植物生态学报 ›› 2014, Vol. 38 ›› Issue (7): 729-739.DOI: 10.3724/SP.J.1258.2014.00068
收稿日期:
2013-11-06
接受日期:
2014-03-10
出版日期:
2014-11-06
发布日期:
2014-07-10
通讯作者:
万勇善
作者简介:
* E-mail: yswan@sdau.edu.cn
LI Guang-Hui, WAN Yong-Shan*(), LIU Feng-Zhen, ZHANG Kun
Received:
2013-11-06
Accepted:
2014-03-10
Online:
2014-11-06
Published:
2014-07-10
Contact:
WAN Yong-Shan
摘要:
为探索不同花生(Arachis hypogaea)品种的旱后恢复能力, 研究花生品种耐旱性与光合特性的关系, 通过盆栽土壤水分控制实验, 测定了12个花生品种苗期对干旱胁迫与复水过程的光合响应特征, 并讨论了所测各性状参数与抗旱性强弱的关系, 包括对水分胁迫伤害的修复能力。结果表明, 根据苗期生物量抗旱系数, ‘山花11号’、‘如皋西洋生’、‘A596’、‘山花9号’、‘农大818’的抗旱性较强, 且复水后植株产生超补偿生长效应, 补偿生长能力与抗旱性呈极显著正相关。叶片净光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)、最大光化学效率(Fv/Fm)、实际光化学效率(ΦPSII)、光化学猝灭系数(qP)随干旱进程逐渐降低, 复水后逐渐增加, 抗旱性强的花生品种变幅较小。干旱7天, 大多数花生品种的光合参数值未有显著性差异。干旱14天, 抗旱性越强的花生品种光合参数值越高, 不同抗旱性花生品种的光合参数值有显著差异。‘山花11号’、‘如皋西洋生’、‘A596’、‘山花9号’的Pn、Gs、ΦPSII、Fv/Fm、qP在复水5天时恢复至对照水平, 复水10天时超过对照, ‘79266’、‘ICG6848’、 ‘白沙1016’、‘花17’在复水10天时仍未达到对照水平, 复水过程中抗旱性强的品种的光合参数显著高于抗旱性弱的品种。相关分析表明, 干旱胁迫14天和复水5天后, 花生的Pn、ΦPSII、Fv/Fm、qP与品种抗旱性呈极显著正相关。因此, 可在苗期用40%土壤相对含水量胁迫14天及复水5天时花生的Pn、ΦPSII、Fv/Fm、qP鉴定品种的干旱伤害程度及修复能力, ‘山花11号’可作为强干旱适应性鉴定的标准品种。
厉广辉, 万勇善, 刘风珍, 张昆. 苗期干旱及复水条件下不同花生品种的光合特性. 植物生态学报, 2014, 38(7): 729-739. DOI: 10.3724/SP.J.1258.2014.00068
LI Guang-Hui, WAN Yong-Shan, LIU Feng-Zhen, ZHANG Kun. Photosynthetic characteristics in different peanut cultivars under conditions of drought and re-watering at seedling stage. Chinese Journal of Plant Ecology, 2014, 38(7): 729-739. DOI: 10.3724/SP.J.1258.2014.00068
品种 Cultivar | 编号 Number | 类型 Type | 品种 Cultivar | 编号 Number | 类型 Type |
---|---|---|---|---|---|
‘79266’ | 1 | 中间型 Intermediate | ‘花育20’ ‘Huayu 20’ | 7 | 珍珠豆型 Vulgaris |
‘A596’ | 2 | 龙生型 Hirsuta | ‘农大818’ ‘Nongda 818’ | 8 | 普通型 Hypogaea |
‘ICG6848’ | 3 | 多粒型 Fastigiata | ‘蓬莱一窝猴’ ‘Penglaiyiwohou’ | 9 | 普通型 Hypogaea |
‘白沙1016’ ‘Baisha 1016’ | 4 | 珍珠豆型 Vulgaris | ‘如皋西洋生’ ‘Rugaoxiyangsheng’ | 10 | 龙生型 Hirsuta |
‘海花1号’ ‘Haihua 1’ | 5 | 中间型 Intermediate | ‘山花11号’ ‘Shanhua 11’ | 11 | 中间型 Intermediate |
‘花17’ ‘Hua 17’ | 6 | 普通型 Hypogaea | ‘山花9号’ ‘Shanhua 9’ | 12 | 中间型 Intermediate |
表1 试验花生品种及其植物学类型
Table 1 Test cultivars of Arachis hypogaea and theirs botanical types
品种 Cultivar | 编号 Number | 类型 Type | 品种 Cultivar | 编号 Number | 类型 Type |
---|---|---|---|---|---|
‘79266’ | 1 | 中间型 Intermediate | ‘花育20’ ‘Huayu 20’ | 7 | 珍珠豆型 Vulgaris |
‘A596’ | 2 | 龙生型 Hirsuta | ‘农大818’ ‘Nongda 818’ | 8 | 普通型 Hypogaea |
‘ICG6848’ | 3 | 多粒型 Fastigiata | ‘蓬莱一窝猴’ ‘Penglaiyiwohou’ | 9 | 普通型 Hypogaea |
‘白沙1016’ ‘Baisha 1016’ | 4 | 珍珠豆型 Vulgaris | ‘如皋西洋生’ ‘Rugaoxiyangsheng’ | 10 | 龙生型 Hirsuta |
‘海花1号’ ‘Haihua 1’ | 5 | 中间型 Intermediate | ‘山花11号’ ‘Shanhua 11’ | 11 | 中间型 Intermediate |
‘花17’ ‘Hua 17’ | 6 | 普通型 Hypogaea | ‘山花9号’ ‘Shanhua 9’ | 12 | 中间型 Intermediate |
品种编号 Cultivar No. | 出苗至始花干物质积累量 Dry matter accumulation from emergence to anthesis (g·plant-1) | 复水1-5天干物质积累量 Dry matter accumulation from 1 to 5 days after re-watering (g·plant-1) | 复水1-10天干物质积累量 Dry matter accumulation from 1 to 10 days after re-watering (g·plant-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
对照 Control | 干旱胁迫 Drought stress | 抗旱系数 Drought resistance coefficient | 对照 Control | 干旱胁迫 Drought stress | 比值 Ratio | 对照 Control | 干旱胁迫 Drought stress | 比值 Ratio | |||
1 | 3.59d | 2.25d | 0.63 | 1.37d | 1.16c | 0.85 | 2.94d | 2.67e | 0.91 | ||
2 | 4.28b | 3.16abc | 0.74 | 1.66abc | 1.73ab | 1.04 | 3.58abc | 3.81bc | 1.06 | ||
3 | 4.13bc | 2.07d | 0.50 | 1.70abc | 1.38bc | 0.81 | 3.78ab | 3.45cd | 0.91 | ||
4 | 3.49d | 1.87d | 0.53 | 1.30d | 1.11c | 0.85 | 2.87d | 2.82e | 0.98 | ||
5 | 4.23bc | 2.83bc | 0.67 | 1.50cd | 1.43bc | 0.95 | 3.15cd | 3.29d | 1.04 | ||
6 | 5.15a | 3.21ab | 0.62 | 1.67abc | 1.45bc | 0.87 | 3.44bc | 3.21d | 0.93 | ||
7 | 4.96a | 3.27a | 0.66 | 1.80ab | 1.65ab | 0.92 | 3.89ab | 3.80bc | 0.98 | ||
8 | 4.11bc | 2.80c | 0.68 | 1.47cd | 1.53abc | 1.04 | 2.97d | 3.30d | 1.11 | ||
9 | 3.63d | 2.01d | 0.55 | 1.79ab | 1.74ab | 0.97 | 3.72ab | 3.77bc | 1.01 | ||
10 | 3.83cd | 2.91abc | 0.76 | 1.84a | 1.99a | 1.08 | 3.86ab | 4.25a | 1.10 | ||
11 | 4.14bc | 3.29a | 0.79 | 1.54bcd | 1.64ab | 1.06 | 3.24cd | 3.54cd | 1.09 | ||
12 | 4.25bc | 2.96abc | 0.70 | 1.91a | 1.95a | 1.02 | 3.96a | 4.11ab | 1.04 | ||
与抗旱系数的相关性 Correlation with drought resistance coefficient | 0.21 | 0.59* | 0.83** | 0.10 | 0.47 | 0.73** |
表2 苗期干旱及复水后不同花生品种的干物质积累量及抗旱性
Table 2 Dry matter and drought resistance of cultivars of Arachis hypogaea under drought stress and re-watering at seedling stage
品种编号 Cultivar No. | 出苗至始花干物质积累量 Dry matter accumulation from emergence to anthesis (g·plant-1) | 复水1-5天干物质积累量 Dry matter accumulation from 1 to 5 days after re-watering (g·plant-1) | 复水1-10天干物质积累量 Dry matter accumulation from 1 to 10 days after re-watering (g·plant-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
对照 Control | 干旱胁迫 Drought stress | 抗旱系数 Drought resistance coefficient | 对照 Control | 干旱胁迫 Drought stress | 比值 Ratio | 对照 Control | 干旱胁迫 Drought stress | 比值 Ratio | |||
1 | 3.59d | 2.25d | 0.63 | 1.37d | 1.16c | 0.85 | 2.94d | 2.67e | 0.91 | ||
2 | 4.28b | 3.16abc | 0.74 | 1.66abc | 1.73ab | 1.04 | 3.58abc | 3.81bc | 1.06 | ||
3 | 4.13bc | 2.07d | 0.50 | 1.70abc | 1.38bc | 0.81 | 3.78ab | 3.45cd | 0.91 | ||
4 | 3.49d | 1.87d | 0.53 | 1.30d | 1.11c | 0.85 | 2.87d | 2.82e | 0.98 | ||
5 | 4.23bc | 2.83bc | 0.67 | 1.50cd | 1.43bc | 0.95 | 3.15cd | 3.29d | 1.04 | ||
6 | 5.15a | 3.21ab | 0.62 | 1.67abc | 1.45bc | 0.87 | 3.44bc | 3.21d | 0.93 | ||
7 | 4.96a | 3.27a | 0.66 | 1.80ab | 1.65ab | 0.92 | 3.89ab | 3.80bc | 0.98 | ||
8 | 4.11bc | 2.80c | 0.68 | 1.47cd | 1.53abc | 1.04 | 2.97d | 3.30d | 1.11 | ||
9 | 3.63d | 2.01d | 0.55 | 1.79ab | 1.74ab | 0.97 | 3.72ab | 3.77bc | 1.01 | ||
10 | 3.83cd | 2.91abc | 0.76 | 1.84a | 1.99a | 1.08 | 3.86ab | 4.25a | 1.10 | ||
11 | 4.14bc | 3.29a | 0.79 | 1.54bcd | 1.64ab | 1.06 | 3.24cd | 3.54cd | 1.09 | ||
12 | 4.25bc | 2.96abc | 0.70 | 1.91a | 1.95a | 1.02 | 3.96a | 4.11ab | 1.04 | ||
与抗旱系数的相关性 Correlation with drought resistance coefficient | 0.21 | 0.59* | 0.83** | 0.10 | 0.47 | 0.73** |
图1 苗期干旱胁迫及复水花生叶片气体交换参数的变化(平均值±标准误差)。A, 干旱胁迫7天。B, 干旱胁迫14天。C, 复水5天。D, 复水10天。品种编号同表1。
Fig. 1 Changes in gas exchange parameters under drought stress and following re-watering at the seedling stage across different peanut cultivars (mean ± SE). A, 7 days of drought stress. B, 14 days of drought stress. C, 5 days after re-watering. D, 10 days after re-watering. The numbers of cultivars see Table 1. Ci, intercellular CO2 concentration; Gs, stomatal conductance; Pn, net photosynthetic rate.
干旱天数 Days of drought (d) | 品种编号 Cultivar No. | 光系统II实际光化学效率 ΦPSII | 光系统II最大光化学效率 Fv/Fm | 光化学猝灭系数 qP | 非光化学猝灭系数 NPQ | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
对照 Control | 干旱 Drought | 对照 Control | 干旱 Drought | 对照 Control | 干旱 Drought | 对照 Control | 干旱 Drought | |||||
7 | 1 | 0.383ab | 0.348bcd | 0.807a | 0.719def | 0.579ef | 0.429c | 1.615abc | 2.328bc | |||
2 | 0.434a | 0.406a | 0.835a | 0.796ab | 0.683ab | 0.613a | 1.350bcd | 1.467de | ||||
3 | 0.407a | 0.326cde | 0.821a | 0.758bcde | 0.628cd | 0.403c | 1.810ab | 1.903cd | ||||
4 | 0.339a | 0.291e | 0.817a | 0.702f | 0.579ef | 0.451c | 1.363bcd | 2.501ab | ||||
5 | 0.436a | 0.350abcd | 0.830a | 0.773abc | 0.665abc | 0.539b | 1.046d | 1.644de | ||||
6 | 0.413a | 0.311de | 0.825a | 0.727cdef | 0.540f | 0.551b | 1.18cd | 2.911a | ||||
7 | 0.381b | 0.318de | 0.818a | 0.711ef | 0.589de | 0.433c | 1.306cd | 2.030bcd | ||||
8 | 0.384a | 0.356abcd | 0.825a | 0.767abcd | 0.646abc | 0.542b | 1.949a | 1.682de | ||||
9 | 0.423a | 0.381abc | 0.839a | 0.757bcde | 0.690a | 0.572ab | 1.845ab | 1.985bcd | ||||
10 | 0.424ab | 0.392ab | 0.848a | 0.813a | 0.675abc | 0.619a | 0.996d | 1.183e | ||||
11 | 0.432ab | 0.383ab | 0.834a | 0.778abc | 0.666abc | 0.576ab | 0.938d | 1.214e | ||||
12 | 0.417a | 0.353abcd | 0.828a | 0.754bcde | 0.637bc | 0.538b | 1.918a | 1.817cd | ||||
14 | 1 | 0.410abc | 0.321de | 0.816a | 0.673d | 0.597c | 0.446d | 1.502a | 2.642ab | |||
2 | 0.474a | 0.404a | 0.852a | 0.789a | 0.749a | 0.620ab | 1.264a | 1.691c | ||||
3 | 0.439abc | 0.268fg | 0.838a | 0.682cd | 0.646c | 0.407d | 1.657a | 3.022a | ||||
4 | 0.392c | 0.244g | 0.823a | 0.622e | 0.662bc | 0.434d | 1.203a | 3.171a | ||||
5 | 0.468a | 0.343cde | 0.847a | 0.751ab | 0.716ab | 0.538c | 1.547a | 2.903a | ||||
6 | 0.416abc | 0.280fg | 0.833a | 0.678cd | 0.649c | 0.450d | 1.465a | 3.178a | ||||
7 | 0.403bc | 0.304ef | 0.827a | 0.688cd | 0.638c | 0.445d | 1.289a | 2.837ab | ||||
8 | 0.445abc | 0.343cde | 0.839a | 0.727bc | 0.723ab | 0.553bc | 1.672a | 2.745ab | ||||
9 | 0.455abc | 0.360bcd | 0.846a | 0.742ab | 0.743a | 0.526c | 1.670a | 2.250bc | ||||
10 | 0.469a | 0.387ab | 0.868a | 0.795a | 0.763a | 0.628a | 1.145a | 1.691c | ||||
11 | 0.461ab | 0.373abc | 0.850a | 0.765ab | 0.740a | 0.589abc | 1.178a | 1.882c | ||||
12 | 0.448abc | 0.339cde | 0.845a | 0.727bc | 0.724ab | 0.522c | 1.623a | 2.971a |
表3 苗期干旱胁迫下不同花生品种叶片荧光参数
Table 3 Fluorescence parameters of cultivars of Arachis hypogaea under drought stress at seedling stage
干旱天数 Days of drought (d) | 品种编号 Cultivar No. | 光系统II实际光化学效率 ΦPSII | 光系统II最大光化学效率 Fv/Fm | 光化学猝灭系数 qP | 非光化学猝灭系数 NPQ | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
对照 Control | 干旱 Drought | 对照 Control | 干旱 Drought | 对照 Control | 干旱 Drought | 对照 Control | 干旱 Drought | |||||
7 | 1 | 0.383ab | 0.348bcd | 0.807a | 0.719def | 0.579ef | 0.429c | 1.615abc | 2.328bc | |||
2 | 0.434a | 0.406a | 0.835a | 0.796ab | 0.683ab | 0.613a | 1.350bcd | 1.467de | ||||
3 | 0.407a | 0.326cde | 0.821a | 0.758bcde | 0.628cd | 0.403c | 1.810ab | 1.903cd | ||||
4 | 0.339a | 0.291e | 0.817a | 0.702f | 0.579ef | 0.451c | 1.363bcd | 2.501ab | ||||
5 | 0.436a | 0.350abcd | 0.830a | 0.773abc | 0.665abc | 0.539b | 1.046d | 1.644de | ||||
6 | 0.413a | 0.311de | 0.825a | 0.727cdef | 0.540f | 0.551b | 1.18cd | 2.911a | ||||
7 | 0.381b | 0.318de | 0.818a | 0.711ef | 0.589de | 0.433c | 1.306cd | 2.030bcd | ||||
8 | 0.384a | 0.356abcd | 0.825a | 0.767abcd | 0.646abc | 0.542b | 1.949a | 1.682de | ||||
9 | 0.423a | 0.381abc | 0.839a | 0.757bcde | 0.690a | 0.572ab | 1.845ab | 1.985bcd | ||||
10 | 0.424ab | 0.392ab | 0.848a | 0.813a | 0.675abc | 0.619a | 0.996d | 1.183e | ||||
11 | 0.432ab | 0.383ab | 0.834a | 0.778abc | 0.666abc | 0.576ab | 0.938d | 1.214e | ||||
12 | 0.417a | 0.353abcd | 0.828a | 0.754bcde | 0.637bc | 0.538b | 1.918a | 1.817cd | ||||
14 | 1 | 0.410abc | 0.321de | 0.816a | 0.673d | 0.597c | 0.446d | 1.502a | 2.642ab | |||
2 | 0.474a | 0.404a | 0.852a | 0.789a | 0.749a | 0.620ab | 1.264a | 1.691c | ||||
3 | 0.439abc | 0.268fg | 0.838a | 0.682cd | 0.646c | 0.407d | 1.657a | 3.022a | ||||
4 | 0.392c | 0.244g | 0.823a | 0.622e | 0.662bc | 0.434d | 1.203a | 3.171a | ||||
5 | 0.468a | 0.343cde | 0.847a | 0.751ab | 0.716ab | 0.538c | 1.547a | 2.903a | ||||
6 | 0.416abc | 0.280fg | 0.833a | 0.678cd | 0.649c | 0.450d | 1.465a | 3.178a | ||||
7 | 0.403bc | 0.304ef | 0.827a | 0.688cd | 0.638c | 0.445d | 1.289a | 2.837ab | ||||
8 | 0.445abc | 0.343cde | 0.839a | 0.727bc | 0.723ab | 0.553bc | 1.672a | 2.745ab | ||||
9 | 0.455abc | 0.360bcd | 0.846a | 0.742ab | 0.743a | 0.526c | 1.670a | 2.250bc | ||||
10 | 0.469a | 0.387ab | 0.868a | 0.795a | 0.763a | 0.628a | 1.145a | 1.691c | ||||
11 | 0.461ab | 0.373abc | 0.850a | 0.765ab | 0.740a | 0.589abc | 1.178a | 1.882c | ||||
12 | 0.448abc | 0.339cde | 0.845a | 0.727bc | 0.724ab | 0.522c | 1.623a | 2.971a |
复水天数 Days after re- watering (d) | 品种编号 Cultivar No. | 光系统II实际光化学效率 ΦPSII | 光系统II最大光化学效率 Fv/Fm | 光化学猝灭系数 qP | 非光化学猝灭系数 NPQ | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
对照 Control | 干旱 Drought | 对照 Control | 干旱 Drought | 对照 Control | 干旱 Drought | 对照 Control | 干旱 Drought | |||||
5 | 1 | 0.425cd | 0.373f | 0.822a | 0.743efg | 0.749bc | 0.638d | 1.646a | 1.961a | |||
2 | 0.489ab | 0.497ab | 0.857a | 0.842abc | 0.863a | 0.875a | 1.422a | 1.380b | ||||
3 | 0.434bcd | 0.356f | 0.835a | 0.705g | 0.701c | 0.583d | 1.595a | 1.657ab | ||||
4 | 0.411d | 0.393def | 0.819a | 0.753efg | 0.736bc | 0.647cd | 1.639a | 1.453b | ||||
5 | 0.476abc | 0.439cde | 0.824a | 0.808bcd | 0.849a | 0.805ab | 1.435a | 1.336b | ||||
6 | 0.433bcd | 0.386ef | 0.828a | 0.735fg | 0.725bc | 0.630d | 1.572a | 1.663ab | ||||
7 | 0.422cd | 0.446bcd | 0.822a | 0.781def | 0.845a | 0.780ab | 1.532a | 1.547ab | ||||
8 | 0.468abcd | 0.462bc | 0.838a | 0.793cde | 0.806ab | 0.827ab | 1.660a | 1.441b | ||||
9 | 0.476abc | 0.398def | 0.835a | 0.755efg | 0.720bc | 0.654cd | 1.461a | 1.468b | ||||
10 | 0.506a | 0.526a | 0.861a | 0.873a | 0.853a | 0.868a | 1.317a | 1.317b | ||||
11 | 0.488ab | 0.497ab | 0.852a | 0.819bcd | 0.854a | 0.832ab | 1.497a | 1.350b | ||||
12 | 0.463abcd | 0.456bc | 0.849a | 0.856ab | 0.784abc | 0.740bc | 1.534a | 1.428b | ||||
10 | 1 | 0.464c | 0.447e | 0.823a | 0.852ab | 0.782c | 0.865a | 1.568ab | 1.488a | |||
2 | 0.525ab | 0.587ab | 0.862a | 0.887a | 0.879ab | 0.912a | 1.294bc | 0.988cd | ||||
3 | 0.468bc | 0.438e | 0.863a | 0.791c | 0.815bc | 0.772bc | 1.555ab | 1.465a | ||||
4 | 0.456c | 0.421e | 0.824a | 0.787c | 0.802bc | 0.734c | 1.728a | 1.424a | ||||
5 | 0.505abc | 0.511cd | 0.831a | 0.843b | 0.876ab | 0.905a | 1.376bc | 1.296abcd | ||||
6 | 0.488abc | 0.465de | 0.835a | 0.797c | 0.807bc | 0.739c | 1.471abc | 1.434a | ||||
7 | 0.493abc | 0.523c | 0.837a | 0.841b | 0.815bc | 0.833ab | 1.313bc | 1.329abc | ||||
8 | 0.492abc | 0.537bc | 0.845a | 0.879ab | 0.833abc | 0.904a | 1.433abc | 1.347ab | ||||
9 | 0.538a | 0.532c | 0.851a | 0.873ab | 0.865abc | 0.906a | 1.238c | 1.261abcd | ||||
10 | 0.539a | 0.608a | 0.869a | 0.882a | 0.908a | 0.915a | 1.308bc | 1.215abcd | ||||
11 | 0.507abc | 0.553bc | 0.859a | 0.855ab | 0.878ab | 0.907a | 1.222c | 0.951d | ||||
12 | 0.527a | 0.541bc | 0.848a | 0.887a | 0.855abc | 0.898a | 1.456abc | 1.023bcd |
表4 苗期干旱后复水不同花生品种叶片荧光参数
Table 4 Fluorescence parameters of cultivars of Arachis hypogaea under re-watering after drought stress
复水天数 Days after re- watering (d) | 品种编号 Cultivar No. | 光系统II实际光化学效率 ΦPSII | 光系统II最大光化学效率 Fv/Fm | 光化学猝灭系数 qP | 非光化学猝灭系数 NPQ | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
对照 Control | 干旱 Drought | 对照 Control | 干旱 Drought | 对照 Control | 干旱 Drought | 对照 Control | 干旱 Drought | |||||
5 | 1 | 0.425cd | 0.373f | 0.822a | 0.743efg | 0.749bc | 0.638d | 1.646a | 1.961a | |||
2 | 0.489ab | 0.497ab | 0.857a | 0.842abc | 0.863a | 0.875a | 1.422a | 1.380b | ||||
3 | 0.434bcd | 0.356f | 0.835a | 0.705g | 0.701c | 0.583d | 1.595a | 1.657ab | ||||
4 | 0.411d | 0.393def | 0.819a | 0.753efg | 0.736bc | 0.647cd | 1.639a | 1.453b | ||||
5 | 0.476abc | 0.439cde | 0.824a | 0.808bcd | 0.849a | 0.805ab | 1.435a | 1.336b | ||||
6 | 0.433bcd | 0.386ef | 0.828a | 0.735fg | 0.725bc | 0.630d | 1.572a | 1.663ab | ||||
7 | 0.422cd | 0.446bcd | 0.822a | 0.781def | 0.845a | 0.780ab | 1.532a | 1.547ab | ||||
8 | 0.468abcd | 0.462bc | 0.838a | 0.793cde | 0.806ab | 0.827ab | 1.660a | 1.441b | ||||
9 | 0.476abc | 0.398def | 0.835a | 0.755efg | 0.720bc | 0.654cd | 1.461a | 1.468b | ||||
10 | 0.506a | 0.526a | 0.861a | 0.873a | 0.853a | 0.868a | 1.317a | 1.317b | ||||
11 | 0.488ab | 0.497ab | 0.852a | 0.819bcd | 0.854a | 0.832ab | 1.497a | 1.350b | ||||
12 | 0.463abcd | 0.456bc | 0.849a | 0.856ab | 0.784abc | 0.740bc | 1.534a | 1.428b | ||||
10 | 1 | 0.464c | 0.447e | 0.823a | 0.852ab | 0.782c | 0.865a | 1.568ab | 1.488a | |||
2 | 0.525ab | 0.587ab | 0.862a | 0.887a | 0.879ab | 0.912a | 1.294bc | 0.988cd | ||||
3 | 0.468bc | 0.438e | 0.863a | 0.791c | 0.815bc | 0.772bc | 1.555ab | 1.465a | ||||
4 | 0.456c | 0.421e | 0.824a | 0.787c | 0.802bc | 0.734c | 1.728a | 1.424a | ||||
5 | 0.505abc | 0.511cd | 0.831a | 0.843b | 0.876ab | 0.905a | 1.376bc | 1.296abcd | ||||
6 | 0.488abc | 0.465de | 0.835a | 0.797c | 0.807bc | 0.739c | 1.471abc | 1.434a | ||||
7 | 0.493abc | 0.523c | 0.837a | 0.841b | 0.815bc | 0.833ab | 1.313bc | 1.329abc | ||||
8 | 0.492abc | 0.537bc | 0.845a | 0.879ab | 0.833abc | 0.904a | 1.433abc | 1.347ab | ||||
9 | 0.538a | 0.532c | 0.851a | 0.873ab | 0.865abc | 0.906a | 1.238c | 1.261abcd | ||||
10 | 0.539a | 0.608a | 0.869a | 0.882a | 0.908a | 0.915a | 1.308bc | 1.215abcd | ||||
11 | 0.507abc | 0.553bc | 0.859a | 0.855ab | 0.878ab | 0.907a | 1.222c | 0.951d | ||||
12 | 0.527a | 0.541bc | 0.848a | 0.887a | 0.855abc | 0.898a | 1.456abc | 1.023bcd |
出苗后天数 Days since emergence (d) | 处理 Treatments | 净光合速率Pn | 气孔导度 Gs | 胞间CO2 浓度 Ci | 光系统II实际 光化学效率 ΦPSII | 光系统II最大 光化学效率 Fv/Fm | 光化学猝灭 系数 qP | 非光化学猝灭 系数 NPQ |
---|---|---|---|---|---|---|---|---|
17 | 对照 Control | 0.139 8 | -0.102 6 | 0.614 9* | 0.504 0 | 0.481 0 | 0.404 6 | -0.481 2 |
干旱 Drought | 0.684 0* | 0.568 9 | 0.647 8* | 0.649 8* | 0.663 7* | 0.663 7* | -0.676 6* | |
24 | 对照 Control | 0.402 8 | -0.738 4** | -0.109 6 | 0.552 5 | 0.573 7 | 0.559 8 | -0.468 7 |
干旱 Drought | 0.782 7** | 0.528 5 | 0.253 5 | 0.775 0** | 0.743 9** | 0.807 9** | -0.650 7* | |
29 | 对照 Control | 0.047 2 | -0.737 4** | 0.495 6 | 0.692 2* | 0.673 1* | 0.871 8** | -0.523 5 |
复水 Re-watering | 0.813 5** | 0.885 3** | 0.705 1* | 0.902 7** | 0.851 8** | 0.878 0** | -0.479 2 | |
34 | 对照 Control | 0.013 1 | -0.624 3* | 0.444 2 | 0.559 9 | 0.372 6 | 0.640 4* | -0.773 0** |
复水 Re-watering | 0.767 3** | 0.535 3 | 0.906 6** | 0.806 8** | 0.681 8* | 0.685 6* | -0.743 7** |
表5 花生光合特性与苗期抗旱性的相关分析
Table 5 Correlation analysis of photosynthetic characteristics with drought tolerance of cultivars of Arachis hypogaea at seedling stage
出苗后天数 Days since emergence (d) | 处理 Treatments | 净光合速率Pn | 气孔导度 Gs | 胞间CO2 浓度 Ci | 光系统II实际 光化学效率 ΦPSII | 光系统II最大 光化学效率 Fv/Fm | 光化学猝灭 系数 qP | 非光化学猝灭 系数 NPQ |
---|---|---|---|---|---|---|---|---|
17 | 对照 Control | 0.139 8 | -0.102 6 | 0.614 9* | 0.504 0 | 0.481 0 | 0.404 6 | -0.481 2 |
干旱 Drought | 0.684 0* | 0.568 9 | 0.647 8* | 0.649 8* | 0.663 7* | 0.663 7* | -0.676 6* | |
24 | 对照 Control | 0.402 8 | -0.738 4** | -0.109 6 | 0.552 5 | 0.573 7 | 0.559 8 | -0.468 7 |
干旱 Drought | 0.782 7** | 0.528 5 | 0.253 5 | 0.775 0** | 0.743 9** | 0.807 9** | -0.650 7* | |
29 | 对照 Control | 0.047 2 | -0.737 4** | 0.495 6 | 0.692 2* | 0.673 1* | 0.871 8** | -0.523 5 |
复水 Re-watering | 0.813 5** | 0.885 3** | 0.705 1* | 0.902 7** | 0.851 8** | 0.878 0** | -0.479 2 | |
34 | 对照 Control | 0.013 1 | -0.624 3* | 0.444 2 | 0.559 9 | 0.372 6 | 0.640 4* | -0.773 0** |
复水 Re-watering | 0.767 3** | 0.535 3 | 0.906 6** | 0.806 8** | 0.681 8* | 0.685 6* | -0.743 7** |
[1] | Chapman SC, Ludlow MM, Blamey FPC, Fischer KS (1993). Effect of drought during early reproductive development on growth of cultivars of groundnut (Arachis hypogaea L.). II. Biomass production, pod development and yield. Field Crops Research, 32, 211-225. |
[2] |
Chaves MM, Oliveira MM (2004). Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. Journal of Experimental Botany, 55, 2365-2384.
URL PMID |
[3] | Clavel D, Diouf O, Khalfaoui JL, Braconnier S (2006). Genotypes variations in fluorescence parameters among closely related groundnut ( Arachis hypogaea L.) lines and their potential for drought screening programs. Field Crops Research, 96, 296-306. |
[4] | Farquhar GD, Sharkey TD (1982). Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 33, 317-345. |
[5] | Flexas J, Escalona JM, Medrano H (1998). Down-regulation of photosynthesis by drought under field conditions in grapevine leaves. Australian Journal of Plant Physiology, 25, 893-900. |
[6] | Gai JY, Wang YS, Zhang MC, Wang JA, Chang RZ (2001). Studies on the classification of maturity groups of soybeans in China. Acta Agronomica Sinica, 27, 286-292. (in Chinese with English abstract) |
[盖钧镒, 汪越胜, 张孟臣, 王继安, 常汝镇 (2001). 中国大豆品种熟期组划分的研究. 作物学报, 27, 286-292.] | |
[7] | Guan YX, Dai JY, Xu SC, Huang CX (1997). Effects of soil drought during flowering and rewatering on plant compensative growth and yield of maize. Acta Agronomica Sinica, 23, 740-745. (in Chinese with English abstract) |
[关义新, 戴俊英, 徐世昌, 黄成星 (1997). 玉米花期干旱及复水对植株补偿生长及产量的影响. 作物学报, 23, 740-745.] | |
[8] | He WM, Ma FY (2000). Effects of water gradient on fluorescence characteristics and gas exchange in Sabina vulgaris seedlings. Acta Phytoecologica Sinica, 24, 630-634. (in Chinese with English abstract) |
[何维明, 马风云 (2000). 水分梯度对沙地柏幼苗荧光特征和气体交换的影响. 植物生态学报, 24, 630-634.] | |
[9] | Jiang HF, Ren XP (2004). The effect on SOD activity and protein content in groundnut leaves by drought stress. Acta Agronomica Sinica, 30, 169-174. (in Chinese with English abstract) |
[姜慧芳, 任小平 (2004). 干旱胁迫对花生叶片SOD活性和蛋白质的影响. 作物学报, 30, 169-174.] | |
[10] | Lauriano JA, Ramalho JC, Lidon FC, do Céu Matos M (2004). Peanut photosynthesis under drought and re-watering. Photosynthetica, 42, 37-41. |
[11] | Li WJ (1997). Effect of soil drought and rewatering on physiological characteristics of peanut. Journal of Shandong Agricultural Science, (5), 15-18. (in Chinese with English abstract) |
[李维江 (1997). 土壤干旱与复水对花生生理特性的影响. 山东农业科学, (5), 15-18.] | |
[12] | Li Y, Pan HC, Li DQ (2002). Physiological differences between desication-tolerent and desication-sensitive varieties of maize (Zea mays L.) during soil draught stress and rehydration. Journal of Zhejiang University (Agriculture & Life Sciences), 28, 249-254. (in Chinese with English abstract) |
[李岩, 潘海春, 李德全 (2002). 抗旱性不同的玉米品种在土壤干旱及复水过程中的生理差异. 浙江大学学报(农业与生命科学版), 28, 249-254.] | |
[13] | Liu JL, Zhao CX, Wu N, Wang YF, Wang ML (2011). Effects of drought and rewatering at seedling stage on photosynthetic characteristics and water use efficiency of peanut. Scientia Agricultura Sinica, 44, 469-476. (in Chinese with English abstract) |
[刘吉利, 赵长星, 吴娜, 王月福, 王铭伦 (2011). 苗期干旱及复水对花生光合特性及水分利用效率的影响. 中国农业科学, 44, 469-476.] | |
[14] | Luo J, Zhang MQ, Lin YQ, Zhang H, Chen RK (2004). Studies on the relationship of chlorophyll fluorescence characters and drought tolerance in seedling of sugarcane under water stress. Scientia Agricultura Sinica, 37, 1718-1721. (in Chinese with English abstract) |
[罗俊, 张木清, 林彦铨, 张华, 陈如凯 (2004). 甘蔗苗期叶绿素荧光参数与抗旱性关系研究. 中国农业科学, 37, 1718-1721.] | |
[15] |
Massacci A, Nabiev SM, Pietrosanti L, Nematov SK, Chernikova TN, Thor K, Leipner J (2008). Response of the photosynthetic apparatus of cotton ( Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. Plant Physiology and Biochemistry, 46, 189-195.
URL PMID |
[16] | Meng ZQ, Song FP, Liu ZX, Zhang FK (2012). Effects of drought and rewatering at seedling stage on photosynthesis and chlorophyll fluorescence characteristics in rapeseed. Chinese Journal of Oil Crop Sciences, 34, 40-47. (in Chinese with English abstract) |
[蒙祖庆, 宋丰萍, 刘振兴, 张方凯 (2012). 干旱及复水对油菜苗期光合及叶绿素荧光特性的影响. 中国油料作物学报, 34, 40-47.] | |
[17] | Nautiyal PC, Ravindra V, Joshi YC (1995). Gas exchange and leaf water relations in two peanut cultivars of different drought tolerance. Biologia Plantarum, 37, 371-374. |
[18] | Pimratch S, Jogloy S, Vorasoot N, Toomsan B, Patanothai A, Holbrook CC (2008). Relationship between biomass production and nitrogen fixation under drought-stress conditions in peanut genotypes with different levels of drought resistance. Journal of Agronomy and Crop Science, 194, 15-25. |
[19] | Puangbut D, Jogloy S, Toomsan B, Vorasoot N, Akkasaeng C, Kesmala T, Rachaputi RCN, Wright GC, Patanothai A (2010). Physiological basis for genotypic variation in tolerance to and recovery from pre-flowering drought in peanut. Journal of Agronomy and Crop Science, 196, 358-367. |
[20] | Rao RCN, Singh S, Sivakumar MVK, Srivastava KL, Williams JH (1985). Effect of water deficit at different growth phases of peanut. I. Yield responses. Journal of Agronomy, 77, 782-786. |
[21] | Singh SK, Reddy KR (2011). Regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea (Vigna unguiculata (L.) Walp.) under drought. Journal of Photochemistry and Photobiology B: Biology, 105, 40-50. |
[22] | Siopongco JDL, Yamauchi CA, Salekdeh H, Bennett J, Wade LJ (2006). Growth and water use response of doubled- haploid rice lines to drought and rewatering during the vegetative stage. Plant Production Science, 9, 141-151. |
[23] | Sun DR (1998). Peanut Breeding. China Agriculture Press, Beijing. 256-275. (in Chinese) |
[孙大容 (1998). 花生育种学. 中国农业出版社, 北京. 256-275.] | |
[24] | Wan YS, Zhang GY (1992). Effect of soil water on the net photosynthetic rate in peanut. Journal of Shandong Agricultural University, 23, 31-35. (in Chinese with English abstract) |
[万勇善, 张高英 (1992). 土壤水分对花生净光合速率的影响. 山东农业大学学报, 23, 31-35.] | |
[25] | Wang L, Zhang T, Ding SY (2006). Effect of drought and rewatering on photosynthetic physioecological characteristics of soybean. Acta Ecologica Sinica, 26, 2073-2078. (in Chinese with English abstract) |
[王磊, 张彤, 丁圣彦 (2006). 干旱和复水对大豆光合生理生态特性的影响. 生态学报, 26, 2073-2078.] | |
[26] | Wu GL, Duan RY, Wang ZG, Zhang ZX, Wu LF (2010). Effects of drought stress and rehydration on chlorophyll fluorescence characteristics in Fragaria × ananassa Duch. Acta Ecologica Sinica, 30, 3941-3946. (in Chinese with English abstract) |
[吴甘霖, 段仁燕, 王志高, 张中信, 吴礼凤 (2010). 干旱和复水对草莓叶片叶绿素荧光特性的影响. 生态学报, 30, 3941-3946.] | |
[27] | Yao JP, Luo YN, Yang XD (1984). A primary study on the critical moisture of early and middle peanut varieties during different growth periods. Chinese Journal of Oil Crop Sciences, ( 3), 36-43. (in Chinese with English abstract) |
[姚君平, 罗瑶年, 杨新道 (1984). 早、中熟花生不同生育阶段临界水分研究初报. 中国油料作物学报, (3), 36-43.] | |
[28] | Zhang RH, Ma GS, Chai H, Zhang XH, Lu HD, Xue JQ (2010). Effect of drought stress on chlorophyll fluorescence of maize leaves at seedling. Agricultural Research in the Arid Areas, 28(6), 170-176. (in Chinese with English abstract) |
[张仁和, 马国胜, 柴海, 张兴华, 路海东, 薛吉全 (2010). 干旱胁迫对玉米苗期叶绿素荧光参数的影响. 干旱地区农业研究, 28(6), 170-176.] | |
[29] | Zhang RH, Xue JQ, Pu J, Zhao B, Zhang XH, Zheng YJ, Bu LD (2011). Influence of drought stress on plant growth and photosynthetic traits in maize seedlings. Acta Agronomica Sinica, 37, 521-528. (in Chinese with English abstract) |
[张仁和, 薛吉全, 浦军, 赵兵, 张兴华, 郑友军, 卜令铎 (2011). 干旱胁迫对玉米苗期植株生长和光合特性的影响. 作物学报, 37, 521-528.] | |
[30] | Zhang ZM, Wan SB, Dai LX, Song WW, Chen J, Shi YQ (2011). Estimating and screening of drought resistance indexes of peanut. Chinese Journal of Plant Ecology, 35, 100-109. (in Chinese with English abstract) |
[张智猛, 万书波, 戴良香, 宋文武, 陈静, 石运庆 (2011). 花生抗旱性鉴定指标的筛选与评价. 植物生态学报, 35, 100-109.] |
[1] | 范宏坤, 曾涛, 金光泽, 刘志理. 小兴安岭不同生长型阔叶植物叶性状变异及权衡[J]. 植物生态学报, 2024, 48(3): 364-376. |
[2] | 施梦娇, 李斌, 伊力塔, 刘美华. 美洲黑杨幼苗生长和生理生态指标对干旱-复水响应的性别差异[J]. 植物生态学报, 2023, 47(8): 1159-1170. |
[3] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
[4] | 张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431. |
[5] | 李变变, 张凤华, 赵亚光, 孙秉楠. 不同刈割程度对油莎豆非结构性碳水化合物代谢及生物量的影响[J]. 植物生态学报, 2023, 47(1): 101-113. |
[6] | 周洁, 杨晓东, 王雅芸, 隆彦昕, 王妍, 李浡睿, 孙启兴, 孙楠. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076. |
[7] | 李斐, 孙明伟, 钟尚志, 宋文政, 钟晓月, 孙伟. 不同光合类型牧草对干旱-复水的光合生理响应及生长适应策略[J]. 植物生态学报, 2022, 46(1): 74-87. |
[8] | 刘丽燕, 冯锦霞, 刘文鑫, 万贤崇. 干旱胁迫对转PtPIP2;8基因84K杨苗木光合、生长和根系结构的影响[J]. 植物生态学报, 2020, 44(6): 677-686. |
[9] | 徐丽娇, 郝志鹏, 谢伟, 李芳, 陈保冬. 丛枝菌根真菌根外菌丝跨膜H +和Ca 2+流对干旱胁迫的响应[J]. 植物生态学报, 2018, 42(7): 764-773. |
[10] | 程汉亭, 李勤奋, 刘景坤, 严廷良, 张俏燕, 王进闯. 橡胶林下益智光合特性的季节动态变化[J]. 植物生态学报, 2018, 42(5): 585-594. |
[11] | 王曦,胡红玲,胡庭兴,张城浩,王鑫,刘丹. 干旱胁迫对桢楠幼树渗透调节与活性氧代谢的影响及施氮的缓解效应[J]. 植物生态学报, 2018, 42(2): 240-251. |
[12] | 罗丹丹, 王传宽, 金鹰. 植物水分调节对策: 等水与非等水行为[J]. 植物生态学报, 2017, 41(9): 1020-1032. |
[13] | 翟占伟, 龚吉蕊, 罗亲普, 潘琰, 宝音陶格涛, 徐沙, 刘敏, 杨丽丽. 氮添加对内蒙古温带草原羊草光合特性的影响[J]. 植物生态学报, 2017, 41(2): 196-208. |
[14] | 岑宇, 刘美珍. 凝结水对干旱胁迫下羊草和冰草生理生态特征及叶片形态的影响[J]. 植物生态学报, 2017, 41(11): 1199-1207. |
[15] | 赵文赛, 孙永林, 刘西平. 干旱-复水-再干旱处理对玉米光合能力和生长的影响[J]. 植物生态学报, 2016, 40(6): 594-603. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19