植物生态学报 ›› 2014, Vol. 38 ›› Issue (7): 720-728.DOI: 10.3724/SP.J.1258.2014.00067
李志真1,2, 刘东焕3,*(), 赵世伟3, 姜闯道1,*(
), 石雷1
收稿日期:
2014-03-04
接受日期:
2014-04-03
出版日期:
2014-03-04
发布日期:
2014-07-10
通讯作者:
刘东焕,姜闯道
作者简介:
liudh@beijingbg.com;共同通讯作者基金资助:
LI Zhi-Zhen1,2, LIU Dong-Huan3,*(), ZHAO Shi-Wei3, JIANG Chuang-Dao1,*(
), SHI Lei1
Received:
2014-03-04
Accepted:
2014-04-03
Online:
2014-03-04
Published:
2014-07-10
Contact:
LIU Dong-Huan,JIANG Chuang-Dao
摘要:
为进一步阐述光抑制的强光诱导和发生机制, 该文以喜阴植物玉簪(Hosta spp.)为材料研究其光抑制发生规律及其与环境光强的关系。结果表明, 全日照和遮阴条件下玉簪叶片发育分别形成适应强光和弱光的形态特征; 与遮阴处理相比, 强光下生长的玉簪光合速率和叶绿素含量较低, 但两种处理叶片最大光化学效率差异很小, 证明强光下植株可以正常生长且光合机构未发生严重的光抑制。将遮阴处生长的植株转移到全日照下, 光合速率和最大光化学效率急剧下降; 荧光诱导动力学曲线发生明显改变, 而且光系统II供体侧和受体侧荧光产量的变化幅度分别达到24.3%和34.2%, 表明玉簪由弱光转入强光后光系统II发生不可逆失活, 且受体侧受到的伤害较供体侧更严重。因此, 作者认为环境光强骤然提高并超过玉簪生长光强时很容易诱导其光合机构发生严重的光抑制。该研究对于理解植物适应光环境的策略以及喜阴植物的优质栽培有重要意义。
李志真, 刘东焕, 赵世伟, 姜闯道, 石雷. 环境强光诱导玉簪叶片光抑制的机制. 植物生态学报, 2014, 38(7): 720-728. DOI: 10.3724/SP.J.1258.2014.00067
LI Zhi-Zhen, LIU Dong-Huan, ZHAO Shi-Wei, JIANG Chuang-Dao, SHI Lei. Mechanisms of photoinhibition induced by high light in Hosta grown outdoors. Chinese Journal of Plant Ecology, 2014, 38(7): 720-728. DOI: 10.3724/SP.J.1258.2014.00067
图1 光强对玉簪叶面积、比叶重、叶片数和叶绿素含量的影响(平均值±标准误差, n = 6)。不同大、小写字母分别表示自然光和遮阴处理后叶面积、比叶重、叶片数和叶绿素含量差异显著(p = 0.05)。HT, 全日照处理; LT, 遮阴处理。
Fig. 1 Effects of light intensity on leaf area, specific leaf weight, leaf number and chlorophyll (a + b) content in Hosta leaves (mean ± SE, n = 6). Different capital letters and lowercase letters indicate significant differences in leaf area, specific leaf weight, leaf number, and chlorophyll (a + b) content between the HT and LT treatments, respectively (p = 0.05). HT, full sunlight; LT, low light.
图2 光强对玉簪叶片净光合速率(Pn)和气孔导度(Gs)的影响(平均值±标准误差, n = 6)。不同小写字母分别表示全日照(HT)和遮阴(LT)处理后叶片净光合速率和气孔导度的差异显著(p = 0.05)。
Fig. 2 Effects of light intensity on net photosynthetic rate (Pn) and stomatal conductance (Gs) in Hosta leaves (mean ± SE, n = 6). Different lowercase letters indicate significant differences in Pn and Gs between the full sunlight (HT) and low light (LT) treatments, respectively (p = 0.05).
图3 光强对玉簪叶片最大光化学效率(Fv/Fm)的影响(平均值±标准误差, n = 12)。不同小写字母表示全日照(HT)和遮阴(LT)处理后叶片Fv/Fm的差异显著(p = 0.05)。
Fig. 3 Effects of light intensity on the maximum quantum yield of photosystem II photochemistry (Fv/Fm) in Hosta leaves (mean ± SE, n = 12). Different lowercase letters indicate significant difference in Fv/Fm between the full sunlight (HT) and low light (LT) treatments, respectively (p = 0.05).
图4 遮阴转入全日照后玉簪叶片净光合速率(Pn)和气孔导度(Gs)的变化(平均值±标准误差, n = 6)。不同大、小写字母分别代表LT和LHT处理后叶片净光合速率和气孔导度的差异显著(p = 0.05)。LHT, 遮阴转入全日照处理; LT, 遮阴处理。
Fig. 4 Changes in the net photosynthetic rate (Pn) and stomatal conductance (Gs) after transfer from low light to full sunlight in Hosta leaves (mean ± SE, n = 6). Different capital letters and lowercase letters indicate significant differences in Pn and Gs between the LT and LHT treatments, respectively (p = 0.05). LHT, transition from low light to full sunlight; LT, low light.
图5 遮阴转入全日照后玉簪叶片最大光化学效率(Fv/Fm)的变化(平均值±标准误差, n = 12)。不同小写字母表示遮阴处理(LT)和遮阴转全日照处理(LHT)后叶片Fv/Fm的差异显著(p = 0.05)。
Fig. 5 Changes in the maximal photochemical efficiency (Fv/Fm) after transfer from low light to full sunlight in Hosta leaves (mean ± SE, n = 12). Different lowercase letters indicate significant differences in Fv/Fm between the low light (LT) and transition from low light to full sunlight (LHT) treatments, respectively (p = 0.05).
图6 遮阴转入全日照后玉簪叶片快速荧光诱导动力学曲线(OJIP曲线)的变化。LHT, 遮阴转全日照处理; LT, 遮阴处理。day0、day2、day4分别表示转入全日照前和转入全日照下2天和4天。
Fig. 6 Changes in the chlorophyll a fluorescence transients (fluorescence plotted on logarithmic time scale) following transfer from low light to full sunlight in Hosta leaves. LHT, transition from low light to full sunlight; LT, low light. day0, day2, day4 represent grow under low light, and transferred to full sun light for two and four days.
图7 遮阴转入全日照后玉簪叶片快速荧光诱导动力学曲线WO-J和ΔWO-J的变化(时间坐标为线性形式)。LHT, 遮阴转全日照处理; LT, 遮阴处理。day0、day2、day4分别表示转入全日照前和转入全日照下2天和4天。
Fig. 7 Changes in WO-J and ΔWO-J in chlorophyll a fluorescence transients (plotted on a linear time scale) after transfer from low light to full sunlight in Hosta leaves. LHT, transition from low light to full sunlight; LT, low light. day0, day2, day4 represent grow under low light, and transferred to full sun light for two and four days.
移栽后 Days after transfer | Fo | Fm | dV/dt0 | ψ0 | φEo | φDo | PIABS | |
---|---|---|---|---|---|---|---|---|
0 | LT | 507 ± 19.43a | 2 865 ± 63.21a | 0.702 3 ± 0.03a | 0.572 3 ± 0.01a | 0.454 1 ± 0.01a | 0.207 5 ± 0.01a | 26.32 ± 2.01a |
LHT | 507 ± 19.43a | 2 865 ± 63.21a | 0.702 3 ± 0.03a | 0.572 3 ± 0.01a | 0.454 1 ± 0.01a | 0.207 5 ± 0.01a | 26.32 ± 2.01a | |
2 | LT | 501 ± 13.27a | 2 656 ± 58.19a | 0.698 4 ± 0.02a | 0.585 8 ± 0.01ab | 0.457 7 ± 0.01a | 0.219 1 ± 0.00a | 24.26 ± 1.86a |
LHT | 562 ± 31.09b | 1 437 ± 186.2b | 0.867 8 ± 0.05b | 0.469 8 ± 0.01c | 0.245 5 ± 0.03b | 0.488 3 ± 0.05b | 4.28 ± 1.11b | |
4 | LT | 500 ± 9.71a | 2 765 ± 69.86a | 0.656 1 ± 0.02a | 0.611 8 ± 0.01b | 0.483 0 ± 0.00a | 0.210 5 ± 0.00a | 27.95 ± 1.03a |
LHT | 641 ± 17.91c | 1 756 ± 87.01c | 0.962 4 ± 0.03b | 0.501 7 ± 0.01d | 0.296 7 ± 0.01c | 0.409 3 ± 0.02c | 4.74 ± 0.47b |
表1 遮阴转入全日照后快速叶绿素荧光诱导动力学曲线(OJIP曲线)参数的变化(平均值±标准误差, n = 12)
Table 1 Changes in the chlorophyll fluorescence transient parameters after transfer from low light to full sunlight in Hosta leaves (mean ± SE, n = 12)
移栽后 Days after transfer | Fo | Fm | dV/dt0 | ψ0 | φEo | φDo | PIABS | |
---|---|---|---|---|---|---|---|---|
0 | LT | 507 ± 19.43a | 2 865 ± 63.21a | 0.702 3 ± 0.03a | 0.572 3 ± 0.01a | 0.454 1 ± 0.01a | 0.207 5 ± 0.01a | 26.32 ± 2.01a |
LHT | 507 ± 19.43a | 2 865 ± 63.21a | 0.702 3 ± 0.03a | 0.572 3 ± 0.01a | 0.454 1 ± 0.01a | 0.207 5 ± 0.01a | 26.32 ± 2.01a | |
2 | LT | 501 ± 13.27a | 2 656 ± 58.19a | 0.698 4 ± 0.02a | 0.585 8 ± 0.01ab | 0.457 7 ± 0.01a | 0.219 1 ± 0.00a | 24.26 ± 1.86a |
LHT | 562 ± 31.09b | 1 437 ± 186.2b | 0.867 8 ± 0.05b | 0.469 8 ± 0.01c | 0.245 5 ± 0.03b | 0.488 3 ± 0.05b | 4.28 ± 1.11b | |
4 | LT | 500 ± 9.71a | 2 765 ± 69.86a | 0.656 1 ± 0.02a | 0.611 8 ± 0.01b | 0.483 0 ± 0.00a | 0.210 5 ± 0.00a | 27.95 ± 1.03a |
LHT | 641 ± 17.91c | 1 756 ± 87.01c | 0.962 4 ± 0.03b | 0.501 7 ± 0.01d | 0.296 7 ± 0.01c | 0.409 3 ± 0.02c | 4.74 ± 0.47b |
[1] |
Arnon DI (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1-15.
URL PMID |
[2] |
Chaves MM, Flexas J, Pinheiro C (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103, 551-560.
DOI URL PMID |
[3] | Chow WS, Lee HY, Park YI, Park YM, Hong YN, Anderson JM (2002). The role of inactive photosystem-II-mediated quenching in a last-ditch community defence against high light stress in vivo. Philosophical Transactions of the Royal Society B: Biological Sciences, 357, 1441-1450. |
[4] | Faria T, Silvério D, Breia E, Cabral R, Abadia A, Abadia J, Pereira JS, Chaves MM (1998). Differences in the response of carbon assimilation to summer stress (water deficits, high light and temperature) in four Mediterranean tree species. Physiologia Plantarum, 102, 419-428. |
[5] |
Golan T, Müller-Moulé P, Niyogi KK (2006). Photoprotection mutants of Arabidopsis thaliana acclimate to high light by increasing photosynthesis and specific antioxidants. Plant, Cell & Environment, 29, 879-887.
URL PMID |
[6] |
Greer DH, Berry JA, Björkman O (1986). Photoinhibition of photosynthesis in intact bean leaves: role of light and temperature, and requirement for chloroplast-protein synthesis during recovery. Planta, 168, 253-260.
URL PMID |
[7] | Guo LW, Xu DQ, Shen YG (1996). Relation between photorespiration and photoinhibition in cotton leaves. Chinese Science Bulletin, 41, 415-420. |
[8] | Huang JL, Li W, Meng FZ, Hu LP, Zhang ZX (2008). Changes of chlorophyll fluorescence parameters and antioxidative enzymes activities in antisense GVDE tobacco. Scientia Agricultura Sinica, 41, 308-313. (in Chinese with English abstract) |
[黄金丽, 李伟, 孟凡珍, 胡丽萍, 张振贤 (2008). 转反义GVDE基因烟草的叶绿素荧光参数及抗氧化酶活性的变化. 中国农业科学, 41, 308-313.] | |
[9] | Jiang CD, Jiang GM, Wang XZ, Li LH, Biswas DK, Li YG (2006). Increased photosynthetic activities and thermostability of photosystem II with leaf development of elm seedlings ( Ulmus pumila) probed by the fast fluorescence rise OJIP. Environmental and Experimental Botany, 58, 261-268. |
[10] | Jiang CD, Li PM, Gao HY, Zou Q, Jiang GM, Li LH (2005). Enhanced photoprotection at the early stages of leaf expansion in field-grown soybean plants. Plant Science, 168, 911-919. |
[11] |
Jiang CD, Wang X, Gao HY, Shi L, Chow WS (2011). Systemic regulation of leaf anatomical structure, photosynthetic performance, and high-light tolerance in sorghum. Plant Physiology, 155, 1416-1424.
DOI URL PMID |
[12] | Jiang GM (2004). Plant Ecophysiology. Higher Education Press, Beijing. 59-62. (in Chinese) |
[蒋高明 (2004). 植物生理生态学. 高等教育出版社, 北京. 59-62.] | |
[13] |
Külheim C, Ågren J, Jansson S (2002). Rapid regulation of light harvesting and plant fitness in the field. Science, 297(5578), 91-93.
URL PMID |
[14] |
Li PM, Gao HY, Strasser RJ (2005). Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study. Journal of Plant Physiology and Molecular Biology, 31, 559-566. (in Chinese with English abstract)
URL PMID |
[李鹏民, 高辉远, Strasser RJ (2005). 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理与分子生物学学报, 31, 559-566.]
PMID |
|
[15] | Liu DH, Zhao SW (2012). The impacts of light levels on growth and ornamental characteristics of Hosta. Acta Horticulturae, 977, 183-188. |
[16] | Lü XK, Xu CH, Shu XY (2004). Characteristics of photosynthesis in three Dendrobium species. Chinese Traditional and Herbal Drugs, 35, 1296-1298. (in Chinese with English abstract) |
[吕献康, 徐春华, 舒小英 (2004). 3种石斛的光合特性研究. 中草药, 35, 1296-1298.] | |
[17] |
Niyogi KK (1999). Photoprotection revisited: genetic and molecular approaches. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 333-359.
DOI URL PMID |
[18] |
Niyogi KK, Grossman AR, Björkman O (1998). Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. The Plant Cell, 10, 1121-1134.
URL PMID |
[19] |
Öquist G, Anderson JM, McCaffery S, Chow WS (1992). Mechanistic differences in photoinhibition of sun and shade plants. Planta, 188, 422-431.
DOI URL PMID |
[20] | Osmond CB (1981). Photorespiration and photoinhibition: some implications for the energetics of photosynthesis. Biochimica et Biophysica Acta (BBA)—Reviews on Bioenergetics, 639, 77-98. |
[21] | Park YI, Chow WS, Anderson JM (1995). Light inactivation of functional photosystem II in leaves of peas grown in moderate light depends on photon exposure. Planta, 196, 401-411. |
[22] | Qi XX, Jiang YS, Wei X, Tang H, Xiong ZC, Ye WH, Wang ZM (2012). Photosynthetic characteristic of an endangered species Camellia nitidissima and its conservation implications. Pakistan Journal of Botany, 44, 327-331. |
[23] | Quick WP, Stitt M (1989). An examination of factors contributing to non-photochemical quenching of chlorophyll fluorescence in barley leaves. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 977, 287-296. |
[24] | Srivastava A, Guissé B, Greppin H, Strasser RJ (1997). Regulation of antenna structure and electron transport in Photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Biochimica et Biophysica Acta (BBA)— Bioenergetics, 1320, 95-106. |
[25] | Srivastava A, Strasser RJ (1996). Stress and stress management of land plants during a regular day. Journal of Plant Physiology, 148, 445-455. |
[26] | Strasser BJ, Strasser RJ (1995). Measuring fast fluorescence transients to address environmental questions: the JIP-test. Photosynthesis: from Light to Biosphere, 5, 977-980. |
[27] | Strasser RJ, Srivastava A, Tsimilli-Michael M (2000). The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P eds. Probing Photosynthesis: Mechanism, Regulation and Adaptation. Taylor and Francis Press, London. 445-483. |
[28] | Strasser RJ, Tsimilli-Michael M, Srivastava A (2004). Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G, Govindjee eds. Advances in Photosynthesis and Respiration. Springer, Dordrecht, The Netherlands. 321-362. |
[29] | Tan XX, Xu DQ, Shen YG (1997). Relationship between state transition and photoinhibition of photosynthesis in wheat leaves. Chinese Science Bulletin, 42, 1839-1843. |
[30] |
Tholen D, Boom C, Zhu XG (2012). Opinion: prospects for improving photosynthesis by altering leaf anatomy. Plant Science, 197, 92-101.
URL PMID |
[31] | Wang CJ, Li ZQ, Wang XL, Jiang CD, Tang YD, Gu WB, Shi L (2011). Effects of salt stress on photosystem II activity in sweet sorghum seedlings grown in pots outdoors. Acta Agronomica Sinica, 37, 2085-2093. (in Chinese with English abstract) |
[王彩娟, 李志强, 王晓琳, 姜闯道, 唐宇丹, 谷卫彬, 石雷 (2011). 室外盆栽条件下盐胁迫对甜高粱光系统II活性的影响. 作物学报, 37, 2085-2093.] | |
[32] |
Wang XL, Li ZQ, Jiang CD, Shi L, Xing Q, Liu LA (2012). Effects of diffuse and direct light on photosynthetic function in sorghum leaf. Acta Agronomica Sinica, 38, 1452-1459. (in Chinese with English abstract)
DOI URL |
[王晓琳, 李志强, 姜闯道, 石雷, 邢全, 刘立安 (2012). 散射光和直射光对高粱叶片光合功能的影响. 作物学报, 38, 1452-1459.] | |
[33] | Yang XH, Zou Q, Zhao SJ (2005). Photosynthetic characteristics and chlorophyll fluorescence in leaves of cotton plants grown in full light and 40% sunlight. Acta Phytoecologica Sinica, 29, 8-15. (in Chinese with English abstract) |
[杨兴洪, 邹琦, 赵世杰 (2005). 遮荫和全光下生长的棉花光合作用和叶绿素荧光特征. 植物生态学报, 29, 8-15.] | |
[34] | Zhang SR (1999). A discussion on chlorophyll fluorescence kinetics parameters and their significance. Chinese Bulletin of Botany, 16, 444-448. (in Chinese with English abstract) |
[张守仁 (1999). 叶绿素荧光动力学参数的意义及讨论. 植物学通报, 16, 444-448.] |
[1] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[2] | 蒋海港, 曾云鸿, 唐华欣, 刘伟, 李杰林, 何国华, 秦海燕, 王丽超, 姚银安. 三种藓类植物固碳耗水节律调节作用[J]. 植物生态学报, 2023, 47(7): 988-997. |
[3] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[4] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[5] | 刘海燕, 臧纱纱, 张春霞, 左进城, 阮祚禧, 吴红艳. 磷饥饿下硅藻光系统II光化学反应及其对高光强的响应[J]. 植物生态学报, 2023, 47(12): 1718-1727. |
[6] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[7] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
[8] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[9] | 靳川, 李鑫豪, 蒋燕, 徐铭泽, 田赟, 刘鹏, 贾昕, 查天山. 黑沙蒿光合能量分配组分在生长季的相对变化与调控机制[J]. 植物生态学报, 2021, 45(8): 870-879. |
[10] | 武洪敏, 双升普, 张金燕, 寸竹, 孟珍贵, 李龙根, 沙本才, 陈军文. 短期生长环境光强骤增导致典型阴生植物三七光系统受损的机制[J]. 植物生态学报, 2021, 45(4): 404-419. |
[11] | 周稳, 迟永刚, 周蕾. 基于日光诱导叶绿素荧光的北半球森林物候研究[J]. 植物生态学报, 2021, 45(4): 345-354. |
[12] | 叶子飘, 于冯, 安婷, 王复标, 康华靖. 植物气孔导度对CO2响应模型的构建[J]. 植物生态学报, 2021, 45(4): 420-428. |
[13] | 丁键浠, 周蕾, 王永琳, 庄杰, 陈集景, 周稳, 赵宁, 宋珺, 迟永刚. 叶绿素荧光主动与被动联合观测应用前景[J]. 植物生态学报, 2021, 45(2): 105-118. |
[14] | 李景, 王欣, 王振华, 王斌, 王成章, 邓美凤, 刘玲莉. 臭氧和气溶胶复合污染对杨树叶片光合作用的影响[J]. 植物生态学报, 2020, 44(8): 854-863. |
[15] | 郭庆华, 胡天宇, 马勤, 徐可心, 杨秋丽, 孙千惠, 李玉美, 苏艳军. 新一代遥感技术助力生态系统生态学研究[J]. 植物生态学报, 2020, 44(4): 418-435. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19