植物生态学报 ›› 2012, Vol. 36 ›› Issue (2): 159-168.DOI: 10.3724/SP.J.1258.2012.00159
收稿日期:
2011-09-21
接受日期:
2011-11-15
出版日期:
2012-09-21
发布日期:
2012-02-22
通讯作者:
孙庆业
作者简介:
* E-mail: sunqingye@ahu.edu.cn
SHEN Zhang-Jun1,2, SUN Qing-Ye1,*(), TIAN Sheng-Ni3
Received:
2011-09-21
Accepted:
2011-11-15
Online:
2012-09-21
Published:
2012-02-22
Contact:
SUN Qing-Ye
摘要:
白茅(Imperata cylindrica)为铜尾矿废弃地的自然定居优势植物。以农田正常生长的白茅居群为对照, 通过对不同生长时期的白茅体内氮(N)、磷(P)营养浓度, 叶片硝酸还原酶和酸性磷酸酶活性变化等的研究, 探讨铜尾矿胁迫下白茅在营养利用上的生理适应特征。研究结果表明, 在不同的生长时期, 白茅各器官内N、P分配存在一定的差异。在萌芽期, 两居群白茅体内的N、P均主要集中于根状茎。在花蕾期、成熟期时, 两居群白茅体内的N、P均向成熟叶片中迁移, 叶片中N、P浓度均达到最高。但在衰败期时, 铜尾矿居群白茅体内的N主要迁移到根状茎中, P在根状茎中的浓度也达到生长期中的最高值, 而农田居群白茅成熟叶片内N、P浓度依然最高。铜尾矿白茅叶片N、P的再吸收效率分别为49.54%-65.22%和74.71%-98.71%, 而在农田系统中分别为18.18%-52.81%和71.39%-84.07%; 铜尾矿白茅衰老叶片中P达到完全再吸收的程度。铜尾矿白茅叶片硝酸还原酶活性在生长旺盛期显著高于农田居群(p < 0.05), 是白茅加强对自身氮养分代谢活动调节作用的表现; 同一生长时期白茅叶片酸性磷酸酶活性在两种生境间差异性并不明显(p > 0.05), 但随着生长期的延长, 白茅叶片酸性磷酸酶活性表现出不断升高的趋势, 这有利于生长后期衰老叶片中有机P的水解再吸收。可见, 铜尾矿中生长的白茅通过对N、P养分的适时分配, 提高营养成分的再吸收效率, 调节N、P代谢相关调节酶活性的变化方式来减轻铜尾矿生境的营养胁迫。
沈章军, 孙庆业, 田胜尼. 铜尾矿自然定居白茅对体内氮磷的适时分配及叶片氮磷代谢调节酶活性动态. 植物生态学报, 2012, 36(2): 159-168. DOI: 10.3724/SP.J.1258.2012.00159
SHEN Zhang-Jun, SUN Qing-Ye, TIAN Sheng-Ni. Dynamics of nitrogen and phosphorus concentrations and nitrate reductase and acidic phosphatase activities in Imperata cylindrica on copper mine tailings. Chinese Journal of Plant Ecology, 2012, 36(2): 159-168. DOI: 10.3724/SP.J.1258.2012.00159
样地 Sample site | 有机质 Organic matter (g·kg-1) | 总氮 Total nitrogen (g·kg-1) | 硝态氮 Nitrate nitrogen (mg·kg-1) | 有效磷 Available phosphorus (mg·kg-1) | pH | 电导率 Electric conducti- vity (dS·m-1) |
---|---|---|---|---|---|---|
铜尾矿 Copper tailings | 7.85 ± 0.14 | 0.41 ± 0.075 | 5.87 ± 1.49 | 4.25 ± 1.63 | 8.12 ± 0.32 | 1.03 ± 0.14 |
农田 Farmland | 13.75 ± 1.23 | 0.75 ± 0.091 | 13.67 ± 6.23 | 15.81 ± 8.42 | 6.89 ± 0.13 | 0.44 ± 0.32 |
表1 两种生境基本养分含量、pH以及电导率(平均值±标准偏差, n = 6)
Table 1 Contents of basic nutrients, pH value and electric conductivity in two habitat (mean ± SD, n = 6)
样地 Sample site | 有机质 Organic matter (g·kg-1) | 总氮 Total nitrogen (g·kg-1) | 硝态氮 Nitrate nitrogen (mg·kg-1) | 有效磷 Available phosphorus (mg·kg-1) | pH | 电导率 Electric conducti- vity (dS·m-1) |
---|---|---|---|---|---|---|
铜尾矿 Copper tailings | 7.85 ± 0.14 | 0.41 ± 0.075 | 5.87 ± 1.49 | 4.25 ± 1.63 | 8.12 ± 0.32 | 1.03 ± 0.14 |
农田 Farmland | 13.75 ± 1.23 | 0.75 ± 0.091 | 13.67 ± 6.23 | 15.81 ± 8.42 | 6.89 ± 0.13 | 0.44 ± 0.32 |
样地 Sample site | 生长期 Growth period | 根 Root | 根状茎 Rhizome | 成熟叶 Mature leaf | 衰老叶 Senescent leaf |
---|---|---|---|---|---|
铜尾矿 Copper tailings | 3月 March | 15.59 ± 0.91cd | 26.65 ± 2.40d | - | - |
4月 April | 14.51 ± 0.93c | 19.27 ± 2.89bc | 27.02 ± 3.64bc | - | |
6月 June | 9.71 ± 1.85a | 18.11 ± 0.68b | 20.25 ± 1.44a | 7.65 ± 0.65a | |
10月 October | 15.49 ± 0.77cd | 25.81 ± 7.84d | 19.88 ± 0.64a | 9.19 ± 0.80a | |
农田 Farmland | 3月 March | 16.29 ± 0.59d | 22.77 ± 0.72cd | - | - |
4月 April | 10.87 ± 0.84ab | 11.39 ± 0.58a | 29.59 ± 2.78c | - | |
6月 June | 11.71 ± 1.49b | 21.42 ± 1.36bc | 29.49 ± 1.25c | 16.10 ± 1.96b | |
10月 October | 15.49 ± 0.63cd | 21.61 ± 1.27bc | 25.11 ± 0.99b | 18.53 ± 1.79b |
表2 不同生长时期白茅不同器官总氮浓度分配(平均值±标准偏差, n = 6)
Table 2 Concentrations of total nitrogen in different organs of Imperata cylindrica (g·kg-1) (mean ± SD, n = 6)
样地 Sample site | 生长期 Growth period | 根 Root | 根状茎 Rhizome | 成熟叶 Mature leaf | 衰老叶 Senescent leaf |
---|---|---|---|---|---|
铜尾矿 Copper tailings | 3月 March | 15.59 ± 0.91cd | 26.65 ± 2.40d | - | - |
4月 April | 14.51 ± 0.93c | 19.27 ± 2.89bc | 27.02 ± 3.64bc | - | |
6月 June | 9.71 ± 1.85a | 18.11 ± 0.68b | 20.25 ± 1.44a | 7.65 ± 0.65a | |
10月 October | 15.49 ± 0.77cd | 25.81 ± 7.84d | 19.88 ± 0.64a | 9.19 ± 0.80a | |
农田 Farmland | 3月 March | 16.29 ± 0.59d | 22.77 ± 0.72cd | - | - |
4月 April | 10.87 ± 0.84ab | 11.39 ± 0.58a | 29.59 ± 2.78c | - | |
6月 June | 11.71 ± 1.49b | 21.42 ± 1.36bc | 29.49 ± 1.25c | 16.10 ± 1.96b | |
10月 October | 15.49 ± 0.63cd | 21.61 ± 1.27bc | 25.11 ± 0.99b | 18.53 ± 1.79b |
样地 Sample site | 生长期 Growth period | 根 Root | 根状茎 Rhizome | 成熟叶 Mature leaf | 衰老叶 Senescent leaf |
---|---|---|---|---|---|
铜尾矿 Copper tailings | 3月 March | 0.19 ± 0.05ab | 0.31 ± 0.03ab | - | - |
4月 April | 0.57 ± 0.19d | 0.27 ± 0.03ab | 1.07 ± 0.23a | - | |
6月 June | 0.27 ± 0.06bc | 0.35 ± 0.05b | 1.73 ± 0.57c | 0.15 ± 0.12a | |
10月 October | 0.34 ± 0.04c | 0.52 ± 0.11c | 0.73 ± 0.22ab | 0.05 ± 0.03a | |
农田 Farmland | 3月 March | 0.06 ± 0.02a | 0.36 ± 0.05bc | - | - |
4月 April | 0.16 ± 0.02ab | 0.15 ± 0.07a | 0.30 ± 0.03a | - | |
6月 June | 0.89 ± 0.08e | 1.57 ± 0.02d | 2.25 ± 0.14c | 0.39 ± 0.03b | |
10月 October | 0.61 ± 0.15d | 1.80 ± 0.22e | 2.09 ± 0.20c | 0.49 ± 0.06b |
表3 不同生长时期白茅不同器官总磷浓度(平均值±标准偏差, n = 6)
Table 3 Concentrations of total phosphorus in different organs of Imperata cylindrica (g·kg-1) (mean ± SD, n = 6)
样地 Sample site | 生长期 Growth period | 根 Root | 根状茎 Rhizome | 成熟叶 Mature leaf | 衰老叶 Senescent leaf |
---|---|---|---|---|---|
铜尾矿 Copper tailings | 3月 March | 0.19 ± 0.05ab | 0.31 ± 0.03ab | - | - |
4月 April | 0.57 ± 0.19d | 0.27 ± 0.03ab | 1.07 ± 0.23a | - | |
6月 June | 0.27 ± 0.06bc | 0.35 ± 0.05b | 1.73 ± 0.57c | 0.15 ± 0.12a | |
10月 October | 0.34 ± 0.04c | 0.52 ± 0.11c | 0.73 ± 0.22ab | 0.05 ± 0.03a | |
农田 Farmland | 3月 March | 0.06 ± 0.02a | 0.36 ± 0.05bc | - | - |
4月 April | 0.16 ± 0.02ab | 0.15 ± 0.07a | 0.30 ± 0.03a | - | |
6月 June | 0.89 ± 0.08e | 1.57 ± 0.02d | 2.25 ± 0.14c | 0.39 ± 0.03b | |
10月 October | 0.61 ± 0.15d | 1.80 ± 0.22e | 2.09 ± 0.20c | 0.49 ± 0.06b |
样地 Sample site | 生长期 Growth period | 组织 Organs | N : P | REN | REP |
---|---|---|---|---|---|
铜尾矿 Copper tailings | 4月 April | 成熟叶 Mature leaves | 26.73 ± 2.33ab | ||
6月 June | 成熟叶 Mature leaves | 12.96 ± 6.43a | 62.14 ± 3.08d | 88.17 ± 13.46ab | |
衰老叶 Senescent leaves | 68.56 ± 38.00bc | ||||
10月 October | 成熟叶 Mature leaves | 29.30 ± 7.96ab | 53.73 ± 4.19c | 91.36 ± 7.35b | |
衰老叶 Senescent leaves | 166.10 ± 50.43d | ||||
农田 Farmland | 4月 April | 成熟叶 Mature leaves | 97.14 ± 8.38c | ||
6月 June | 成熟叶 Mature leaves | 12.89 ± 0.55a | 45.28 ± 7.53b | 82.86 ± 1.21ab | |
衰老叶 Senescent leaves | 46.34 ± 3.58ab | ||||
10月 October | 成熟叶 Mature leaves | 12.21 ± 0.85a | 26.09 ± 7.91a | 76.08 ± 4.69a | |
衰老叶 Senescent leaves | 37.34 ± 6.41ab |
表4 不同生长时期白茅成熟叶片和衰老叶片内氮磷比和氮磷再吸收率(平均值±标准偏差, n = 6)
Table 4 N and P resorption efficiency, ratios of N:P in mature and senescent leaves of Imperata cylindrica during the different growth periods (mean ± SD, n = 6)
样地 Sample site | 生长期 Growth period | 组织 Organs | N : P | REN | REP |
---|---|---|---|---|---|
铜尾矿 Copper tailings | 4月 April | 成熟叶 Mature leaves | 26.73 ± 2.33ab | ||
6月 June | 成熟叶 Mature leaves | 12.96 ± 6.43a | 62.14 ± 3.08d | 88.17 ± 13.46ab | |
衰老叶 Senescent leaves | 68.56 ± 38.00bc | ||||
10月 October | 成熟叶 Mature leaves | 29.30 ± 7.96ab | 53.73 ± 4.19c | 91.36 ± 7.35b | |
衰老叶 Senescent leaves | 166.10 ± 50.43d | ||||
农田 Farmland | 4月 April | 成熟叶 Mature leaves | 97.14 ± 8.38c | ||
6月 June | 成熟叶 Mature leaves | 12.89 ± 0.55a | 45.28 ± 7.53b | 82.86 ± 1.21ab | |
衰老叶 Senescent leaves | 46.34 ± 3.58ab | ||||
10月 October | 成熟叶 Mature leaves | 12.21 ± 0.85a | 26.09 ± 7.91a | 76.08 ± 4.69a | |
衰老叶 Senescent leaves | 37.34 ± 6.41ab |
图1 不同生长期白茅成熟叶片内硝酸还原酶活性(NRA) (A)和酸性磷酸酶活性(APA) (B)的动态。图中不同小写字母表示差异显著(p < 0.05)。
Fig. 1 Dynamics of nitrate reductase (NR) (A) and acid phosphatase (AP) (B) activity in the mature leaves of Imperata cylindrica during the different growth periods. Different small letters in the figure mean significant difference (p < 0.05).
Y-X | 公式 Equation | n | r | p | Y-X | 公式 Equation | n | r | p |
---|---|---|---|---|---|---|---|---|---|
Nm-Pm | - | 12 | -0.361 | 0.352 | NRA-Nm | - | 12 | 0.342 | 0.732 |
Nm-Ns | y = 19.186 + 0.104x | 12 | 0.109 | 0.009 | NRA-Pm | - | 12 | 0.692 | 0.069 |
Pm-Ps | - | 12 | 0.386 | 0.067 | NRA-PEN | - | 12 | 0.683 | 0.389 |
REN-Nm | - | 12 | 0.307 | 0.159 | NRA-MN︰P | y = 209.041 - 3.047x | 12 | 0.819 | 0.031 |
REN-Ns | y = 94.473 - 4.356x | 12 | -0.819 | 0.002 | NRA-APA | y = 273.746 - 2.308x | 12 | -0.922 | 0.001 |
REN-MN︰P | y = 64.190 - 0.303x | 12 | -0.620 | 0.000 | APA-Nm | - | 12 | -0.123 | 0.594 |
REN-REP | y = 89.159 - 0.349x | 12 | -0.607 | 0.012 | APA-Pm | y = -22.547 + 84.522x | 12 | 0.827 | 0.001 |
REP-Pm | y = 99.666 - 7.815x | 12 | -0.502 | 0.000 | APA-REP | v | 12 | 0.255 | 0.846 |
REP-Ps | y = 84.283 + 54.819x | 12 | 0.531 | 0.000 | APA-MN︰P | v | 12 | 0.735 | 0.051 |
REP-MN︰P | y = 87.882 + 0.089x | 12 | 0.105 | 0.001 |
表5 铜尾矿白茅叶片内氮磷浓度、氮磷再吸收率、氮磷比值、硝酸还原酶和酸性磷酸酶活性之间的相关性
Table 5 Correlation among N and P resorption efficiency, NRA, APA, nitrogen, phosphorus and N : P in the leaves of Imperata cylindrica in the tailings
Y-X | 公式 Equation | n | r | p | Y-X | 公式 Equation | n | r | p |
---|---|---|---|---|---|---|---|---|---|
Nm-Pm | - | 12 | -0.361 | 0.352 | NRA-Nm | - | 12 | 0.342 | 0.732 |
Nm-Ns | y = 19.186 + 0.104x | 12 | 0.109 | 0.009 | NRA-Pm | - | 12 | 0.692 | 0.069 |
Pm-Ps | - | 12 | 0.386 | 0.067 | NRA-PEN | - | 12 | 0.683 | 0.389 |
REN-Nm | - | 12 | 0.307 | 0.159 | NRA-MN︰P | y = 209.041 - 3.047x | 12 | 0.819 | 0.031 |
REN-Ns | y = 94.473 - 4.356x | 12 | -0.819 | 0.002 | NRA-APA | y = 273.746 - 2.308x | 12 | -0.922 | 0.001 |
REN-MN︰P | y = 64.190 - 0.303x | 12 | -0.620 | 0.000 | APA-Nm | - | 12 | -0.123 | 0.594 |
REN-REP | y = 89.159 - 0.349x | 12 | -0.607 | 0.012 | APA-Pm | y = -22.547 + 84.522x | 12 | 0.827 | 0.001 |
REP-Pm | y = 99.666 - 7.815x | 12 | -0.502 | 0.000 | APA-REP | v | 12 | 0.255 | 0.846 |
REP-Ps | y = 84.283 + 54.819x | 12 | 0.531 | 0.000 | APA-MN︰P | v | 12 | 0.735 | 0.051 |
REP-MN︰P | y = 87.882 + 0.089x | 12 | 0.105 | 0.001 |
[1] |
Aerts R (1990). Nutrient use efficiency in evergreen and deciduous species from heathlands. Oecologia, 84, 391-397.
DOI URL PMID |
[2] | Aerts R (1996). Nutrient resorption from senescing leaves of perennials: Are there general patterns? Journal of Ecology, 84, 597-608. |
[3] | Aerts R, Chapin FS III (2000). The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67. |
[4] |
Aerts R, Cornelissen JHC, van Logtestijn RSP, Callaghan TV (2007). Climate change has only a minor impact on nutrient resorption parameters in a high-latitude peatland. Oecologia, 151, 132-139.
DOI URL PMID |
[5] | An ZS (安宗胜), Zhan J (詹婧), Sun QY (孙庆业) (2010). Changes of nitrogen components in wastelands of copper mine tailings with the formation of natural plant communities. Acta Ecologica Sinica (生态学报), 30, 5958-5966. (in Chinese with English abstract) |
[6] | Ascencio J (1996). Growth strategies and utilization of phosphorus in Cajanus cajan (L.) Millsp and Desmodium tortuosum (SW.) DC. under phosphorus deficiency. Communications in Soil Science and Plant Analysis, 27, 1971-1993. |
[7] | Berendse F, Aerts R (1987). Nitrogen use efficiency: a biologically meaningful definition? Functional Ecology, 1, 293-296. |
[8] |
Chapin FS III (1980). The mineral nutrition of wild plants. Annual Review of Ecology and Systematics, 11, 233-260.
DOI URL |
[9] | Chen Z (陈政), Yang GD (阳贵德), Sun QY (孙庆业) (2009). Effects of bio-crust on soil microbial biomass and enzyme activities in copper mine tailings. Chinese Journal of Applied Ecology (应用生态学报), 20, 2193-2198. (in Chinese with English abstract) |
[10] | David TC (1985). Factors affecting mineral nutrient acquisition by plants. Annual Review of Plant Physiology, 36, 77-115. |
[11] | del Arco JM, Escudero A, Garrido MV (1991). Effects of site characteristics on nitrogen retranslocation from senescing leaves. Ecology, 72, 701-708. |
[12] | Elliott GC, Läuchli IA (1986). Evaluation of an acid phosphatase assay for detection of phosphorus deficiency in leaves of maize (Zea mays L.). Journal of Plant Nutrition, 9, 1469-1477. |
[13] | Güsewell S, Koerselman M (2002). Variation in nitrogen and phosphorus concentrations of wetland plants. Perspectives in Plant Ecology, Evolution and Systematics, 5, 37-61. |
[14] | Institute of Soil Science, Chinese Academy of Sciences (中国科学院南京土壤研究所) (1978). Analysis of Soil Physical and Chemical Properties (土壤理化分析). Shanghai Scientific and Technical Publishers, Shanghai. 63-157. (in Chinese) |
[15] | Killingbeck KT (1986). The terminologial jungle revisited: making a case for use of the term resorption. Oikos, 46, 263-264. |
[16] | Killingbeck KT (1996). Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology, 77, 1716-1727. |
[17] |
Koide RT, Dickie IA, Goff MD (1999). Phosphorus deficiency, plant growth and the phosphorus efficiency index. Functional Ecology, 13, 733-736.
DOI URL |
[18] | Leng Q (冷琴), Yang YL (杨雅玲) (2002). Major biological characters of Imperata cyrillo (Poaceae) from China. Journal of Nanjing University (Natural Sciences) (南京大学学报(自然科学)), 38, 703-715. (in Chinese with English abstract) |
[19] | Li Y (李影), Wang YB (王友保), Liu DY (刘登义) (2003). Investigation on the vegetation of copper tailing wasteland in Shizishan, Tongling, Anhui Province. Chinese Journal of Applied Ecology (应用生态学报), 14, 1981-1984. (in Chinese with English abstract) |
[20] | Liang X (梁霞), Liu AQ (刘爱琴), Ma XQ (马祥庆), Feng LZ (冯丽贞), Chen YL (陈友力). (2005). The effect of phosphorus deficiency stress on activities of acid phosphatase in different clones of Chinese FIR. Acta Phytoecologica Sinica (植物生态学报), 29, 54-59. (in Chinese with English abstract) |
[21] | Liu AM (刘爱民), Huang WY (黄为一) (2005). Microbial activities and functional diversity of community in soils polluted with copper tailings after cultivate. Ecology and Environment (生态环境), 14, 876-879. (in Chinese with English abstract) |
[22] | Liu L (刘丽), Gan ZJ (甘志军), Wang XZ (王宪泽) (2004). Advances of studies on the regulation of nitrate metabolism of plants at nitrate reductase level. Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 24, 1355-1361. (in Chinese with English abstract) |
[23] |
Loqué D, Tillard P, Gojon A, Lepetit M (2003). Gene expression of the NO3- transporter NRT1. 1 and the nitrate reductase NIA1 is repressed in Arabidopsis roots by NO2-, the product of NO3- reduction. Plant Physiology, 132, 958-967.
DOI URL PMID |
[24] | May JD, Killingbeck KT (1992). Effects of preventing nutrient resorption on plant fitness and foliar nutrient dynamics. Ecology, 73, 1868-1878. |
[25] | Olde VH, Wassen MJ, Verkroost AWM, de Ruiter PC (2003). Species richness-productivity patterns differ between N-, P-, and K- limited wetlands. Ecology, 84, 2191-2199. |
[26] | Santa RI, Rico M, Rapp M, Gallego HA (1997). Seasonal variation in nutrient concentration in leaves and branches of Quercus pyrenaica. Journal of Vegetation Science, 8, 651-654. |
[27] | Shang WQ (尚文勤), Zhu LP (朱利平), Sun QY (孙庆业), Yang LZ (杨林章) (2008). The changes of soil microbes of tailings wastelands in processes of restoration of natural ecology. Ecology and Environment (生态环境), 17, 713-717. (in Chinese with English abstract) |
[28] | Shen ZJ (沈章军), Wang YB (王友保), Wang GL (王广林), Liu DY (刘登义) (2005). Heavy metals pollution of Paeonia ostii land at copper-tailings reservoir of Tongling City: a preliminary study. Chinese Journal of Applied Ecology (应用生态学报), 16, 673-677. (in Chinese with English abstract) |
[29] | Sun QY (孙庆业), Ren GJ (任冠举), Yang LZ (杨林章), An SQ (安树青) (2005). Effect of natural plant communities on soil enzyme activities in deserted copper mine tailings dumps. Acta Pedologica Sinica (土壤学报), 42, 37-43. (in Chinese with English abstract) |
[30] | Tadano T, Sakai H (1991). Secretion of acid phosphatase by the roots of several crop species under phosphorus- deficient conditions. Soil Science and Plant Nutrition, 37, 129-140. |
[31] | Tessier JT, Raynal DJ (2003). Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. Journal of Applied Ecology, 40, 523-534. |
[32] | Tian SN (田胜尼), Sun QY (孙庆业), Wang ZF (王铮峰), Peng SL (彭少麟), Xia HP (夏汉平) (2005). Plant colonization on copper tailings and the change of the physio-chemistry properties of substrate in Tongling City, Anhui Province. Resources and Environment in the Yangtze Basin (长江流域资源与环境), 14, 88-93. (in Chinese with English abstract) |
[33] | Wright IJ, Westoby M (2003). Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Functional Ecology, 17(3), 10-19. |
[34] | Yuan ZY, Li LH, Han XG, Huang JH, Jiang GM, Wan SQ, Zhang WH, Chen QS (2005). Nitrogen resorption from senescing leaves in 28 plant species in a semi-arid region of northern China. Journal of Arid Environments, 63, 191-202. |
[35] | Zeng DH (曾德慧), Chen GS (陈广生), Chen FS (陈伏生), Zhao Q (赵琼), Ji XY (冀小燕) (2005). Foliar nutrients and their resorption efficiencies in four Pinus sylvestris var. mongolica plantations of different ages on sandy soil. Scientia Silvae Sinicae (林业科学), 41(5), 21-27. (in Chinese with English abstract) |
[36] | Zha SP (查书平), Ding YG (丁裕国), Wang ZY (王宗英), Wang QF (汪权方), Sun QY (孙庆业) (2004). Study on soil animal community in copper mine tailings in Tongling City. Ecology and Environment (生态环境), 13, 167-169. (in Chinese with English abstract) |
[37] | Zhang SY (张世英), Cheng BG (程炳篙) (1987). Nitrate reductase and its dynamic adjustment factor. Journal of Shandong Agricultural University (山东农业大学学报), 18(3), 81-88. (in Chinese with English abstract) |
[38] | Zhang ZL (张志良) (1986). Plant Biochemistry Techniques and Methods (植物生化技术和方法). Agricultural Press, Beijing. 30. (in Chinese) |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[3] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[4] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[5] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[6] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[7] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[8] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[9] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[10] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[11] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[12] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[13] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[14] | 李小玲, 朱道明, 余玉蓉, 吴浩, 牟利, 洪柳, 刘雪飞, 卜贵军, 薛丹, 吴林. 模拟氮沉降对鄂西南贫营养泥炭地两种藓类植物生长与分解的影响[J]. 植物生态学报, 2023, 47(5): 644-659. |
[15] | 李慧璇, 马红亮, 尹云锋, 高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征[J]. 植物生态学报, 2023, 47(5): 618-628. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19