植物生态学报 ›› 2016, Vol. 40 ›› Issue (6): 594-603.DOI: 10.17521/cjpe.2015.0345
收稿日期:
2015-09-28
接受日期:
2016-04-14
出版日期:
2016-06-30
发布日期:
2016-06-15
通讯作者:
刘西平
基金资助:
Wen-Sai ZHAO, Yong-Lin SUN, Xi-Ping LIU*()
Received:
2015-09-28
Accepted:
2016-04-14
Online:
2016-06-30
Published:
2016-06-15
Contact:
Xi-Ping LIU
摘要:
为了探求玉米(Zea mays)光合作用和生长对重复干旱的响应机制, 采用盆栽试验, 分别测定了不同程度土壤干旱处理3周时、随后复水1周时以及再次不同程度干旱处理3周时玉米幼苗光合参数和生长的变化。第一次土壤干旱处理后, 重度干旱处理显著降低玉米株高、单株总叶面积、地上部分及根系生物量以及叶片的蒸腾速率(Tr)、气孔导度(Gs)、胞间CO2浓度(Ci)、净光合速率(Pn)和最大净光合速率(Amax), 但显著提高光补偿点和暗呼吸速率; 中度干旱处理同样显著降低玉米株高、叶面积和地上部分生物量, 但对根系生物量无影响, 因而根冠比增大, 对上述光合参数的负效应也不具有显著性。复水可使前期经受中度和重度干旱处理的玉米植株的光合能力和生长速率恢复到正常水分条件下生长的植株的水平, 但株高和叶面积没有恢复到对照水平。当玉米再次经受水分亏缺处理时, 与只遭受第二次中度或重度干旱处理的植株相比, 经历过前期中度干旱处理的植株的株高、生物量和光合参数没有显著变化, 但叶面积显著下降; 经历过前期重度干旱处理植株的Tr、Gs、Ci、Pn、Amax和表观量子效率显著升高, 而株高、叶面积和生物量显著降低。综上所述, 第一次重度干旱处理显著降低玉米叶片的光合能力和生长, 复水可使光合能力和生长速率恢复到正常水分条件下生长植株的水平, 但不能消除前期干旱对生长产生的不利影响。前期中度干旱可以刺激玉米根系的生长和显著提高根冠比, 有利于提高对二次干旱的抵抗能力, 并使总的生物量保持在对照水平, 而前期重度干旱处理虽然在光合作用上能提高植株对二次干旱的抵御能力, 但不能弥补前期干旱处理对生长的不利影响。因此, 在生产实践中, 如果进行抗旱锻炼, 应限制在中度干旱水平, 避免重度干旱。
赵文赛, 孙永林, 刘西平. 干旱-复水-再干旱处理对玉米光合能力和生长的影响. 植物生态学报, 2016, 40(6): 594-603. DOI: 10.17521/cjpe.2015.0345
Wen-Sai ZHAO, Yong-Lin SUN, Xi-Ping LIU. Effects of drought-rewatering-drought on photosynthesis and growth of maize. Chinese Journal of Plant Ecology, 2016, 40(6): 594-603. DOI: 10.17521/cjpe.2015.0345
处理 Treatment | 土壤含水量 (田间持水量的%) Soil water content (field water capacity %) | ||
---|---|---|---|
第一次水分处理(3周) First water treatments (3 weeks) | 复水(1周) Rewatering (1 week) | 第二次水分处理(3周) Second water treatments (3 weeks) | |
持续正常水分 Continually well-watered | 70 | 70 | 70 |
单一后期中度干旱 Single late medium drought | 70 | 50 | |
单一后期重度干旱 Single late severe drought | 70 | 35 | |
单一早期中度干旱 Single early medium drought | 50 | 70 | |
两次中度水分亏缺 Double medium drought | 50 | 50 | |
单一早期重度干旱 Single early severe drought | 35 | 70 | |
两次重度干旱 Double severe drought | 35 | 35 |
表1 试验处理
Table 1 Experimental treatments
处理 Treatment | 土壤含水量 (田间持水量的%) Soil water content (field water capacity %) | ||
---|---|---|---|
第一次水分处理(3周) First water treatments (3 weeks) | 复水(1周) Rewatering (1 week) | 第二次水分处理(3周) Second water treatments (3 weeks) | |
持续正常水分 Continually well-watered | 70 | 70 | 70 |
单一后期中度干旱 Single late medium drought | 70 | 50 | |
单一后期重度干旱 Single late severe drought | 70 | 35 | |
单一早期中度干旱 Single early medium drought | 50 | 70 | |
两次中度水分亏缺 Double medium drought | 50 | 50 | |
单一早期重度干旱 Single early severe drought | 35 | 70 | |
两次重度干旱 Double severe drought | 35 | 35 |
图1 第一次水分处理对玉米叶片蒸腾速率(Tr)(A)、气孔导度(Gs)(B)、胞间CO2浓度(Ci)(C)和净光合速率(Pn)(D)日变化的影响(平均值±标准偏差)。
Fig. 1 Effects of first water treatments on diurnal variations of transpiration rate (Tr) (A), stomatal conductance (Gs) (B), intercellular CO2 concentration (Ci) (C), and net photosynthetic rate (Pn) (D) of maize leaves (mean ± SD).
图2 复水一周对玉米叶片蒸腾速率(Tr)(A)、气孔导度(Gs)(B)、胞间CO2浓度(Ci)(C)和净光合速率(Pn)(D)日变化的影响(平均值±标准偏差)。
Fig. 2 Effects of rewatering on diurnal variations of transpiration rate (Tr) (A), stomatal conductance (Gs) (B), intercellular CO2 concentration (Ci) (C), and net photosynthetic rate (Pn) (D) of maize leaves (mean ± SD).
图3 第二次水分处理对玉米叶片蒸腾速率(Tr)(A, B)、气孔导度(Gs)(C, D)、胞间CO2浓度(Ci)(E, F)和净光合速率(Pn)(G, H)日变化的影响(平均值±标准偏差)。
Fig. 3 Effects of the second water treatments on diurnal variations of transpiration rate (Tr) (A, B), stomatal conductance (Gs) (C, D), intercellular CO2 concentration (Ci) (E, F), and net photosynthetic rate (Pn) (G, H) of maize leaves (mean ± SD).
图4 干旱-复水-再干旱处理对玉米光响应曲线的影响。
Fig. 4 Effects of drought-rewatering-drought treatments on response curves of net photosynthetic rate (Pn) to photosynthetically active radiation (PAR) in maize leaves.
处理 Treatment | 最大净光合速率 Amax (μmol·m-2·s-1) | 光补偿点 LCP (μmol·m-2·s-1) | 光饱和点 LSP (μmol·m-2·s-1) | 暗呼吸速率 Rd (μmol·m-2·s-1) | 表观量子效率 AQY (μmol·m-2·s-1) |
---|---|---|---|---|---|
第一次水分处理 First water treatment | |||||
70% | 41.39 ± 0.88b | 53.97 ± 15.17a | 892.50 ± 74.93a | 2.58 ± 0.20a | 0.050 ± 0.002ab |
50% | 41.01 ± 3.54b | 50.87 ± 6.60a | 832.98 ± 65.23a | 2.48 ± 0.68a | 0.051 ± 0.005b |
35% | 33.43 ± 3.57a | 95.09 ± 8.79b | 906.90 ± 66.14a | 3.92 ± 0.17b | 0.044 ± 0.002a |
复水 Rewatering | |||||
70%-70% | 37.79 ± 4.55a | 52.95 ± 7.99a | 770.05 ± 95.33a | 2.30 ± 0.41a | 0.047 ± 0.002a |
50%-70% | 39.82 ± 4.64a | 53.96 ± 3.16a | 859.91 ± 104.84a | 1.88 ± 0.38a | 0.045 ± 0.003a |
35%-70% | 37.88 ± 5.05a | 46.89 ± 1.32a | 796.46 ± 97.11a | 1.99 ± 0.33a | 0.046 ± 0.004a |
第二次水分处理 Second water treatments | |||||
70%-70%-70% | 39.95 ± 2.03c | 57.46 ± 13.82ab | 893.05 ± 75.07ab | 2.78 ± 0.84a | 0.050 ± 0.003c |
70%-70%-50% | 35.11 ± 2.31b | 61.78 ± 13.99ab | 780.32 ± 37.03a | 2.87 ± 0.99a | 0.048 ± 0.005bc |
70%-70%-35% | 26.00 ± 0.95a | 76.51 ± 14.81b | 752.90 ± 105.37a | 2.63 ± 0.32a | 0.035 ± 0.004a |
50%-70%-70% | 39.64 ± 2.31c | 77.17 ± 13.24b | 972.55 ± 118.34b | 3.50 ± 0.63a | 0.048 ± 0.003bc |
50%-70%-50% | 37.56 ± 1.68bc | 71.32 ± 11.07ab | 815.10 ± 50.04ab | 3.43 ± 0.65a | 0.049 ± 0.001bc |
35%-70%-70% | 40.05 ± 0.76c | 57.89 ± 0.31ab | 901.57 ± 40.73ab | 2.36 ± 0.36a | 0.043 ± 0.006b |
35%-70%-35% | 36.65 ± 2.94bc | 52.57 ± 8.62a | 789.16 ± 143.48a | 2.75 ± 0.32a | 0.051 ± 0.004c |
表2 干旱-复水-再干旱处理对玉米叶片光响应特征参数的影响(平均值±标准偏差)
Table 2 Effects of drought-rewatering-drought treatments on characteristic parameters of the response curves of net photosynthetic rate (Pn) to photosynthetically active radiation (PAR) in maize leaves (mean ± SD)
处理 Treatment | 最大净光合速率 Amax (μmol·m-2·s-1) | 光补偿点 LCP (μmol·m-2·s-1) | 光饱和点 LSP (μmol·m-2·s-1) | 暗呼吸速率 Rd (μmol·m-2·s-1) | 表观量子效率 AQY (μmol·m-2·s-1) |
---|---|---|---|---|---|
第一次水分处理 First water treatment | |||||
70% | 41.39 ± 0.88b | 53.97 ± 15.17a | 892.50 ± 74.93a | 2.58 ± 0.20a | 0.050 ± 0.002ab |
50% | 41.01 ± 3.54b | 50.87 ± 6.60a | 832.98 ± 65.23a | 2.48 ± 0.68a | 0.051 ± 0.005b |
35% | 33.43 ± 3.57a | 95.09 ± 8.79b | 906.90 ± 66.14a | 3.92 ± 0.17b | 0.044 ± 0.002a |
复水 Rewatering | |||||
70%-70% | 37.79 ± 4.55a | 52.95 ± 7.99a | 770.05 ± 95.33a | 2.30 ± 0.41a | 0.047 ± 0.002a |
50%-70% | 39.82 ± 4.64a | 53.96 ± 3.16a | 859.91 ± 104.84a | 1.88 ± 0.38a | 0.045 ± 0.003a |
35%-70% | 37.88 ± 5.05a | 46.89 ± 1.32a | 796.46 ± 97.11a | 1.99 ± 0.33a | 0.046 ± 0.004a |
第二次水分处理 Second water treatments | |||||
70%-70%-70% | 39.95 ± 2.03c | 57.46 ± 13.82ab | 893.05 ± 75.07ab | 2.78 ± 0.84a | 0.050 ± 0.003c |
70%-70%-50% | 35.11 ± 2.31b | 61.78 ± 13.99ab | 780.32 ± 37.03a | 2.87 ± 0.99a | 0.048 ± 0.005bc |
70%-70%-35% | 26.00 ± 0.95a | 76.51 ± 14.81b | 752.90 ± 105.37a | 2.63 ± 0.32a | 0.035 ± 0.004a |
50%-70%-70% | 39.64 ± 2.31c | 77.17 ± 13.24b | 972.55 ± 118.34b | 3.50 ± 0.63a | 0.048 ± 0.003bc |
50%-70%-50% | 37.56 ± 1.68bc | 71.32 ± 11.07ab | 815.10 ± 50.04ab | 3.43 ± 0.65a | 0.049 ± 0.001bc |
35%-70%-70% | 40.05 ± 0.76c | 57.89 ± 0.31ab | 901.57 ± 40.73ab | 2.36 ± 0.36a | 0.043 ± 0.006b |
35%-70%-35% | 36.65 ± 2.94bc | 52.57 ± 8.62a | 789.16 ± 143.48a | 2.75 ± 0.32a | 0.051 ± 0.004c |
处理 Treatment | 叶生物量 Leaf biomass (g) | 茎生物量 Stem biomass (g) | 地上生物量 shoot biomass (g) | 根生物量 Root biomass (g) | 总生物量 Total biomass (g) | 根冠比 R/S |
---|---|---|---|---|---|---|
第一次水分处理 First water treatment | ||||||
70% | 253.34 ± 16.50c | 111.20 ± 12.52b | 364.54 ± 18.99c | 0.44 ± 0.06a | ||
50% | 209.77 ± 14.07b | 123.49 ± 10.74b | 333.26 ± 19.27b | 0.59 ± 0.06b | ||
35% | 90.82 ± 10.60a | 64.54 ± 7.86a | 155.36 ± 11.55a | 0.72 ± 0.12c | ||
复水 Rewatering | ||||||
70%-70% | 177.17 ± 25.79c | 174.85 ± 24.40b | 352.02 ± 29.21c | 152.59 ± 12.50b | 504.61 ± 30.64b | 0.44 ± 0.05a |
50%-70% | 153.38 ± 15.13ab | 151.99 ± 18.66b | 305.37 ± 29.01b | 166.48 ± 37.16b | 471.85 ± 54.59b | 0.55 ± 0.11b |
35%-70% | 129.60 ± 17.12a | 107.87 ± 19.35a | 237.47 ± 35.37a | 118.29 ± 19.39a | 355.76 ± 53.00a | 0.50 ± 0.04ab |
第二次水分处理 Second water treatment | ||||||
70%-70%-70% | 142.95 ± 11.65c | 203.18 ± 15.34e | 507.35 ± 27.30d | 197.00 ± 32.49cd | 704.35 ± 54.61d | 0.39 ± 0.05ab |
70%-70%-50% | 142.20 ± 18.01c | 181.23 ± 15.60de | 489.61 ± 40.08cd | 198.33 ± 51.18cd | 687.94 ± 77.92cd | 0.40 ± 0.10abc |
70%-70%-35% | 118.22 ± 14.38b | 150.15 ± 15.31bc | 411.69 ± 18.36b | 145.00 ± 24.81ab | 556.69 ± 36.71b | 0.35 ± 0.06a |
50%-70%-70% | 133.64 ± 19.17bc | 153.49 ± 32.45bc | 451.88 ± 60.75bc | 216.67 ± 31.94d | 668.55 ± 92.09cd | 0.48 ± 0.02c |
50%-70%-50% | 135.52 ± 12.93bc | 172.16 ± 13.04cd | 481.55 ± 26.55cd | 224.00 ± 47.68d | 705.55 ± 70.53d | 0.46 ± 0.08bc |
35%-70%-70% | 121.74 ± 11.67bc | 132.39 ± 26.05b | 439.08 ± 65.20bc | 167.00 ± 30.48bc | 606.08 ± 91.72bc | 0.38 ± 0.04ab |
35%-70%-35% | 82.87 ± 32.27a | 97.20 ± 18.51a | 291.04 ± 43.45a | 118.00 ± 30.98a | 409.04 ± 70.32a | 0.40 ± 0.07abc |
表3 干旱-复水-再干旱处理对玉米生物量和根冠比(R/S)的影响
Table 3 Effects of drought-rewatering-drought treatments on biomass and the biomass ratio of roots to shoots (R/S) of maize
处理 Treatment | 叶生物量 Leaf biomass (g) | 茎生物量 Stem biomass (g) | 地上生物量 shoot biomass (g) | 根生物量 Root biomass (g) | 总生物量 Total biomass (g) | 根冠比 R/S |
---|---|---|---|---|---|---|
第一次水分处理 First water treatment | ||||||
70% | 253.34 ± 16.50c | 111.20 ± 12.52b | 364.54 ± 18.99c | 0.44 ± 0.06a | ||
50% | 209.77 ± 14.07b | 123.49 ± 10.74b | 333.26 ± 19.27b | 0.59 ± 0.06b | ||
35% | 90.82 ± 10.60a | 64.54 ± 7.86a | 155.36 ± 11.55a | 0.72 ± 0.12c | ||
复水 Rewatering | ||||||
70%-70% | 177.17 ± 25.79c | 174.85 ± 24.40b | 352.02 ± 29.21c | 152.59 ± 12.50b | 504.61 ± 30.64b | 0.44 ± 0.05a |
50%-70% | 153.38 ± 15.13ab | 151.99 ± 18.66b | 305.37 ± 29.01b | 166.48 ± 37.16b | 471.85 ± 54.59b | 0.55 ± 0.11b |
35%-70% | 129.60 ± 17.12a | 107.87 ± 19.35a | 237.47 ± 35.37a | 118.29 ± 19.39a | 355.76 ± 53.00a | 0.50 ± 0.04ab |
第二次水分处理 Second water treatment | ||||||
70%-70%-70% | 142.95 ± 11.65c | 203.18 ± 15.34e | 507.35 ± 27.30d | 197.00 ± 32.49cd | 704.35 ± 54.61d | 0.39 ± 0.05ab |
70%-70%-50% | 142.20 ± 18.01c | 181.23 ± 15.60de | 489.61 ± 40.08cd | 198.33 ± 51.18cd | 687.94 ± 77.92cd | 0.40 ± 0.10abc |
70%-70%-35% | 118.22 ± 14.38b | 150.15 ± 15.31bc | 411.69 ± 18.36b | 145.00 ± 24.81ab | 556.69 ± 36.71b | 0.35 ± 0.06a |
50%-70%-70% | 133.64 ± 19.17bc | 153.49 ± 32.45bc | 451.88 ± 60.75bc | 216.67 ± 31.94d | 668.55 ± 92.09cd | 0.48 ± 0.02c |
50%-70%-50% | 135.52 ± 12.93bc | 172.16 ± 13.04cd | 481.55 ± 26.55cd | 224.00 ± 47.68d | 705.55 ± 70.53d | 0.46 ± 0.08bc |
35%-70%-70% | 121.74 ± 11.67bc | 132.39 ± 26.05b | 439.08 ± 65.20bc | 167.00 ± 30.48bc | 606.08 ± 91.72bc | 0.38 ± 0.04ab |
35%-70%-35% | 82.87 ± 32.27a | 97.20 ± 18.51a | 291.04 ± 43.45a | 118.00 ± 30.98a | 409.04 ± 70.32a | 0.40 ± 0.07abc |
[1] | Aidar ST, Meirelles ST, Oliveira RF, Chaves ARM, Fernandes-Júnior PI (2014). Photosynthetic response of poikilochlorophyllous desiccation-tolerant Pleurostima purpurea (Velloziaceae) to dehydration and rehydration.Photosynthetica, 52, 124-133. |
[2] | Bruce TJA, Matthes MC, Napier JA, Pickett JA (2007). Stressful “memories” of plants: Evidence and possible mechanisms.Plant Science, 173, 603-608. |
[3] | Chaves MM, Flexas J, Pinheiro C (2009). Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell.Annals of Botany, 103, 551-560. |
[4] | Ding Y, Fromm M, Avramova Z (2012). Multiple exposures to drought ‘train’ transcriptional responses in Arabidopsis.Nature, 3, 740. |
[5] | Farhangfar S, Bannayan M, Khazaei HR, Baygi MM (2015). Vulnerability assessment of wheat and maize production affected by drought and climate change.International Journal of Disaster Risk Reduction, 13, 37-51. |
[6] | Fortunati A, Barta C, Brilli F, Centritto M, Zimmer I, Schnitzler J, Loreto F (2008). Isoprene emission is not temperature- dependent during and after severe drought-stress: A physiological and biochemical analysis.Plant Journal, 55, 687-697. |
[7] | Galmés J, Medrano H, Flexas J (2007). Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms.New Phytologist, 175, 81-93. |
[8] | Ghannoum O (2009). C4 photosynthesis and water stress.Annals of Botany, 103, 635-644. |
[9] | Jackson RB, Sperry JS, Dawson TE (2000). Root water uptake and transport: Using physiological processes in global predictions.Trends in Plant Science, 5, 482-488. |
[10] | Jiang P, Li MH, Xue XP, Li HY (2013). Effects of drought on the growth and yield of maize at different stage.Chinese Agricultural Science Bulletin, 29(36), 232-235. (in Chinese with English abstract)[姜鹏, 李曼华, 薛晓萍, 李鸿怡 (2013). 不同时期干旱对玉米生长发育及产量的影响. 中国农学通报, 29(36), 232-235.] |
[11] | Li GH, Wan YS, Liu FZ, Zhang K (2014). Photosynthetic characteristics in different peanut cultivars under conditions of drought and rewatering at seedling stage.Chinese Journal of Plant Ecology, 38, 729-739. (in Chinese with English abstract)[厉广辉, 万勇善, 刘风珍, 张昆 (2014). 苗期干旱及复水条件下不同花生品种的光合特性, 植物生态学报, 38, 729-739.] |
[12] | Liu XY, Luo YP, Shi YC (2001). The stimulating effects of rewatering in subjecting to water stress on leaf area of winter wheat.Scientia Agricultura Sinica, 34, 422-428. (in Chinese with English abstract)[刘晓英, 罗远培, 石元春 (2001). 水分胁迫后复水对冬小麦叶面积的激发作用. 中国农业科学, 34, 422-428.] |
[13] | Lloret F, Siscart D, Dalmases C (2004). Canopy recovery after drought dieback in holm-oak Mediterranean forests of Catalonia (NE Spain).Global Change Biology, 10, 2092-2099. |
[14] | Luo HH, Zhang YL, Zhang WF, Bai HD, He ZJ, Du MW, Zhang HZ (2008). Effects of rewatering after drought stress on photosynthesis and yield during flowering and boll-setting stage of cotton under-mulch-drip irrigation in Xinjiang.Acta Agronomica Sinica, 34, 171-174. (in Chinese with English abstract)[罗宏海, 张亚黎, 张旺锋, 白慧东, 何在菊, 杜明伟, 张宏芝 (2008). 新疆滴灌棉花花铃期干旱复水对叶片光合特性及产量的影响. 作物学报, 34, 171-174.] |
[15] | Luo Y, Zhao X, Zhou R, Zuo X, Zhang J, Li Y (2011). Physiological acclimation of two psammophytes to repeated soil drought and rewatering.Acta Physiologiae Plantarum, 33, 79-91. |
[16] | McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?New Phytologist, 178, 719-739. |
[17] | Rong ZY, Zhang XH, Yang SL, Xu ZL, Li JY, Huang GB, Zhao J, Gong M (2012). Involvement of antioxidant defense system in enhancement of drought re-sistance in tobacco (Nicotiana tabacum L.) plants through circular drought-hardening.Plant Physiology Journal, 48, 705-713. (in Chinese with English abstract)[荣智媛, 张晓海, 杨双龙, 徐照丽, 李军营, 黄国宾, 赵静, 龚明 (2012). 抗氧化系统参与循环干旱锻炼提高烟草植株抗旱性的形成. 植物生理学报, 48, 705-713.] |
[18] | Ruiz-Sánchez MC, Domingo R, Torrecillas A, Pérez-Pastor A (2000). Water stress preconditioning to improve drought resistance in young apricot plants.Plant Science, 156, 245-251. |
[19] | Shan L (2003). Water-saving agriculture and of crop high efficient use of water. Journal of Henan University (Natural Science), 33(1), 1-5. (in Chinese with English abstract)[山仑 (2003). 节水农业与作物高效用水. 河南大学学报(自然科学版), 33(1), 1-5.] |
[20] | Shen X, Dong Z, Chen Y (2015). Drought and UV-B radiation effect on photosynthesis and antioxidant parameters in soybean and maize.Acta Physiologiae Plantarum, 37, 25. |
[21] | Tsuji W, Ali MEK, Inanaga S, Sugimoto Y (2003). Growth and gas exchange of three sorghum cultivars under drought stress.Biologia Plantarum, 46, 583-587. |
[22] | Villar-Salvador P, Planelles R, Oliet J, Peñuelas-Rubira JL, Jacobs DF, González M (2004). Drought tolerance and transplanting performance of holm oak (Quercus ilex) seedlings after drought hardening in the nursery.Tree Physiology, 24, 1147-1155. |
[23] | Walter J, Nagy L, Hein R, Rascher U, Beierkuhnlein C, Willner E, Jentsch A (2011). Do plants remember drought? Hints towards a drought-memory in grasses.Environmental and Experimental Botany, 71, 34-40. |
[24] | Wang MM, Chen ZL, Jia N, Xu SN, Zhang LH (2010). Effects of pretreatment of water stress on photosynthetic characteristics of wheat under water stress.Journal of Agro-Environment Science, 29, 1930-1935. (in Chinese with English abstract)[王萌萌, 陈忠林, 贾楠, 徐苏男, 张利红 (2010). 水分胁迫前的干旱锻炼对小麦光合生理特性的影响. 农业环境科学学报, 29, 1930-1935.] |
[25] | Xu CH, Zhang XH, Li JY, Huang GB, Rong ZZ, Yang LY, Cui MK, Gong M (2012). Effect of circular drought hardening on photosynthesis and chlorophyll fluorescence parameters of tobacco (Nicotiana tabacum L.) under drought stress.Journal of Anhui Agricultural Sciences, 40, 13685-13687. (in Chinese with English abstract)[徐超华, 张晓海, 李军营, 黄国宾, 荣智媛, 杨利云, 崔明昆, 龚明 (2012). 循环干旱锻炼对在干旱胁迫下烟草植株光合参数及叶绿素荧光参数的影响. 安徽农业科学, 40, 13685-13687.] |
[26] | Xu FF, Zeng XC, Shi QH (2009). Studies on yield-increasing effects of intermittent irrigation and its physiological mechanism in rice.Hybrid Rice, 24(3), 72-75. (in Chinese with English abstract)[徐芬芬, 曾晓春, 石庆华 (2009). 干湿交替灌溉方式下水稻节水增产机理研究. 杂交水稻, 24(3), 72-75.] |
[27] | Xu ZZ, Zhou GS (2007). Photosynthetic recovery of a perennial grass Leymus chinensis after different periods of soil drought.Plant Production Science, 10, 277-285. |
[28] | Xu ZZ, Zhou GS, Shimizu H (2009). Are plant growth and photosynthesis limited by pre-drought following rewatering in grass?Journal of Experimental Botany, 60, 3737-3749. |
[29] | Yao X, Chu J, Wang G (2009). Effects of drought stress and selenium supply on growth and physiological characteristics of wheat seedlings.Acta Physiologiae Plantarum, 31, 1031-1036. |
[30] | Zavalloni C, Gielen B, Lemmens CMHM, Boeck HJD, Blasi S, den Bergh SV, Nijs I, Ceulemans R (2008). Does a warmer climate with frequent mild water shortages protect grassland communities against a prolonged drought?Plant and Soil, 308, 119-130. |
[31] | Zhang LC, Hao Y, Zhang RH, Ma YH, Xue JQ (2010). Response of drought and rewatering to leaf photosynthetic characteristics in different maize varieties.Acta Agriculturae Boreali-Occidentalis Sinica, 19(5), 76-80. (in Chinese with English abstract)[张林春, 郝扬, 张仁和, 马赟花, 薛吉全 (2010). 干旱及复水对不同抗旱性玉米光合特性的影响. 西北农业学报, 19(5), 76-80.] |
[32] | Zhang RH, Xue JQ, Pu J, Zhao B, Zhang XH, Zheng YJ, Bu LD (2011). Influence of drought stress on plant growth and photosynthetic traits in maize seedlings.Acta Agronomica Sinica, 37, 521-528. (in Chinese with English abstract)[张仁和, 薛吉全, 浦军, 赵兵, 张兴华, 郑友军, 卜令铎 (2011). 干旱胁迫对玉米苗期植株生长和光合特性的影响. 作物学报, 37, 521-528.] |
[1] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[2] | 朱明阳, 林琳, 佘雨龙, 肖城材, 赵通兴, 胡春相, 赵昌佑, 王文礼. 云南轿子山不同海拔急尖长苞冷杉径向生长动态及其低温阈值[J]. 植物生态学报, 2022, 46(9): 1038-1049. |
[3] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[4] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[5] | 李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性[J]. 植物生态学报, 2022, 46(6): 687-699. |
[6] | 魏龙鑫, 耿燕, 崔可达, 乔雪涛, 岳庆敏, 范春雨, 张春雨, 赵秀海. 阔叶红松林不同林层和生长阶段树木生长对采伐强度的响应[J]. 植物生态学报, 2022, 46(6): 642-655. |
[7] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[8] | 黄冬柳, 项伟, 李忠国, 朱师丹. 南亚热带10种造林树种的水力结构和水力安全[J]. 植物生态学报, 2022, 46(5): 602-612. |
[9] | 李思源, 张照鑫, 饶良懿. 桑苗非结构性碳水化合物和生长激素对水淹胁迫的响应[J]. 植物生态学报, 2022, 46(3): 311-320. |
[10] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
[11] | 林雍 陈智 杨萌 陈世苹 高艳红 刘冉 郝彦宾 辛晓平 周莉 于贵瑞. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素[J]. 植物生态学报, 2022, 46(12): 1461-1472. |
[12] | 祁鲁玉 陈浩楠 库丽洪·赛热别力 籍天宇 孟高德 秦慧颖 王宁 宋逸欣 刘春雨 杜宁 郭卫华. 基于植物功能性状的暖温带5种灌木幼苗生长策略分析[J]. 植物生态学报, 2022, 46(11): 1388-1399. |
[13] | 董楠, 唐明明, 崔文倩, 岳梦瑶, 刘洁, 黄玉杰. 不同根系分隔方式对栗和茶幼苗生长的影响[J]. 植物生态学报, 2022, 46(1): 62-73. |
[14] | 李斐, 孙明伟, 钟尚志, 宋文政, 钟晓月, 孙伟. 不同光合类型牧草对干旱-复水的光合生理响应及生长适应策略[J]. 植物生态学报, 2022, 46(1): 74-87. |
[15] | 薛峰, 江源, 董满宇, 王明昌, 丁新原, 杨显基, 崔明皓, 康慕谊. 不同去趋势方法对基于Dendrometer数据的茎干水分动态分析的影响——以白扦为例[J]. 植物生态学报, 2021, 45(8): 880-890. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19