植物生态学报 ›› 2022, Vol. 46 ›› Issue (1): 74-87.DOI: 10.17521/cjpe.2021.0203
所属专题: 光合作用
收稿日期:
2021-05-29
接受日期:
2021-09-10
出版日期:
2022-01-20
发布日期:
2022-04-13
通讯作者:
孙伟
作者简介:
*(sunwei@nenu.edu.cn)基金资助:
Fei LI, Ming-Wei SUN, Shang-Zhi ZHONG, Wen-Zheng SONG, Xiao-Yue ZHONG, Wei SUN()
Received:
2021-05-29
Accepted:
2021-09-10
Online:
2022-01-20
Published:
2022-04-13
Contact:
Wei SUN
Supported by:
摘要:
基于干旱频率增加、强度增大这一全球降水变化背景, 探究干旱-复水条件下不同功能群(C3和C4)植物的光合生理响应及生长适应策略有助于预测降水格局变化条件下草地的植被组成和生态系统功能。该研究采用盆栽实验, 以松嫩草地生长的一年生C3 (4种)和C4 (3种)牧草为实验材料, 设置了对照、中度干旱和重度干旱3个水分处理水平, 在干旱末期及复水期对植物进行气体交换、生物量和比叶质量的测量。在干旱条件下, 各物种净光合速率和气孔导度均呈下降趋势, 水分利用效率呈上升趋势。干旱对不同植物光合指标的影响存在功能群差异, 随干旱程度的增加C4植物逐渐丧失光合优势, 重度干旱对C4植物净光合速率的影响较C3植物更加明显。由于干旱条件下C3植物光合固碳主要受气孔限制而C4植物主要受代谢限制, 因此复水后C4植物净光合速率恢复速度较C3植物慢。干旱条件下, 各物种的生物量降低, 根冠比和比叶质量升高, 干旱对C3植物各生长指标的影响均大于C4植物; 复水处理后, C3植物生物量随干旱强度增加呈下降趋势, 而C4植物的生物量与对照相比无显著差异。
李斐, 孙明伟, 钟尚志, 宋文政, 钟晓月, 孙伟. 不同光合类型牧草对干旱-复水的光合生理响应及生长适应策略. 植物生态学报, 2022, 46(1): 74-87. DOI: 10.17521/cjpe.2021.0203
Fei LI, Ming-Wei SUN, Shang-Zhi ZHONG, Wen-Zheng SONG, Xiao-Yue ZHONG, Wei SUN. Photosynthetic physiology and growth adaptation of herbages with different photosynthetic pathways in response to drought-rehydration. Chinese Journal of Plant Ecology, 2022, 46(1): 74-87. DOI: 10.17521/cjpe.2021.0203
图1 不同物种净光合速率、气孔导度、蒸腾速率、水分利用效率对干旱的响应(平均值±标准误)。 不同小写字母表示同一物种不同处理之间差异显著(p < 0.05)。
Fig. 1 Responses of net photosynthetic rate, stomatal conductance, transpiration rate and water use efficiency to the drought treatment for the studied plant species (mean ± SE). Different lowercase letters indicate significant differences among different treatments for the same species (p < 0.05).
功能群 Functional group | 时期 Period | 处理 Treatment | 净光合速率 Net photosynthetic rate (μmol·m-2·s-1) | 气孔导度 Stomatal conductance (mol·m-2·s-1) | 蒸腾速率 Transpiration rate (mmol·m-2·s-1) | 水分利用效率 Water use efficiency (μmol·mmol-1) |
---|---|---|---|---|---|---|
C3 | 干旱 Drought | 对照 CK | 13.60 ± 1.13a | 0.51 ± 0.08a | 17.30 ± 1.48a | 0.82 ± 0.07a |
中度干旱 MD | 10.50 ± 1.05a | 0.43 ± 0.08a | 13.30 ± 1.11b | 0.84 ± 0.12a | ||
重度干旱 SD | 8.13 ± 1.06b | 0.14 ± 0.02b | 6.29 ± 1.03c | 1.48 ± 0.23b | ||
复水 Rehydration | 对照 CK | 15.90 ± 0.44 | 0.59 ± 0.09 | 1.12 ± 0.09 | 0.85 ± 0.27 | |
中度干旱 MD | 15.90 ± 0.51 | 0.49 ± 0.13 | 1.44 ± 0.16 | 0.73 ± 0.27 | ||
重度干旱 SD | 15.10 ± 0.16 | 0.53 ± 0.11 | 1.12 ± 0.07 | 0.61 ± 0.24 | ||
C4 | 干旱 Drought | 对照 CK | 19.70 ± 2.56a | 0.16 ± 0.01a | 6.90 ± 0.65a | 2.90 ± 0.14 |
中度干旱 MD | 15.21 ± 0.70a | 0.13 ± 0.01b | 5.13 ± 0.23a | 3.02 ± 0.07 | ||
重度干旱 SD | 10.82 ± 0.66b | 0.09 ± 0.02c | 3.53 ± 0.26b | 3.09 ± 0.03 | ||
复水 Rehydration | 对照 CK | 17.21 ± 0.64 | 0.14 ± 0.01 | 4.23 ± 0.12 | 0.79 ± 0.23 | |
中度干旱 MD | 18.40 ± 1.18 | 0.14 ± 0.03 | 4.40 ± 0.98 | 0.91 ± 0.28 | ||
重度干旱 SD | 18.90 ± 1.46 | 0.16 ± 0.02 | 3.77 ± 0.57 | 0.76 ± 0.24 |
表1 不同功能群植物光合指标对干旱及复水的响应(平均值±标准误)
Table 1 Responses of photosynthetic indicators in different plant functional groups to the drought and rehydration treatment (mean ± SE)
功能群 Functional group | 时期 Period | 处理 Treatment | 净光合速率 Net photosynthetic rate (μmol·m-2·s-1) | 气孔导度 Stomatal conductance (mol·m-2·s-1) | 蒸腾速率 Transpiration rate (mmol·m-2·s-1) | 水分利用效率 Water use efficiency (μmol·mmol-1) |
---|---|---|---|---|---|---|
C3 | 干旱 Drought | 对照 CK | 13.60 ± 1.13a | 0.51 ± 0.08a | 17.30 ± 1.48a | 0.82 ± 0.07a |
中度干旱 MD | 10.50 ± 1.05a | 0.43 ± 0.08a | 13.30 ± 1.11b | 0.84 ± 0.12a | ||
重度干旱 SD | 8.13 ± 1.06b | 0.14 ± 0.02b | 6.29 ± 1.03c | 1.48 ± 0.23b | ||
复水 Rehydration | 对照 CK | 15.90 ± 0.44 | 0.59 ± 0.09 | 1.12 ± 0.09 | 0.85 ± 0.27 | |
中度干旱 MD | 15.90 ± 0.51 | 0.49 ± 0.13 | 1.44 ± 0.16 | 0.73 ± 0.27 | ||
重度干旱 SD | 15.10 ± 0.16 | 0.53 ± 0.11 | 1.12 ± 0.07 | 0.61 ± 0.24 | ||
C4 | 干旱 Drought | 对照 CK | 19.70 ± 2.56a | 0.16 ± 0.01a | 6.90 ± 0.65a | 2.90 ± 0.14 |
中度干旱 MD | 15.21 ± 0.70a | 0.13 ± 0.01b | 5.13 ± 0.23a | 3.02 ± 0.07 | ||
重度干旱 SD | 10.82 ± 0.66b | 0.09 ± 0.02c | 3.53 ± 0.26b | 3.09 ± 0.03 | ||
复水 Rehydration | 对照 CK | 17.21 ± 0.64 | 0.14 ± 0.01 | 4.23 ± 0.12 | 0.79 ± 0.23 | |
中度干旱 MD | 18.40 ± 1.18 | 0.14 ± 0.03 | 4.40 ± 0.98 | 0.91 ± 0.28 | ||
重度干旱 SD | 18.90 ± 1.46 | 0.16 ± 0.02 | 3.77 ± 0.57 | 0.76 ± 0.24 |
图2 不同功能群植物光合指标变化率及生长指标变化率对干旱和复水的响应(平均值±标准误)。 不同大写字母表示同一处理不同功能群之间差异显著(p < 0.05); 不同小写字母表示同一功能群不同处理之间差异显著(p < 0.05)。
Fig. 2 Plant functional group differences in relative changes of photosynthetic and growth parameters in response to drought and rehydration (mean ± SE). Different uppercase letters indicate significant differences among different plant functional group for the same treatment (p < 0.05); different lowercase letters indicate significant differences among different treatments for the same plant functional group (p < 0.05).
功能群 Functional group | 物种 Species | 处理 Treatment | 地上生物量 Aboveground biomass (g·pot-1) | 地下生物量 Underground biomass (g·pot-1) | 总生物量 Total biomass (g·pot-1) | 根冠比 Root to shoot ratio | 比叶质量 Specific leaf mass (g·m-2) |
---|---|---|---|---|---|---|---|
C3 | 小黑麦 Triticosecale wittmack | 对照 CK | 1.38 ± 0.07a | 0.72 ± 0.01a | 2.11 ± 0.14a | 0.61 ± 0.03c | 36.48 ± 0.72a |
中度干旱 MD | 0.97 ± 014b | 0.72 ± 0.05a | 1.60 ± 0.11b | 0.76 ± 0.02b | 42.49 ± 1.70b | ||
重度干旱 SD | 0.59 ± 0.05c | 0.65 ± 0.02b | 1.21 ± 0.06b | 1.09 ± 0.03a | 50.20 ± 0.71c | ||
燕麦 Avena sativa | 对照 CK | 1.03 ± 0.04a | 0.87 ± 0.01a | 2.03 ± 0.17a | 0.62 ± 0.01b | 24.19 ± 1.96a | |
中度干旱 MD | 0.83 ± 0.01b | 0.63 ± 0.05b | 1.53 ± 0.04b | 0.74 ± 0.06b | 28.11 ± 0.40b | ||
重度干旱 SD | 0.43 ± 0.01c | 0.40 ± 0.01c | 0.84 ± 0.05c | 1.08 ± 0.08a | 36.18 ± 1.75b | ||
黑麦草 Lolium perenne | 对照 CK | 0.80 ± 0.03a | 0.56 ± 0.01a | 1.36 ± 0.04a | 0.65 ± 0.03c | 29.98 ± 0.35a | |
中度干旱 MD | 0.61 ± 0.01b | 0.45 ± 0.03b | 1.01 ± 0.05b | 0.73 ± 0.02b | 38.14 ± 0.50b | ||
重度干旱 SD | 0.41 ± 0.02c | 0.37 ± 0.01c | 0.76 ± 0.03c | 0.86 ± 0.11a | 46.83 ± 1.07c | ||
普通小麦 Triticum aestivum | 对照 CK | 0.84 ± 0.05a | 0.24 ± 0.01a | 0.99 ± 0.03a | 0.20 ± 0.01c | 31.66 ± 1.95a | |
中度干旱 MD | 0.65 ± 0.02b | 0.21 ± 0.01b | 0.90 ± 0.03a | 0.36 ± 0.02b | 37.01 ± 1.57b | ||
重度干旱 SD | 0.40 ± 0.02c | 0.19 ± 0.01b | 0.62 ± 0.01b | 0.52 ± 0.01a | 48.87 ± 1.44b | ||
C4 | 狗尾草 Setaria viridis | 对照 CK | 2.06 ± 0.09a | 0.99 ± 0.03ab | 3.05 ± 0.11a | 0.47 ± 0.01b | 33.87 ± 1.07 |
中度干旱 MD | 1.50 ± 0.03b | 1.01 ± 0.09a | 2.45 ± 0.02b | 0.73 ± 0.05a | 37.07 ± 0.07 | ||
重度干旱 SD | 1.37 ± 0.04c | 0.94 ± 0.02b | 2.30 ± 0.02b | 0.73 ± 0.01a | 38.93 ± 2.31 | ||
水田稗 Echinochloa oryzoides | 对照 CK | 1.03 ± 0.02a | 0.64 ± 0.01a | 1.65 ± 0.02a | 0.63 ± 0.01b | 25.14 ± 1.07 | |
中度干旱 MD | 0.83 ± 0.06b | 0.68 ± 0.03a | 1.43 ± 0.07b | 0.74 ± 0.01a | 25.70 ± 0.86 | ||
重度干旱 SD | 0.72 ± 0.02b | 0.57 ± 0.01b | 1.27 ± 0.02c | 0.82 ± 0.04a | 25.85 ± 0.71 | ||
虎尾草 Chloris virgata | 对照 CK | 1.42 ± 0.05a | 0.87 ± 0.11a | 2.33 ± 0.13a | 0.49 ± 0.01b | 34.99 ± 0.72 | |
中度干旱 MD | 1.25 ± 0.03b | 0.62 ± 0.01b | 1.79 ± 0.05b | 0.57 ± 0.02ab | 33.63 ± 0.79 | ||
重度干旱 SD | 0.80 ± 0.10c | 0.55 ± 0.03c | 1.34 ± 0.05c | 0.78 ± 0.03a | 33.00 ± 0.97 |
表2 不同光合类型牧草生长指标对干旱的响应(平均值±标准误)
Table 2 Responses of growth indicators in the studied grasses to the drought treatment (mean ± SE)
功能群 Functional group | 物种 Species | 处理 Treatment | 地上生物量 Aboveground biomass (g·pot-1) | 地下生物量 Underground biomass (g·pot-1) | 总生物量 Total biomass (g·pot-1) | 根冠比 Root to shoot ratio | 比叶质量 Specific leaf mass (g·m-2) |
---|---|---|---|---|---|---|---|
C3 | 小黑麦 Triticosecale wittmack | 对照 CK | 1.38 ± 0.07a | 0.72 ± 0.01a | 2.11 ± 0.14a | 0.61 ± 0.03c | 36.48 ± 0.72a |
中度干旱 MD | 0.97 ± 014b | 0.72 ± 0.05a | 1.60 ± 0.11b | 0.76 ± 0.02b | 42.49 ± 1.70b | ||
重度干旱 SD | 0.59 ± 0.05c | 0.65 ± 0.02b | 1.21 ± 0.06b | 1.09 ± 0.03a | 50.20 ± 0.71c | ||
燕麦 Avena sativa | 对照 CK | 1.03 ± 0.04a | 0.87 ± 0.01a | 2.03 ± 0.17a | 0.62 ± 0.01b | 24.19 ± 1.96a | |
中度干旱 MD | 0.83 ± 0.01b | 0.63 ± 0.05b | 1.53 ± 0.04b | 0.74 ± 0.06b | 28.11 ± 0.40b | ||
重度干旱 SD | 0.43 ± 0.01c | 0.40 ± 0.01c | 0.84 ± 0.05c | 1.08 ± 0.08a | 36.18 ± 1.75b | ||
黑麦草 Lolium perenne | 对照 CK | 0.80 ± 0.03a | 0.56 ± 0.01a | 1.36 ± 0.04a | 0.65 ± 0.03c | 29.98 ± 0.35a | |
中度干旱 MD | 0.61 ± 0.01b | 0.45 ± 0.03b | 1.01 ± 0.05b | 0.73 ± 0.02b | 38.14 ± 0.50b | ||
重度干旱 SD | 0.41 ± 0.02c | 0.37 ± 0.01c | 0.76 ± 0.03c | 0.86 ± 0.11a | 46.83 ± 1.07c | ||
普通小麦 Triticum aestivum | 对照 CK | 0.84 ± 0.05a | 0.24 ± 0.01a | 0.99 ± 0.03a | 0.20 ± 0.01c | 31.66 ± 1.95a | |
中度干旱 MD | 0.65 ± 0.02b | 0.21 ± 0.01b | 0.90 ± 0.03a | 0.36 ± 0.02b | 37.01 ± 1.57b | ||
重度干旱 SD | 0.40 ± 0.02c | 0.19 ± 0.01b | 0.62 ± 0.01b | 0.52 ± 0.01a | 48.87 ± 1.44b | ||
C4 | 狗尾草 Setaria viridis | 对照 CK | 2.06 ± 0.09a | 0.99 ± 0.03ab | 3.05 ± 0.11a | 0.47 ± 0.01b | 33.87 ± 1.07 |
中度干旱 MD | 1.50 ± 0.03b | 1.01 ± 0.09a | 2.45 ± 0.02b | 0.73 ± 0.05a | 37.07 ± 0.07 | ||
重度干旱 SD | 1.37 ± 0.04c | 0.94 ± 0.02b | 2.30 ± 0.02b | 0.73 ± 0.01a | 38.93 ± 2.31 | ||
水田稗 Echinochloa oryzoides | 对照 CK | 1.03 ± 0.02a | 0.64 ± 0.01a | 1.65 ± 0.02a | 0.63 ± 0.01b | 25.14 ± 1.07 | |
中度干旱 MD | 0.83 ± 0.06b | 0.68 ± 0.03a | 1.43 ± 0.07b | 0.74 ± 0.01a | 25.70 ± 0.86 | ||
重度干旱 SD | 0.72 ± 0.02b | 0.57 ± 0.01b | 1.27 ± 0.02c | 0.82 ± 0.04a | 25.85 ± 0.71 | ||
虎尾草 Chloris virgata | 对照 CK | 1.42 ± 0.05a | 0.87 ± 0.11a | 2.33 ± 0.13a | 0.49 ± 0.01b | 34.99 ± 0.72 | |
中度干旱 MD | 1.25 ± 0.03b | 0.62 ± 0.01b | 1.79 ± 0.05b | 0.57 ± 0.02ab | 33.63 ± 0.79 | ||
重度干旱 SD | 0.80 ± 0.10c | 0.55 ± 0.03c | 1.34 ± 0.05c | 0.78 ± 0.03a | 33.00 ± 0.97 |
功能群 Functional group | 时期 Period | 处理 Treatment | 地上生物量 Aboveground biomass (g·pot-1) | 地下生物量 Underground biomass (g·pot-1) | 总生物量 Total biomass (g·pot-1) | 根冠比 Root to shoot ratio | 比叶质量 Specific leaf mass (g·m-2) |
---|---|---|---|---|---|---|---|
C3 | 干旱 Drought | 对照 CK | 0.96 ± 0.13a | 0.57 ± 0.13 | 1.53 ± 0.24a | 0.61 ± 0.11 | 32.01 ± 2.76b |
中度干旱 MD | 0.73 ± 0.09a | 0.48 ± 0.10 | 1.21 ± 0.17a | 0.65 ± 0.11 | 36.40 ± 3.15b | ||
重度干旱 SD | 0.45 ± 0.05b | 0.38 ± 0.08 | 0.83 ± 0.12b | 0.86 ± 0.14 | 45.90 ± 3.48a | ||
复水 Rehydration | 对照 CK | 1.45 ± 0.31a | 0.85 ± 0.27a | 2.31 ± 0.54 | 0.55 ± 0.11 | 34.41 ± 2.21 | |
中度干旱 MD | 1.31 ± 0.29a | 0.73 ± 0.27ab | 2.05 ± 0.55 | 0.53 ± 0.10 | 34.83 ± 2.13 | ||
重度干旱 SD | 1.02 ± 0.24b | 0.61 ± 0.24b | 1.63 ± 0.45 | 0.56 ± 0.13 | 32.00 ± 1.91 | ||
C4 | 干旱 Drought | 对照 CK | 1.52 ± 0.31 | 0.84 ± 0.13 | 2.34 ± 0.44 | 0.57 ± 0.03 | 31.70 ± 2.83 |
中度干旱 MD | 1.24 ± 0.22 | 0.73 ± 0.12 | 1.97 ± 0.34 | 0.61 ± 0.04 | 31.22 ± 2.83 | ||
重度干旱 SD | 0.96 ± 0.18 | 0.71 ± 0.12 | 1.67 ± 0.31 | 0.74 ± 0.03 | 32.43 ± 3.51 | ||
复水 Rehydration | 对照 CK | 1.48 ± 0.24 | 0.79 ± 0.23ab | 2.27 ± 0.47 | 0.52 ± 0.09 | 37.81 ± 1.33 | |
中度干旱 MD | 1.64 ± 0.41 | 0.91 ± 0.28a | 2.55 ± 0.68 | 0.54 ± 0.07 | 36.92 ± 1.85 | ||
重度干旱 SD | 1.48 ± 0.29 | 0.76 ± 0.24b | 2.24 ± 0.52 | 0.52 ± 0.09 | 35.20 ± 0.85 |
表3 不同功能群植物生长指标对干旱及复水的响应(平均值±标准误)
Table 3 Responses of growth indicators in different plant functional groups to the drought and rehydration treatment (mean ± SE)
功能群 Functional group | 时期 Period | 处理 Treatment | 地上生物量 Aboveground biomass (g·pot-1) | 地下生物量 Underground biomass (g·pot-1) | 总生物量 Total biomass (g·pot-1) | 根冠比 Root to shoot ratio | 比叶质量 Specific leaf mass (g·m-2) |
---|---|---|---|---|---|---|---|
C3 | 干旱 Drought | 对照 CK | 0.96 ± 0.13a | 0.57 ± 0.13 | 1.53 ± 0.24a | 0.61 ± 0.11 | 32.01 ± 2.76b |
中度干旱 MD | 0.73 ± 0.09a | 0.48 ± 0.10 | 1.21 ± 0.17a | 0.65 ± 0.11 | 36.40 ± 3.15b | ||
重度干旱 SD | 0.45 ± 0.05b | 0.38 ± 0.08 | 0.83 ± 0.12b | 0.86 ± 0.14 | 45.90 ± 3.48a | ||
复水 Rehydration | 对照 CK | 1.45 ± 0.31a | 0.85 ± 0.27a | 2.31 ± 0.54 | 0.55 ± 0.11 | 34.41 ± 2.21 | |
中度干旱 MD | 1.31 ± 0.29a | 0.73 ± 0.27ab | 2.05 ± 0.55 | 0.53 ± 0.10 | 34.83 ± 2.13 | ||
重度干旱 SD | 1.02 ± 0.24b | 0.61 ± 0.24b | 1.63 ± 0.45 | 0.56 ± 0.13 | 32.00 ± 1.91 | ||
C4 | 干旱 Drought | 对照 CK | 1.52 ± 0.31 | 0.84 ± 0.13 | 2.34 ± 0.44 | 0.57 ± 0.03 | 31.70 ± 2.83 |
中度干旱 MD | 1.24 ± 0.22 | 0.73 ± 0.12 | 1.97 ± 0.34 | 0.61 ± 0.04 | 31.22 ± 2.83 | ||
重度干旱 SD | 0.96 ± 0.18 | 0.71 ± 0.12 | 1.67 ± 0.31 | 0.74 ± 0.03 | 32.43 ± 3.51 | ||
复水 Rehydration | 对照 CK | 1.48 ± 0.24 | 0.79 ± 0.23ab | 2.27 ± 0.47 | 0.52 ± 0.09 | 37.81 ± 1.33 | |
中度干旱 MD | 1.64 ± 0.41 | 0.91 ± 0.28a | 2.55 ± 0.68 | 0.54 ± 0.07 | 36.92 ± 1.85 | ||
重度干旱 SD | 1.48 ± 0.29 | 0.76 ± 0.24b | 2.24 ± 0.52 | 0.52 ± 0.09 | 35.20 ± 0.85 |
功能群 Functional group | 物种 Species | 处理 Treatment | 地上生物量 Aboveground biomass (g·pot-1) | 地下生物量 Underground biomass (g·pot-1) | 总生物量 Total biomass (g·pot-1) | 根冠比 Root to shoot ratio | 比叶质量 Specific leaf mass (g·m-2) |
---|---|---|---|---|---|---|---|
C3 | 小黑麦 Triticosecale wittmack | 对照 CK | 1.50 ± 0.07ab | 1.20 ± 0.19 | 2.67 ± 0.15 | 0.68 ± 0.05 | 39.26 ± 0.47 |
中度干旱 MD | 1.76 ± 0.09a | 1.18 ± 0.21 | 2.68 ± 0.12 | 0.58 ± 0.05 | 39.70 ± 0.75 | ||
重度干旱 SD | 1.45 ± 0.07b | 1.06 ± 0.03 | 2.51 ± 0.07 | 0.69 ± 0.02 | 36.82 ± 1.13 | ||
燕麦 Avena sativa | 对照 CK | 1.50 ± 0.06a | 0.53 ± 0.05a | 2.03 ± 0.04a | 0.32 ± 0.04 | 28.55 ± 0.58 | |
中度干旱 MD | 1.08 ± 0.13b | 0.32 ± 0.06b | 1.39 ± 0.03b | 0.23 ± 0.03 | 29.30 ± 1.48 | ||
重度干旱 SD | 1.09 ± 0.16b | 0.29 ± 0.05b | 1.33 ± 0.04b | 0.33 ± 0.04 | 27.99 ± 0.52 | ||
黑麦草 Lolium perenne | 对照 CK | 1.40 ± 0.07a | 1.95 ± 0.22a | 3.55 ± 0.06a | 0.67 ± 0.02ab | 33.83 ± 0.86ab | |
中度干旱 MD | 1.26 ± 0.03ab | 1.64 ± 0.07b | 2.88 ± 0.06b | 0.55 ± 0.01b | 35.19 ± 1.20a | ||
重度干旱 SD | 1.20 ± 0.04b | 0.97 ± 0.09b | 2.37 ± 0.05c | 0.73 ± 0.06a | 30.84 ± 0.44b | ||
普通小麦 Triticum aes-tivum | 对照 CK | 0.70 ± 0.07a | 0.28 ± 0.03 | 1.14 ± 0.03a | 0.41 ± 0.01 | 34.76 ± 2.05 | |
中度干旱 MD | 0.67 ± 0.09a | 0.24 ± 0.05 | 0.71 ± 0.02b | 0.37 ± 0.02 | 35.04 ± 1.15 | ||
重度干旱 SD | 0.38 ± 0.07b | 0.14 ± 0.03 | 0.51 ± 0.05c | 0.35 ± 0.04 | 32.99 ± 2.47 | ||
C4 | 狗尾草 Setaria viridis | 对照 CK | 1.97 ± 0.28 | 1.29 ± 0.15 | 2.94 ± 0.14b | 0.52 ± 0.03 | 40.27 ± 1.09 |
中度干旱 MD | 2.45 ± 0.07 | 1.38 ± 0.08 | 3.70 ± 0.18a | 0.52 ± 0.02 | 40.11 ± 1.68 | ||
重度干旱 SD | 2.07 ± 0.08 | 1.02 ± 0.11 | 2.81 ± 0.06b | 0.62 ± 0.02 | 36.07 ± 0.72 | ||
水田稗 Echinochloa oryzoides | 对照 CK | 1.40 ± 0.09 | 0.75 ± 0.12 | 2.00 ± 0.19 | 0.56 ± 0.06 | 35.72 ± 0.89 | |
中度干旱 MD | 1.34 ± 0.13 | 0.78 ± 0.05 | 2.29 ± 0.15 | 0.61 ± 0.02 | 33.54 ± 0.91 | ||
重度干旱 SD | 1.23 ± 0.07 | 0.74 ± 0.06 | 1.99 ± 0.12 | 0.64 ± 0.01 | 33.48 ± 1.04 | ||
虎尾草 Chloris virgata | 对照 CK | 1.10 ± 0.06 | 0.37 ± 0.03 | 1.57 ± 0.04a | 0.34 ± 0.03b | 37.32 ± 0.91 | |
中度干旱 MD | 1.28 ± 0.05 | 0.46 ± 0.07 | 1.82 ± 0.13a | 0.43 ± 0.03ab | 37.33 ± 0.45 | ||
重度干旱 SD | 1.37 ± 0.10 | 0.36 ± 0.03 | 1.15 ± 0.07b | 0.45 ± 0.01a | 35.98 ± 0.93 |
表4 不同光合类型牧草生长指标对复水的响应(平均值±标准误)
Table 4 Responses of growth indicators in the studied grasses to the rehydration treatment (mean ± SE)
功能群 Functional group | 物种 Species | 处理 Treatment | 地上生物量 Aboveground biomass (g·pot-1) | 地下生物量 Underground biomass (g·pot-1) | 总生物量 Total biomass (g·pot-1) | 根冠比 Root to shoot ratio | 比叶质量 Specific leaf mass (g·m-2) |
---|---|---|---|---|---|---|---|
C3 | 小黑麦 Triticosecale wittmack | 对照 CK | 1.50 ± 0.07ab | 1.20 ± 0.19 | 2.67 ± 0.15 | 0.68 ± 0.05 | 39.26 ± 0.47 |
中度干旱 MD | 1.76 ± 0.09a | 1.18 ± 0.21 | 2.68 ± 0.12 | 0.58 ± 0.05 | 39.70 ± 0.75 | ||
重度干旱 SD | 1.45 ± 0.07b | 1.06 ± 0.03 | 2.51 ± 0.07 | 0.69 ± 0.02 | 36.82 ± 1.13 | ||
燕麦 Avena sativa | 对照 CK | 1.50 ± 0.06a | 0.53 ± 0.05a | 2.03 ± 0.04a | 0.32 ± 0.04 | 28.55 ± 0.58 | |
中度干旱 MD | 1.08 ± 0.13b | 0.32 ± 0.06b | 1.39 ± 0.03b | 0.23 ± 0.03 | 29.30 ± 1.48 | ||
重度干旱 SD | 1.09 ± 0.16b | 0.29 ± 0.05b | 1.33 ± 0.04b | 0.33 ± 0.04 | 27.99 ± 0.52 | ||
黑麦草 Lolium perenne | 对照 CK | 1.40 ± 0.07a | 1.95 ± 0.22a | 3.55 ± 0.06a | 0.67 ± 0.02ab | 33.83 ± 0.86ab | |
中度干旱 MD | 1.26 ± 0.03ab | 1.64 ± 0.07b | 2.88 ± 0.06b | 0.55 ± 0.01b | 35.19 ± 1.20a | ||
重度干旱 SD | 1.20 ± 0.04b | 0.97 ± 0.09b | 2.37 ± 0.05c | 0.73 ± 0.06a | 30.84 ± 0.44b | ||
普通小麦 Triticum aes-tivum | 对照 CK | 0.70 ± 0.07a | 0.28 ± 0.03 | 1.14 ± 0.03a | 0.41 ± 0.01 | 34.76 ± 2.05 | |
中度干旱 MD | 0.67 ± 0.09a | 0.24 ± 0.05 | 0.71 ± 0.02b | 0.37 ± 0.02 | 35.04 ± 1.15 | ||
重度干旱 SD | 0.38 ± 0.07b | 0.14 ± 0.03 | 0.51 ± 0.05c | 0.35 ± 0.04 | 32.99 ± 2.47 | ||
C4 | 狗尾草 Setaria viridis | 对照 CK | 1.97 ± 0.28 | 1.29 ± 0.15 | 2.94 ± 0.14b | 0.52 ± 0.03 | 40.27 ± 1.09 |
中度干旱 MD | 2.45 ± 0.07 | 1.38 ± 0.08 | 3.70 ± 0.18a | 0.52 ± 0.02 | 40.11 ± 1.68 | ||
重度干旱 SD | 2.07 ± 0.08 | 1.02 ± 0.11 | 2.81 ± 0.06b | 0.62 ± 0.02 | 36.07 ± 0.72 | ||
水田稗 Echinochloa oryzoides | 对照 CK | 1.40 ± 0.09 | 0.75 ± 0.12 | 2.00 ± 0.19 | 0.56 ± 0.06 | 35.72 ± 0.89 | |
中度干旱 MD | 1.34 ± 0.13 | 0.78 ± 0.05 | 2.29 ± 0.15 | 0.61 ± 0.02 | 33.54 ± 0.91 | ||
重度干旱 SD | 1.23 ± 0.07 | 0.74 ± 0.06 | 1.99 ± 0.12 | 0.64 ± 0.01 | 33.48 ± 1.04 | ||
虎尾草 Chloris virgata | 对照 CK | 1.10 ± 0.06 | 0.37 ± 0.03 | 1.57 ± 0.04a | 0.34 ± 0.03b | 37.32 ± 0.91 | |
中度干旱 MD | 1.28 ± 0.05 | 0.46 ± 0.07 | 1.82 ± 0.13a | 0.43 ± 0.03ab | 37.33 ± 0.45 | ||
重度干旱 SD | 1.37 ± 0.10 | 0.36 ± 0.03 | 1.15 ± 0.07b | 0.45 ± 0.01a | 35.98 ± 0.93 |
图3 不同干旱条件下植物光合限制比例(平均值±标准误)。 MD, 中度干旱。SD, 重度干旱。*和**表示同一物种不同光合限制间差异显著(*, p < 0.05; **, p < 0.01)。
Fig. 3 Responses of leaf relative limitations of photosynthesis to the drought treatment for the studied plant species (mean ± SE). MD and SD represent the moderate drought and severe drought, respectively. * and ** indicate significant differences among different limitations of photosynthesis for the same species (*, p < 0.05; **, p < 0.01).
图4 复水后不同物种净光合速率的响应(平均值±标准误)。 不同小写字母表示同一物种复水后同一时间不同处理之间差异显著(p < 0.05); ns, p > 0.05。
Fig. 4 Leaf net photosynthetic rate of different species after the rehydration (mean ± SE). Different lowercase letters indicate significant differences among different treatments for the same species at the same time after rehydration (p < 0.05); ns, p > 0.05.
图5 复水后不同功能群光合指标的响应(平均值±标准误)。 不同小写字母表示同一功能群复水后同一时间不同处理之间差异显著(p < 0.05); ns, p > 0.05。
Fig. 5 Responses of photosynthetic parameters of different plant functional group after the rehydration (mean ± SE). Different lowercase letters indicate significant differences among different treatments for the same plant functional group at the same time after rehydration (p < 0.05); ns, p > 0.05.
[1] |
Angelo CL, Pau S (2015). Root biomass and soil δ13C in C3 and C4 grasslands along a precipitation gradient. plant Ecology, 216, 615-627.
DOI URL |
[2] |
Asseng S, Ritchie JT, Smucker AJM, Robertson MJ (1998). Root growth and water uptake during water deficit and recovering in wheat. plant and Soil, 201, 265-273.
DOI URL |
[3] |
Báez S, Collins SL, Pockman WT, Johnson JE, Small EE (2013). Effects of experimental rainfall manipulations on Chihuahuan Desert grassland and shrubland plant communities. Oecologia, 172, 1117-1127.
DOI URL |
[4] |
Barbour MM, Evans JR, Simonin KA,von Caemmerer S (2016). Online CO2 and H2O oxygen isotope fractionation allows estimation of mesophyll conductance in C4 plants, and reveals that mesophyll conductance decreases as leaves age in both C4 and C3 plants. New phytologist, 210, 875-889.
DOI URL |
[5] |
Benson EJ, Hartnett DC, Mann KH (2004). Belowground bud banks and meristem limitation in tallgrass prairie plant populations. American Journal of Botany, 91, 416-421.
DOI PMID |
[6] |
Bloom AJ, Chapin FS, Mooney HA (1985). Resource limitation in plants-An economic analogy. Annual Review of Ecology and Systematics, 16, 363-392.
DOI URL |
[7] |
Bunce JA (1981). Comparative responses of leaf conductance to humidity in single attached leaves. Journal of Experimental Botany, 32, 629-634.
DOI URL |
[8] | von Caemmerer S (2000). Biochemical Models of Leaf photosynthesis. CSIRO Publishing, Collingwood, Australia. |
[9] |
Chaves MM (1991). Effects of water deficits on carbon assimilation. Journal of Experimental Botany, 42, 1-16.
DOI URL |
[10] |
Chaves MM, Flexas J, Pinheiro C (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103, 551-560.
DOI PMID |
[11] |
Chaves MM, Maroco JP, Pereira JS (2003). Understanding plant responses to drought-From genes to the whole plant. Functional Plant Biology, 30, 239-264.
DOI URL |
[12] |
Chen LP, Zhao NX, Zhang LH, Gao YB (2013). Responses of two dominant plant species to drought stress and defoliation in the Inner Mongolia Steppe of China. Plant Ecology, 214, 221-229.
DOI URL |
[13] |
Flexas J, Barón M, Bota J, Ducruet JM, Gallé A, Galmés J, Jiménez M, Pou A, Ribas-Carbó M, Sajnani C, Tomàs M, Medrano H (2009). Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri × V. rupestris). Journal of Experimental Botany, 60, 2361-2337.
DOI PMID |
[14] |
Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology, 6, 269-279.
PMID |
[19] |
Izanloo A, Condon AG, Langridge P, Tester M, Schnurbusch T (2008). Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars. Journal of Experimental Botany, 59, 3327-3346.
DOI PMID |
[20] |
John GP, Scoffoni C, Buckley TN, Villar R, Poorter H, Sack L (2017). The anatomical and compositional basis of leaf mass per area. Ecology Letters, 20, 412-425.
DOI URL |
[21] |
Kannenberg SA, Novick KA, Phillips RP (2019). Anisohydric behavior linked to persistent hydraulic damage and delayed drought recovery across seven North American tree species. New phytologist, 222, 1862-1872.
DOI PMID |
[22] |
Knapp AK, Ciais P, Smith MD (2017). Reconciling inconsistencies in precipitation-productivity relationships: implications for climate change. New Phytologist, 214, 41-47.
DOI PMID |
[23] |
Lang Y, Wang M, Xia JB, Zhao QK (2018). Effects of soil drought stress on photosynthetic gas exchange traits and chlorophyll fluorescence in Forsythia suspensa. Journal of Forestry Research, 29, 45-53.
DOI URL |
[24] |
McCarthy MC, Enquist BJ (2007). Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Functional Ecology, 21, 713-720.
DOI URL |
[25] |
Menezes-Silva PE, Sanglard LMVP, Ávila RT, Morais LE, Martins SCV, Nobres P, Patreze CM, Ferreira MA, Araújo WL, Fernie AR, DaMatta FM (2017). Photosynthetic and metabolic acclimation to repeated drought events play key roles in drought tolerance in coffee. Journal of Experimental Botany, 68, 4309-4322.
DOI PMID |
[26] |
Ocheltree TW, Nippert JB, Prasad PVV (2016). A safety vs efficiency trade-off identified in the hydraulic pathway of grass leaves is decoupled from photosynthesis, stomatal conductance and precipitation. New phytologist, 210, 97-107.
DOI PMID |
[27] | Pan RC, Dong YD (2001). Plant Physiology. 3rd ed. Higher Education Press, Beijing. 30. |
[ 潘瑞炽, 董愚得 (2001). 植物生理学. 3版. 高等教育出版社, 北京. 30.] | |
[28] | Pearcy RW, Ehleringer J (1984). Comparative ecophysiology of C3 and C4 plants. Plant, Cell & Environment, 7, 1-13. |
[29] |
Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist, 182, 565-588.
DOI URL |
[35] | Taylor SH, Ripley BS, Woodward FI, Osborne CP (2011). Drought limitation of photosynthesis differs between C3 and C4 grass species in a comparative experiment. Plant, Cell & Environment, 34, 65-75. |
[36] |
Tomás M, Flexas J, Copolovici L, Galmés J, Hallik L, Medrano H, Ribas-Carbó M, Tosens T, Vislap V, Niinemets Ü (2013). Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models. Journal of Experimental Botany, 64, 2269-2281.
DOI URL |
[37] |
Tyree MT, Ewers FW (1991). The hydraulic architecture of trees and other woody plants. New Phytologist, 119, 345-360.
DOI URL |
[38] |
Walter J, Nagy L, Hein R, Rascher U, Beierkuhnlein C, Willner E, Jentsch A (2011). Do plants remember drought? Hints towards a drought-memory in grasses. Environmental and Experimental Botany, 71, 34-40.
DOI URL |
[39] |
Williams A,de Vries FT (2020). Plant root exudation under drought: implications for ecosystem functioning. New Phytologist, 225, 1899-1905.
DOI PMID |
[40] |
Xu ZZ, Zhou GS, Shimizu H (2009). Are plant growth and photosynthesis limited by pre-drought following rewatering in grass? Journal of Experimental Botany, 60, 3737-3749.
DOI URL |
[41] |
Yahdjian L, Sala OE (2006). Vegetation structure constrains primary production response to water availability in the Patagonian steppe. Ecology, 87, 952-962.
PMID |
[42] | Yan QD, Su PX, Gao S (2012). Response of photosynthetic characteristics of C3 desert plant Reaumuria soongorica and C4 desert plant Salsola passerina to different drought degrees. Journal of Desert Research, 32, 364-371. |
[ 严巧娣, 苏培玺, 高松 (2012). 干旱程度对C3植物红砂和C4植物珍珠光合生理参数的影响. 中国沙漠, 32, 364-371.] | |
[43] |
Zhao WS, Sun YL, Liu XP (2016). Effects of drought- rewatering-drought on photosynthesis and growth of maize. Chinese Journal of plant Ecology, 40, 594-603.
DOI URL |
[ 赵文赛, 孙永林, 刘西平 (2016). 干旱-复水-再干旱处理对玉米光合能力和生长的影响. 植物生态学报, 40, 594-603.]
DOI |
|
[34] |
Taylor SH, Ripley BS, Martin T, Osborne CP (2014). Physiological advantages of C4 grasses in the field: a comparative experiment demonstrating the importance of drought. Global Change Biology, 20, 1992-2003.
DOI URL |
[33] |
Rozendaal DMA, Hurtado VH, Poorter L (2006). Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature. Functional Ecology, 20, 207-216.
DOI URL |
[32] |
Ripley BS, Gilbert ME, Ibrahim DG, Osborne CP (2007). Drought constraints on C4 photosynthesis: stomatal and metabolic limitations in C3 and C4 subspecies of Alloteropsis semialata. Journal of Experimental Botany, 58, 1351- 1363.
PMID |
[31] |
Ripley B, Frole K, Gilbert M (2010). Differences in drought sensitivities and photosynthetic limitations between co- occurring C3 and C4 (NADP-ME) Panicoid grasses. Annals of Botany, 105, 493-503.
DOI PMID |
[30] |
Quirk J, Bellasio C, Johnson DA, Osborne CP, Beerling DJ (2019). C4 savanna grasses fail to maintain assimilation in drying soil under low CO2 compared with C3 trees despite lower leaf water demand. Functional Ecology, 33, 388-398.
DOI |
[18] | IPCC (2013). Climate Change 2013: the Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[17] |
Huang MT, Wang XH, Keenan TF, Piao SL (2018). Drought timing influences the legacy of tree growth recovery. Global Change Biology, 24, 3546-3559.
DOI URL |
[16] |
Hermida-Carrera C, Kapralov MV, Galmés J (2016). Rubisco catalytic properties and temperature response in crops. plant physiology, 171, 2549-2561.
DOI PMID |
[15] | Flexas J, Ribas-Carbó M, Diaz-Espejo A, Galmés J, Medrano H (2008). Mesophyll conductance to CO2: current knowledge and future prospects. Plant, Cell & Environment, 31, 602-621. |
[44] |
Zhong SZ, Xu YQ, Meng B, Loik ME, Ma JY, Sun W (2019). Nitrogen addition increases the sensitivity of photosynthesis to drought and re-watering differentially in C3 versus C4 grass species. Frontiers in Plant Science, 10, 815. DOI: 10.3389/fpls.2019.00815.
DOI URL |
[1] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[3] | 高敏, 缑倩倩, 王国华, 郭文婷, 张宇, 张妍. 低温胁迫对不同母树年龄柠条锦鸡儿种子萌发幼苗生理和生长的影响[J]. 植物生态学报, 2024, 48(2): 201-214. |
[4] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[5] | 吴瀚, 白洁, 李均力, 古丽•加帕尔, 包安明. 新疆地区植被覆盖度时空变化及其影响因素分析[J]. 植物生态学报, 2024, 48(1): 41-55. |
[6] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[7] | 韩聪, 母艳梅, 查天山, 秦树高, 刘鹏, 田赟, 贾昕. 2012-2016年宁夏盐池毛乌素沙地黑沙蒿灌丛生态系统通量观测数据集[J]. 植物生态学报, 2023, 47(9): 1322-1332. |
[8] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[9] | 施梦娇, 李斌, 伊力塔, 刘美华. 美洲黑杨幼苗生长和生理生态指标对干旱-复水响应的性别差异[J]. 植物生态学报, 2023, 47(8): 1159-1170. |
[10] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[11] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[12] | 余俊瑞, 万春燕, 朱师丹. 热带亚热带喀斯特森林木本植物的水力脆弱性分割[J]. 植物生态学报, 2023, 47(11): 1576-1584. |
[13] | 张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431. |
[14] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
[15] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19