5.73a | 27.41 ± 2.93a |
2017 | 189.16 ± 14.65A | 240.12 ± 12.84A | 382.69 ± 33.60A | 409.22 ± 29.70A | 7.25 ± 0.22A | 5.27 ± 0.18A | 63.09 ± 4.47A | 58.76 ± 7.88A | |
色木槭 Acer mono | 2016 | 105.75 ± 28.32a | 195.57 ± 8.93b | 164.50 ± 32.73b | 205.60 ± 35.10b | 7.18 ± 0.32a | 4.90 ± 0.43a | 71.21 ± 21.53a | 33.81 ± 6.08a |
2017 | 208.29 ± 12.93A | 237.51 ± 12.49A | 205.24 ± 19.54B | 230.44 ± 23.07B | 5.88 ± 0.18B | 3.88 ± 0.19B | 63.15 ± 6.53A | 60.87 ± 7.15A | |
胡桃楸 Juglans mandshurica | 2016 | 75.33 ± 11.49a | 228.88 ± 32.49b | 135.91 ± 5.26b | 165.59 ± 14.71b | 9.01 ± 0.49b | 7.70 ± 0.30b | 29.91 ± 5.75a | 52.74 ± 2.84b |
2017 | 204.29 ± 28.80A | 166.45 ± 6.46B | 170.05 ± 12.11B | 217.08 ± 15.67B | 9.51 ± 0.55C | 8.21 ± 0.30C | 44.67 ± 5.18A | 49.65 ± 4.29A |
图1 不同树种叶片大量养分元素含量变化趋势(平均值±标准误差)。不同的字母表示同一树种叶片养分含量在不同时间差异显著(p < 0.05; 2016年n = 3, 2017年n = 4)。
Fig. 1 Dynamic of leaf macroelement concentrations of different tree species (mean ± SE). Different letters indicate significant differences of the same tree species at different times (p < 0.05; 2016: n = 3; 2017: n = 4).
图2 不同树种叶片微量养分元素含量变化趋势(平均值±标准误差)。不同的字母表示同一树种叶片养分元素含量在不同时间差异显著(p < 0.05; 2016年n = 3, 2017年n = 4)。
Fig. 2 Dynamic of leaf microelement concentrations of different tree species (mean ± SE). Different letters indicate significant differences of the same tree species at different times (p < 0.05; 2016: n = 3; 2017: n = 4).
图3 不同树种叶片大量养分元素再吸收率(平均值±标准误差)。不同字母表示不同树种同种养分再吸收率差异显著(p < 0.05; 2016年n = 3, 2017年n = 4)。
Fig. 3 Leaf macroelement resorption efficiencies of different tree species (mean ± SE). Different letters indicate significant differences among the tree species for the same nutrient (p < 0.05; 2016: n = 3; 2017: n = 4).
图4 不同树种叶片微量养分元素再吸收率(平均值±标准误差)。不同字母表示不同树种同种养分再吸收率差异显著(p < 0.05; 2016年n = 3, 2017年n = 4)。
Fig. 4 Leaf microelement resorption efficiencies of different tree species (mean ± SE). Different letters indicate significant differences among the tree species for the same nutrient (p < 0.05; 2016: n = 3; 2017: n = 4).
[6] |
Corte GN, Macchiaverni P, Fabbro IMD, Haddad CRB ( 2009). Nitrogen availability, leaf life span and nitrogen conservation mechanisms in leaves of tropical trees. Scientia Agricola, 66, 812-818.
DOI URL |
[7] |
Del Arco JM, Escudero A, Garrido MV ( 1991). Effects of site characteristics on nitrogen retranslocation from senescing leaves. Ecology, 72, 701-708.
DOI URL |
[8] |
Drenovsky RE, Koehler CE, Skelly K, Richards JH ( 2013). Potential and realized nutrient resorption in serpentine and non-serpentine chaparral shrubs and trees. Oecologia, 171, 39-50.
DOI URL |
[9] |
Fan CN, Guo ZL, Zheng JP, Li B, Yang BG, Yue L, Yu HB ( 2014). The amount and dynamics of litterfall in the natural secondary forest in Mopan Mountain. Acta Ecologica Sinica, 34, 633-641.
DOI URL |
[ 范春楠, 郭忠玲, 郑金萍, 李兵, 杨保国, 岳龙, 于洪波 ( 2014). 磨盘山天然次生林凋落物数量及动态. 生态学报, 34, 633-641.]
DOI URL |
|
[10] |
Hagen-Thorn A, Varnagiryte I, Nihlgård B, Armolaitis K ( 2006). Autumn nutrient resorption and losses in four deciduous forest tree species. Forest Ecology & Management, 228, 33-39.
DOI URL |
[11] |
Hu LL, Mao ZH, Zhu JJ, Liu ZG, Chen GH, Zhang LJ ( 2005). Classification and ordination of secondary forests in montane zone of eastern Liaoning Province. Acta Ecologica Sinica, 25, 2848-2854.
DOI URL |
[ 胡理乐, 毛志宏, 朱教君, 刘足根, 陈广华, 张立君 ( 2005). 辽东山区天然次生林的数量分类. 生态学报, 25, 2848-2854.]
DOI URL |
|
[12] | Huo XM, Zhang JS ( 2002). Characteristics of Quercus mongolica. Journal of Inner Mongolia Forestry, ( 11), 35. |
[ 霍锡敏, 张劲松 ( 2002). 柞树的特性. 内蒙古林业, ( 11), 35.] | |
[13] | Jiang TH, Zhan XH, Xu YC, Zhou LX, Zong LG ( 2005). Roles of calcium in stress-tolerance of plants and its ecological significance. Chinese Journal of Applied Ecology, 16, 971-976. |
[ 蒋廷惠, 占新华, 徐阳春, 周立祥, 宗良纲 ( 2005). 钙对植物抗逆能力的影响及其生态学意义. 应用生态学报, 16, 971-976.] | |
[14] |
Killingbeck KT ( 1986). The terminological jungle revisited: Making a case for use of the term resorption. Oikos, 46, 263-264.
DOI URL |
[15] |
Killingbeck KT ( 1996). Nutrients in senescing leaves: Keys to the search for potential resorption and resorption proficiency. Ecology, 77, 1716-1727.
DOI URL |
[16] |
Killingbeck KT, Hammen-Winn SL, Vecchio PG, Goguen ME ( 2002). Nutrient resorption efficiency and proficiency in fronds and trophopods of a winter-deciduous fern, Dennstaedtia punctilobula. International Journal of Plant Sciences, 163, 99-105.
DOI URL |
[17] |
Li RH, Deng Q, Zhou GY, Zhang DQ ( 2011). Effect of incubation starting time on litter decomposition rate in a subtropical forest in China. Chinese Journal of Plant Ecology, 35, 699-706.
DOI URL |
[ 李荣华, 邓琦, 周国逸, 张德强 ( 2011). 起始时间对亚热带森林凋落物分解速率的影响. 植物生态学报, 35, 699-706.]
DOI URL |
|
[18] | Li YK ( 1989). Methods of Conventional Analysis of Soil Agricultural Chemistry. Science Press, Beijing . |
[ 李酉开 ( 1989). 土壤农业化学常规分析方法. 科学出版社,北京.] | |
[19] |
Li YN, Zhou XM, Zhang NL, Ma KP ( 2016). The research of mixed litter effects on litter decomposition in terrestrial ecosystems. Acta Ecologica Sinica, 36, 4977-4987.
DOI URL |
[ 李宜浓, 周晓梅, 张乃莉, 马克平 ( 2016). 陆地生态系统混合凋落物分解研究进展. 生态学报, 36, 4977-4987.]
DOI URL |
|
[20] | Li YX, Cha ZZ, Luo W, Lin ZM, Bei MR ( 2009). Dynamics and transfer of nutrients in the seeding leaves of three Eucalyptus varieties. Scientia Silvae Sinicae, 45(1), 152-157. |
[ 理永霞, 茶正早, 罗微, 林钊沐, 贝美容 ( 2009). 3种桉树幼苗叶片养分变化及其转移特性. 林业科学, 45(1), 152-157.] | |
[21] |
Liang QX, Cao GQ, Su MJ, Qin GY ( 2006). Research progress on plant leaf senescence. Chinese Agricultural Science Bulletin, 22, 282-285.
DOI URL |
[ 梁秋霞, 曹刚强, 苏明杰, 秦广雍 ( 2006). 植物叶片衰老研究进展. 中国农学通报, 22, 282-285.]
DOI URL |
|
[22] | Liu HW ( 2014). The Comparative Study on Leaf Functional Traits and Nutrient Resorption in Two Different Ecosystems of Chongqing. Master degree dissertation, Southwest University, Chongqing. |
[ 刘宏伟 ( 2014). 两种不同生态系统中植物叶片功能性状及养分再吸收比较研究. 硕士学位论文, 西南大学, 重庆.] | |
[23] |
Liu JQ, Wang XY, Guo Y, Wang SL, Zhou L, Dai LM, Yu DP ( 2015). Seasonal dynamics and resorption efficiencies of foliar nutrients in three dominant woody plants that grow at the treeline on Changbai Mountain. Acta Ecologica Sinica, 35, 165-171.
DOI URL |
[ 刘佳庆, 王晓雨, 郭焱, 王守乐, 周莉, 代力民, 于大炮 ( 2015). 长白山林线主要木本植物叶片养分的季节动态及回收效率. 生态学报, 35, 165-171.]
DOI URL |
|
[24] |
Liu MM, Zeng YR, Jiang JB, Han J, Yu WW ( 2014). Mineral elements in leaves and seeds of Torreya grandis ‘Merrillii’ during seed development. Journal of Zhejiang A & F University, 31, 724-729.
DOI URL |
[ 刘萌萌, 曾燕如, 江建斌, 韩炯, 喻卫武 ( 2014). 香榧生长期叶片和种子中矿质元素动态变化研究. 浙江农林大学学报, 31, 724-729.]
DOI URL |
|
[25] |
May JD, Killingbeck KT ( 1992). Effects of preventing nutrient resorption on plant fitness and foliar nutrient dynamics. Ecology, 73, 1868-1878.
DOI URL |
[26] | Mi L, Su R, Zhang JZ, Ao T ( 1999). Quercus mongolica Fisch nutrient composition and deprivation of its poison. Journal of Inner Mongolia Forestry College, 21(1), 73-76. |
[ 米拉, 苏日娜, 张建中, 敖特根 ( 1999). 柞树叶营养成分及脱毒处理的研究. 内蒙古林学院学报(自然科学版), 21(1), 73-76.] | |
[27] |
Pornon A, Lamaze T ( 2007). Nitrogen resorption and photosynthetic activity over leaf life span in an evergreen shrub,Rhododendron ferrugineum, in a subalpine environment.New Phytologist, 175, 301-310.
DOI URL PMID |
[28] | Qiang XC, Yuan HL, Gao WS ( 2004). Effect of crop-residue incorporation on soil CO2 emission and soil microbial biomass. Chinese Journal of Applied Ecology, 15, 469-472. |
[1] |
Aerts R ( 1996). Nutrient resorption from senescing leaves of perennials: Are there general patterns? Journal of Ecology, 84, 597-608.
DOI URL |
[2] |
Arneth A, Kelliher FM, Bauer G, Hollinger DY, Byers JN, Hunt JE, McSeveny TM, Ziegler W, Vygodskaya NN, Milukova I, Sogachov A, Varlagin A, Schulze ED ( 1996). Environmental regulation of xylem sap flow and total conductance of Larix gmelinii trees in eastern Siberia. Tree Physiology, 16, 247-255.
DOI URL PMID |
[28] | [ 强学彩, 袁红莉, 高旺盛 ( 2004). 秸秆还田量对土壤CO2释放和土壤微生物量的影响. 应用生态学报, 15, 469-472.] |
[29] |
Ratnam J, Sankaran M, Hanan NP, Grant RC, Zambatis N ( 2008). Nutrient resorption patterns of plant functional groups in a tropical savanna: Variation and functional significance. Oecologia, 157, 141-151.
DOI URL PMID |
[3] |
Chapin III FS, Moilanen L ( 1991). Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves. Ecology, 72, 709-715.
DOI URL |
[4] |
Chen GS, Zeng DH, Chen FS ( 2004). Concentrations of foliar and surface soil in nutrients Pinus spp. plantations in relation to species and stand age in Zhanggutai Sandy Land, northeast China. Journal of Forestry Research, 15, 11-18.
DOI URL |
[30] | Sauter JJ, van Cleve B, Apel K ( 1988). Protein bodies in ray cells of Populus × canadensis Moench ‘robusta’. Planta, 173, 31-34. |
[31] |
Sun SC, Chen LZ ( 2001). Leaf nutrient dynamics and resorption efficiency of Quercus liaotungensis in the Dongling Mountain region. Acta Phytoecologica Sinica, 25, 76-82.
DOI URL |
[ 孙书存, 陈灵芝 ( 2001). 东灵山地区辽东栎叶养分的季节动态与回收效率. 植物生态学报, 25, 76-82.]
DOI URL |
|
[32] |
Vitousek PM ( 1982). Nutrient cycling and nutrient use efficiency. The American Naturalist, 119, 553-572.
DOI URL |
[33] |
Vitousek PM, Aplet G, Turner D, Lockwood JJ ( 1992). The Mauna Loa environment matrix: Foliar and soil nutrients. Oecologia, 89, 372-382.
DOI URL PMID |
[34] |
Walters MB, Gerlach JP ( 2013). Intraspecific growth and functional leaf trait responses to natural soil resource gradients for conifer species with contrasting leaf habit. Tree Physiology, 33, 297-310.
DOI URL PMID |
[5] |
Chen YT, Xu ZZ ( 2014). Review on research of leaf economics spectrum. Chinese Journal of Plant Ecology, 38, 1135-1153.
DOI URL |
[ 陈莹婷, 许振柱 ( 2014). 植物叶经济谱的研究进展. 植物生态学报, 38, 1135-1153.]
DOI URL |
|
[35] |
Wang WQ, Lin P ( 1999). Studies on the nutrient retranslocation efficiencies during leaf senescence. Journal of Wuhan Botanical Research, 17, 117-122.
DOI URL |
[ 王文卿, 林鹏 ( 1999). 树木叶片衰老过程中养分元素内吸收研究. 武汉植物学研究, 17, 117-122.]
DOI URL |
|
[36] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender BJ, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R ( 2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL |
[37] |
Wright IJ, Westoby M ( 2003). Nutrient concentration, resorption and lifespan: Leaf traits of Australian sclerophyll species. Functional Ecology, 17, 10-19.
DOI URL |
[38] | Xing XR, Han XG, Chen LZ ( 2000). A review on research of plant nutrient use efficiency. Chinese Journal of Applied Ecology, 11, 785-790. |
[ 邢雪荣, 韩兴国, 陈灵芝 ( 2000). 植物养分利用效率研究综述. 应用生态学报, 11, 785-790.] | |
[39] | Xue L, Xu Y, Wu M, Li Y ( 2005). Seasonal patterns in nitrogen and phosphorus and resorption in leaves of four tree species. Acta Ecologica Sinica, 25, 520-526. |
[ 薛立, 徐燕, 吴敏, 李燕 ( 2005). 4种阔叶树种叶中氮和磷的季节动态及其转移. 生态学报, 25, 520-526.] | |
[40] |
Yan T, Lü XT, Yang K, Zhu JJ ( 2016). Leaf nutrient dynamics and nutrient resorption: A comparison between larch plantations and adjacent secondary forests in northeast, China. Journal of Plant Ecology, 9, 165-173.
DOI URL |
[41] | Yan T, Yang K, Zhu JJ ( 2014 a). Leaf N, P and K resorption of major tree species in a montane region of eastern Liaoning Province, China. Chinese Journal of Ecology, 33, 2005-2011. |
[ 闫涛, 杨凯, 朱教君 ( 2014 a). 辽东山区主要树种叶片氮、磷、钾再吸收. 生态学杂志, 33, 2005-2011.] | |
[42] | Yan T, Zhu JJ, Yang K, Yu LZ ( 2014 b). Aboveground biomass and nutrient distribution patterns of larch plantation in a montane region of eastern Liaoning Province, China. Chinese Journal of Applied Ecology, 25, 2772-2778. |
[ 闫涛, 朱教君, 杨凯, 于立忠 ( 2014 b). 辽东山区落叶松人工林地上生物量和养分元素分配格局. 应用生态学报, 25, 2772-2778.] | |
[43] | Yin LM, Wang LH, Liu B ( 2009). Dynamic variation and resorption of nutrient elements in the leaves of Xanthoceras sorbifolia Bunge. Bulletin of Botanica Research, 29, 685-691. |
[ 阴黎明, 王力华, 刘波 ( 2009). 文冠果叶片养分元素含量的动态变化及再吸收特性. 植物研究, 29, 685-691.] | |
[44] |
Yu SL, Ma KP ( 2000). Preliminary discussion on the origin of Quercus mongolica forest in north China. Guihaia, 20(2), 131-137.
DOI URL |
[ 于顺利, 马克平 ( 2000). 中国北方蒙古栎林起源和发展的初步探讨. 广西植物, 20(2), 131-137.]
DOI URL |
|
[45] | Yuan YX ( 1996). The roles of microelements in plant life. Bulletin of Biology, ( 4), 4-8. |
[ 袁玉信 ( 1996). 微量元素在植物生活中的作用. 生物学通报, ( 4), 4-8.] | |
[46] |
Yuan Z, Chen HYH ( 2009). Global trends in senesced-leaf nitrogen and phosphorus. Global Ecology & Biogeography, 18, 532-542.
DOI URL |
[47] |
Zeng DH, Chen GS, Chen FS, Zhao Q, Ji XY ( 2005). Foliar nutrients and resorption efficiencies in four Pinus sylvestris var. mongolica plantations of different ages on sandy soil. Scientia Silvae Sinicae, 41(5), 21-27.
DOI |
[ 曾德慧, 陈广生, 陈伏生, 赵琼, 冀小燕 ( 2005). 不同林龄樟子松叶片养分含量及其再吸收效率. 林业科学, 41(5), 21-27.]
DOI |
|
[48] | Zhou DC ( 1983). The main physiological roles and absorption of N, P and K in plants. Bulletin of Biology, ( 5), 9-10. |
[ 周德超 ( 1983). 氮、磷、钾在植物体中的主要生理作用及植物对养分的吸收. 生物学通报, ( 5), 9-10.] | |
[49] |
Zhu JJ, Mao ZH, Hu LL, Zhang JX ( 2007). Plant diversity of secondary forests in response to anthropogenic disturbance levels in montane regions of northeastern China. Journal of Forest Research, 12, 403-416.
DOI URL |
[50] |
Zhu JJ, Tan H, Li FQ, Chen M, Hu LL ( 2009). Comparison of near-ground air temperature and soil temperature of summer within three gaps of different sizes at secondary forest in eastern montane region of Liaoning Province. Scientia Silvae Sinicae, 45(8), 161-165.
DOI |
[ 朱教君, 谭辉, 李凤芹, 陈梅, 胡理乐 ( 2009). 辽东山区次生林3种大小林窗夏季近地面气温及土壤温度比较. 林业科学, 45(8), 161-165.]
DOI |
[1] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[2] | 沈芳芳, 李燕燕, 刘文飞, 段洪浪, 樊后保, 胡良, 孟庆银. 长期氮沉降对杉木人工林叶、枝氮磷养分再吸收的影响[J]. 植物生态学报, 2018, 42(9): 926-937. |
[3] | 范舒欣, 晏海, 齐石茗月, 皮定均, 李雄, 董丽. 北京市26种落叶阔叶绿化树种的滞尘能力[J]. 植物生态学报, 2015, 39(7): 736-745. |
[4] | 沈章军, 孙庆业, 田胜尼. 铜尾矿自然定居白茅对体内氮磷的适时分配及叶片氮磷代谢调节酶活性动态[J]. 植物生态学报, 2012, 36(2): 159-168. |
[5] | 王晶苑, 王绍强, 李纫兰, 闫俊华, 沙丽清, 韩士杰. 中国四种森林类型主要优势植物的C:N:P化学计量学特征[J]. 植物生态学报, 2011, 35(6): 587-595. |
[6] | 师伟, 王政权, 刘金梁, 谷加存, 郭大立. 帽儿山天然次生林20个阔叶树种细根形态[J]. 植物生态学报, 2008, 32(6): 1217-1226. |
[7] | 赵平, 孙谷畴, 曾小平. 适度高温下亚热带阔叶树种叶片的光合速率和吸收光能的分配[J]. 植物生态学报, 2008, 32(2): 413-423. |
[8] | 王希华, 张婕, 张正祥. 浙江天童国家森林公园主要常绿阔叶树种叶子寿命的研究[J]. 植物生态学报, 2000, 24(5): 625-629. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19