植物生态学报 ›› 2020, Vol. 44 ›› Issue (8): 854-863.DOI: 10.17521/cjpe.2020.0022
所属专题: 光合作用
李景1,2, 王欣1, 王振华1,2, 王斌1,2, 王成章1,2, 邓美凤1, 刘玲莉1,2,*()
收稿日期:
2020-01-18
接受日期:
2020-06-03
出版日期:
2020-08-20
发布日期:
2020-07-10
通讯作者:
刘玲莉
作者简介:
* lingli.liu@ibcas.ac.cn基金资助:
LI Jing1,2, WANG Xin1, WANG Zhen-Hua1,2, WANG Bin1,2, WANG Cheng-Zhang1,2, DENG Mei-Feng1, LIU Ling-Li1,2,*()
Received:
2020-01-18
Accepted:
2020-06-03
Online:
2020-08-20
Published:
2020-07-10
Contact:
LIU Ling-Li
Supported by:
摘要:
由于经济的快速发展, 中国大部分地区正面临着严峻的复合型大气污染, 其中臭氧和气溶胶是两种主要污染物。已有的研究表明臭氧对叶片的氧化性伤害能够抑制光合作用, 而气溶胶可通过增加散射辐射比例或缓解高温抑制促进光合作用。但复合污染下, 臭氧和气溶胶如何共同调控叶片光合作用, 仍缺乏研究。该研究利用北京及周边地区之间的污染梯度, 选择加杨(Populus × canadensis)作为实验对象, 于2012-2013年生长季期间对叶片光合速率进行连续观测, 并同时监测臭氧浓度(AOT40)、气溶胶光学厚度(AOD)、空气温度和冠层内外光合有效辐射(PAR)等环境因子, 以期探讨大气复合污染下臭氧和气溶胶变化对植物叶片光合作用的影响及相关机制。结果表明: (1)臭氧浓度与空气温度、气溶胶浓度之间均呈显著正相关关系, 但气溶胶浓度与空气温度没有显著相关关系; (2)臭氧浓度增加显著抑制了阳生叶片的光合作用, 但气溶胶浓度上升促进了阳生叶片的光合作用; 臭氧浓度升高对阴生叶片光合作用的影响较小, 但气溶胶浓度上升促进了阴生叶片的光合作用; (3)标准化后的结果显示, 臭氧对阳生叶片光合作用的影响最大, 此时气溶胶的促进作用一定程度上补偿了臭氧浓度上升所带来的抑制效应。对于阴生叶片光合作用而言, 气溶胶则是最重要的影响因素。该研究发现复合污染下阴生叶和阳生叶光合响应不同, 这表明冠层结构可能通过影响阴生叶和阳生叶的比例, 从而对植物生长产生不同影响。该研究对理解大气复合污染如何影响光合作用提供了的机理支持, 同时也表明, 为了维持生态系统生产力及功能, 需要同时控制气溶胶和臭氧污染。
李景, 王欣, 王振华, 王斌, 王成章, 邓美凤, 刘玲莉. 臭氧和气溶胶复合污染对杨树叶片光合作用的影响. 植物生态学报, 2020, 44(8): 854-863. DOI: 10.17521/cjpe.2020.0022
LI Jing, WANG Xin, WANG Zhen-Hua, WANG Bin, WANG Cheng-Zhang, DENG Mei-Feng, LIU Ling-Li. Effects of ozone and aerosol pollution on photosynthesis of poplar leaves. Chinese Journal of Plant Ecology, 2020, 44(8): 854-863. DOI: 10.17521/cjpe.2020.0022
图1 北京及其周边地区气温、臭氧浓度(AOT40)和气溶胶光学厚度(AOD)之间的关系。直线为通过显著性检验(p < 0.01)的回归线, 灰色阴影区域为95%的置信区间。
Fig. 1 Relationships among air temperature, ozone concentration (AOT40) and aerosol optical depth (AOD) in Beijing and surrounding areas. The black line is the regression line for all data of the three sites (p < 0.01), and the gray areas is the 95% confidence band for the regression curve.
图2 气溶胶光学厚度(AOD)与光合有效辐射(PAR)的关系。直线为通过显著性检验(p < 0.05)的回归线, 灰色阴影区域为95%的置信区间。
Fig. 2 Photosynthetically active radiation (PAR) under different aerosol optical depth (AOD). The black line is the regression line for all data of the three sites (p < 0.01), and the gray areas is the 95% confidence band for the regression curve.
图3 叶片光合作用与污染物之间的关系。直线为通过显著性检验(p < 0.01)的回归线, 灰色阴影区域为95%的置信区间。AOD, 气溶胶光学厚度; AOT40, 超过40 nmol·mol-1的小时臭氧浓度累积量。
Fig. 3 Relationships between the photosynthesis of leaves and pollutants. The black line is the regression line for all data of the three sites (p < 0.01), and the gray areas is the 95% confidence band for the regression curve. AOD, aerosol optical depth; AOT40, accumulative concentration of ozone that more than 40 nmol·mol-1; Pn, photosynthetic rate.
图4 气溶胶和臭氧对叶片光合速率的影响。黑色实线表示显著正相关, 灰色实线表示显著负相关, 灰色虚线表示相关性不显著(p > 0.05); 线的粗线代表相关关系大小。数字为标准化的路径系数, 表示相关关系大小。星号表示显著性水平, 其中**, p < 0.05; ***, p < 0.01。AOD, 气溶胶光学厚度; AOT40, 超过40 nmol·mol-1的小时臭氧浓度累积量; PARi, 冠层内部接收的光合有效辐射; PARo, 冠层外部接收的光合有效辐射; Tair, 气温。
Fig. 4 Direct and indirect effects of aerosol and ozone on leaf photosynthesis. Black and grey solid lines indicate significantly positive and negative correlation, respectively. Gray dash lines indicate correlations that are not significant (p > 0.05). The width of the lines indicates the strength of the correlations. Numbers adjacent to lines are standardized path coefficients and indicate the size of effects. Asterisks indicate significance level. **, p < 0.05; ***, p < 0.01. The model goodness of fits is suggested by c2 and p-values (a: c2 = 3.22, p = 0.07; b: c2 = 0.56, p = 0.76). AOD, aerosol optical depth; AOT40, accumulative concentration of ozone that more than 40 nmol·mol-1; PARi, photosynthetically active radiation of internal canopy; PARo, photosynthetically active radiation of external canopy; Pn, photosynthetic rate.
[1] |
Badarinath KVS, Kharol SK, Kaskaoutis DG, Kambezidis HD (2007). Influence of atmospheric aerosols on solar spectral irradiance in an urban area. Journal of Atmospheric and Solar-Terrestrial Physics, 69, 589-599.
DOI URL |
[2] |
Chai FH, Gao J, Chen ZX, Wang SL, Zhang YC, Zhang JQ, Zhang HF, Yun YR, Ren C (2014). Spatial and temporal variation of particulate matter and gaseous pollutants in 26 cities in China. Journal of Environmental Sciences (China), 26, 75-82.
DOI URL |
[3] |
Chen CP, Frank TD, Long SP (2009). Is a short, sharp shock equivalent to long-term punishment? Contrasting the spatial pattern of acute and chronic ozone damage to soybean leaves via chlorophyll fluorescence imaging. Plant, Cell & Environment, 32, 327-335.
DOI URL PMID |
[4] |
Dillaway DN, Kruger EL (2010). Thermal acclimation of photosynthesis: a comparison of boreal and temperate tree species along a latitudinal transect. Plant, Cell & Environment, 33, 888-899.
DOI URL PMID |
[5] | Doughty CE, Flanner MG, Goulden ML (2010). Effect of smoke on subcanopy shaded light, canopy temperature, and carbon dioxide uptake in an Amazon rainforest. Global Biogeochemical Cycles, 24, GB3015. DOI: 10.1029/ 2009gb003670. |
[6] |
Ji DS, Wang YS, Wang LL, Chen LF, Hu B, Tang GQ, Xin JY, Song T, Wen TX, Sun Y, Pan YP, Liu ZR (2012). Analysis of heavy pollution episodes in selected cities of Northern China. Atmospheric Environment, 50, 338-348.
DOI URL |
[7] | Knohl A, Baldocchi DD (2008). Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem. Journal of Geophysical Research: Biogeosciences, 113, G02023. DOI: 10.1029/2007jg000663. |
[8] | Li BG, Ran Y, Tao S (2008). Seasonal variation and spatial distribution of atmospheric aerosols in Beijing. Acta Scientiae Circumstantiae, 28, 1425-1429. |
[ 李本纲, 冉阳, 陶澍 (2008). 北京市气溶胶的时间变化与空间分布特征. 环境科学学报, 28, 1425-1429.] | |
[9] |
Li BW, Ho SSH, Xue YG, Huang Y, Wang LQ, Cheng Y, Dai WT, Zhong HB, Cao JJ, Lee S (2017). Characterizations of volatile organic compounds (VOCs) from vehicular emissions at roadside environment: the first comprehensive study in Northwestern China. Atmospheric Environment, 161, 1-12.
DOI URL |
[10] | Li K, Jacob DJ, Liao H, Shen L, Zhang Q, Bates KH (2019). Anthropogenic drivers of 2013-2017 trends in summer surface ozone in China. Proceedings of the National Academy of Sciences of the United States of America, 116, 422-427. |
[11] |
Li L, Chen ZM, Zhang YH, Zhu T, Li JL, Ding J (2006). Kinetics and mechanism of heterogeneous oxidation of sulfur dioxide by ozone on surface of calcium carbonate. Atmospheric Chemistry and Physics, 6, 2453-2464.
DOI URL |
[12] |
Li LJ, Wang B, Zhou TJ (2007). Contributions of natural and anthropogenic forcings to the summer cooling over Eastern China: an AGCM study. Geophysical Research Letters, 34, L18807. DOI: 10.1029/2007GL030541.
DOI URL |
[13] | Li P, Feng ZZ, Shang B, Yuan XY, Dai LL, Xu YS (2018). Stomatal characteristics and ozone dose-response relationships for six greening tree species. Acta Ecologica Sinica, 38, 2710-2721. |
[ 李品, 冯兆忠, 尚博, 袁相洋, 代碌碌, 徐彦森 (2018). 6种绿化树种的气孔特性与臭氧剂量的响应关系. 生态学报, 38, 2710-2721.] | |
[14] |
Li Y, Zhou L, Wang SQ, Chi YG, Chen JH (2018). Leaf temperature and vapour pressure deficit (VPD) driving stomatal conductance and biochemical processes of leaf photosynthetic rate in a subtropical evergreen coniferous plantation. Sustainability, 10, 1-13.
DOI URL PMID |
[15] | Liu CG, Wang MY, Liu N, Ding CJ, Gu BG, Chen C, Ning K, Su XH, Huang QJ (2018). Effects of different irradiation duration on growth and photosynthetic characteristics of Populus × euramericana seedlings. Scientia Silvae Sinicae, 54(12), 33-41. |
[ 刘成功, 王明援, 刘宁, 丁昌俊, 顾炳国, 陈存, 宁坤, 苏晓华, 黄秦军 (2018). 不同光照时间对加杨幼苗生长和光合特性的影响. 林业科学, 54(12), 33-41.] | |
[16] |
Liu Q, Liu TQ, Chen YH, Xu JM, Gao W, Zhang H, Yao YF (2019). Effects of aerosols on the surface ozone generation via a study of the interaction of ozone and its precursors during the summer in Shanghai, China. The Science of the Total Environment, 675, 235-246.
DOI URL PMID |
[17] | Liu XW, Xu XB, Lin WL (2010). Variation characteristics of surface O3 in Beijing and its surrounding area. China Environmental Science, 30, 946-953. |
[ 刘希文, 徐晓斌, 林伟立 (2010). 北京及周边地区典型站点近地面O3的变化特征. 中国环境科学, 30, 946-953.] | |
[18] | Lu MZ, Hu JJ (2006). Research and application status of transgenic poplar in China. China Forestry Science and Technology, (6), 1-4. |
[ 卢孟柱, 胡建军 (2006). 我国转基因杨树的研究及应用现状. 林业科技开发, (6), 1-4.] | |
[19] |
Lyu XP, Chen N, Guo H, Zhang WH, Wang N, Wang Y, Liu M (2016). Ambient volatile organic compounds and their effect on ozone production in Wuhan, central China. The Science of the Total Environment, 541, 200-209.
DOI URL PMID |
[20] |
Manninen S, Siivonen N, Timonen U, Huttunen S (2003). Differences in ozone response between two Finnish wild strawberry populations. Environmental and Experimental Botany, 49, 29-39.
DOI URL |
[21] |
McAusland L, Vialet-Chabrand S, Davey P, Baker NR, Brendel O, Lawson T (2016). Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. New Phytologist, 211, 1209-1220.
DOI URL |
[22] |
McLaughlin SB, Downing DJ (1995). Interactive effects of ambient ozone and climate measured on growth of mature forest trees. Nature, 374, 252-254.
DOI URL |
[23] |
Pauls KP, Thompson JE (1980). In vitro simulation of senescence- related membrane damage by ozone-induced lipid peroxidation. Nature, 283, 504-506.
DOI URL PMID |
[24] |
Pell EJ, Eckardt NA, Glick RE (1994). Biochemical and molecular basis for impairment of photosynthetic potential. Photosynthesis Research, 39, 453-462.
DOI URL PMID |
[25] |
Rap A, Spracklen DV, Mercado LM, Reddington CL, Haywood JM, Ellis R, Phillips OL, Artaxo P, Bonal D, Restrepo Coupe N, Butt N (2015). Fires increase Amazon forest productivity through increases in diffuse radiation. Geophysical Research Letters, 42, 4654-4662.
DOI URL |
[26] | Ren W, Tian HQ (2007). Effects of ozone pollution on terrestrial ecosystem productivity. Journal of Plant Ecology (Chinese Version), 31, 219-230. |
[ 任巍, 田汉勤 (2007). 臭氧污染与陆地生态系统生产力. 植物生态学报, 31, 219-230.] | |
[27] |
Roderick ML, Farquhar GD, Berry SL, Noble IR (2001). On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia, 129, 21-30.
DOI URL PMID |
[28] | Shang B, Feng ZZ, Li P, Yuan XY, Xu YS, Calatayud V (2017). Ozone exposure- and flux-based response relationships with photosynthesis, leaf morphology and biomass in two poplar clones. The Science of the Total Environment, 603-604-185-195. |
[29] | Shen SH, Tao Y, Zhang FM (2008). Comparison of the stomatal conductance and photosynthetic rate of cotton’s sunlit and shaded leaves, and application of photosynthesis model. Journal of Nanjing Institute of Meteorology, 31, 468-472. |
[ 申双和, 陶寅, 张方敏 (2008). 棉花阴、阳叶的气孔导度和光合作用观测对比及模型应用. 南京气象学院学报, 31, 468-472.] | |
[30] |
Shi CZ, Wang SS, Liu R, Zhou R, Li DH, Wang WX, Li ZQ, Cheng TT, Zhou B (2015). A study of aerosol optical properties during ozone pollution episodes in 2013 over Shanghai, China. Atmospheric Research, 153, 235-249.
DOI URL |
[31] |
Steiner AL, Chameides WL (2005). Aerosol-induced thermal effects increase modelled terrestrial photosynthesis and transpiration. Tellus B, 57, 404-411.
DOI URL |
[32] | Tie XX, Madronich S, Walters S, Edwards DP, Ginoux P, Mahowald N, Zhang RY, Lou C, Brasseur G (2005). Assessment of the global impact of aerosols on tropospheric oxidants. Journal of Geophysical Research, 110, D03204. DOI: 10.1029/2004JD005359. |
[33] |
Urban J, Ingwers MW, McGuire MA, Teskey RO (2017). Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides × nigra. Journal of Experimental Botany, 68, 1757-1767.
DOI URL PMID |
[34] | Wang J, Zhang HX, Wang XK, Ouyang ZY, Mou YJ (2011). Study on air pollutants in three representative regions of Beijing. Environmental Chemistry, 30, 2047-2053. |
[ 王姣, 张红星, 王效科, 欧阳志云, 牟玉静 (2011). 北京市三种典型区域大气污染研究. 环境化学, 30, 2047-2053.] | |
[35] |
Wang T, Xue LK, Brimblecombe P, Lam YF, Li L, Zhang L (2017). Ozone pollution in China: a review of concentrations, meteorological influences, chemical precursors, and effects. Science of The Total Environment, 575, 1582-1596.
DOI URL |
[36] |
Wang X, Wu J, Chen M, Xu XT, Wang ZH, Wang B, Wang CZ, Piao SL, Lin WL, Miao GF, Deng MF, Qiao CL, Wang J, Xu S, Liu LL (2018). Field evidences for the positive effects of aerosols on tree growth. Global Change Biology, 24, 4983-4992.
DOI URL PMID |
[37] |
Wang YG, Ying Q, Hu JL, Zhang HL (2014). Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013-2014. Environment International, 73, 413-422.
DOI URL |
[38] |
Wang YP, Leuning R (1998). A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I: description and comparison with a multi-layered model. Agricultural and Forest Meteorology, 91, 89-111.
DOI URL |
[39] |
Wang ZH, Wang CZ, Wang B, Wang X, Li J, Wu J, Liu LL (2020). Interactive effects of air pollutants and atmospheric moisture stress on aspen growth and photosynthesis along an urban-rural gradient. Environmental Pollution, 260, 114076. DOI: 10.1016/j.envpol.2020.114076.
DOI URL PMID |
[40] | Wang ZY, Hao LQ, Zhang WJ (2007). Gas/particle partitioning theory for secondary organic aerosol. Progress in Chemistry, 19, 93-100. |
[ 王振亚, 郝立庆, 张为俊 (2007). 二次有机气溶胶的气体/粒子分配理论. 化学进展, 19, 93-100.] | |
[41] |
Wittig VE, Ainsworth EA, Long SP (2007). To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments. Plant, Cell & Environment, 30, 1150-1162.
DOI URL PMID |
[42] | Xu S, He XY, Chen W, Tao DL, Xu WD (2009). Impact of elevated O3 on eco-physiology of trees. Acta Ecologica Sinica, 29, 368-377. |
[ 徐胜, 何兴元, 陈玮, 陶大立, 徐文铎 (2009). 高浓度O3对树木生理生态的影响. 生态学报, 29, 368-377.] | |
[43] |
Xue J, Yuan ZB, Griffith SM, Yu X, Lau AKH, Yu JZ (2016). Sulfate formation enhanced by a cocktail of high NOx, SO2, particulate matter, and droplet pH during haze-fog events in megacities in China: an observation-based modeling investigation. Environmental Science & Technology, 50, 7325-7334.
DOI URL PMID |
[44] | Yang SJ, Dong JQ, Cheng BR (2000). Characteristics of air particulate matter and their sources in urban and rural area of Beijing, China. Journal of Environmental Sciences, 12, 402-409. |
[45] |
Yu GR, Jia YL, He NP, Zhu JX, Chen Z, Wang QF, Piao SL, Liu XJ, He HL, Guo XB, Wen Z, Li P, Ding GA, Goulding KWT (2019). Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience, 12, 424-429.
DOI URL |
[46] | Yu H, Shang H, Chen Z, Cao JX (2016). Effects of elevated O3 level on photosynthesis and injury of Phoebe and Machilus seedlings in subtropical China. Forest Research, 29, 902-910. |
[ 于浩, 尚鹤, 陈展, 曹吉鑫 (2016). O3胁迫对三种楠木幼苗光合作用的影响及伤害症状. 林业科学研究, 29, 902-910.] | |
[47] | Yuan XY, Zhang WW, Sun JS, Hu EZ, Zhang YL, Zhang HX, Tian Y, Feng ZZ (2014). Influence of ozone on snap bean under ambient air in two sites of Northern China. Environmental Science, 35, 3128-3134. |
[ 袁相洋, 张巍巍, 孙敬松, 胡恩柱, 张玉龙, 张红星, 田媛, 冯兆忠 (2014). 我国北方两地环境臭氧浓度对矮菜豆生长的影响. 环境科学, 35, 3128-3134.] | |
[48] |
Zhang ZY, Zhang XL, Gong DY, Quan WJ, Zhao XJ, Ma ZQ, Kim S (2015). Evolution of surface O3 and PM2.5 concentrations and their relationships with meteorological conditions over the last decade in Beijing. Atmospheric Environment, 108, 67-75.
DOI URL |
[49] |
Zhao PS, Dong F, Yang YD, He D, Zhao XJ, Zhang WZ, Yao Q, Liu HY (2013). Characteristics of carbonaceous aerosol in the region of Beijing, Tianjin, and Hebei, China. Atmospheric Environment, 71, 389-398.
DOI URL |
[50] |
Zhu T, Shang J, Zhao DF (2010). The roles of heterogeneous chemical processes in the formation of an air pollution complex and gray haze. Scientia Sinica: Chimica, 40, 1731-1740.
DOI URL |
[ 朱彤, 尚静, 赵德峰 (2010). 大气复合污染及灰霾形成中非均相化学过程的作用. 中国科学: 化学, 40, 1731-1740.] |
[1] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[2] | 蒋海港, 曾云鸿, 唐华欣, 刘伟, 李杰林, 何国华, 秦海燕, 王丽超, 姚银安. 三种藓类植物固碳耗水节律调节作用[J]. 植物生态学报, 2023, 47(7): 988-997. |
[3] | 刘海燕, 臧纱纱, 张春霞, 左进城, 阮祚禧, 吴红艳. 磷饥饿下硅藻光系统II光化学反应及其对高光强的响应[J]. 植物生态学报, 2023, 47(12): 1718-1727. |
[4] | 马艳泽, 杨熙来, 徐彦森, 冯兆忠. 四种常见树木叶片光合模型关键参数对臭氧浓度升高的响应[J]. 植物生态学报, 2022, 46(3): 321-329. |
[5] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[6] | 靳川, 李鑫豪, 蒋燕, 徐铭泽, 田赟, 刘鹏, 贾昕, 查天山. 黑沙蒿光合能量分配组分在生长季的相对变化与调控机制[J]. 植物生态学报, 2021, 45(8): 870-879. |
[7] | 武洪敏, 双升普, 张金燕, 寸竹, 孟珍贵, 李龙根, 沙本才, 陈军文. 短期生长环境光强骤增导致典型阴生植物三七光系统受损的机制[J]. 植物生态学报, 2021, 45(4): 404-419. |
[8] | 叶子飘, 于冯, 安婷, 王复标, 康华靖. 植物气孔导度对CO2响应模型的构建[J]. 植物生态学报, 2021, 45(4): 420-428. |
[9] | 冯兆忠, 袁相洋, 李品, 尚博, 平琴, 胡廷剑, 刘硕. 地表臭氧浓度升高对陆地生态系统影响的研究进展[J]. 植物生态学报, 2020, 44(5): 526-542. |
[10] | 冯兆忠, 徐彦森, 尚博. FACE实验技术和方法回顾及其在全球变化研究中的应用[J]. 植物生态学报, 2020, 44(4): 340-349. |
[11] | 李旭, 吴婷, 程严, 谭钠丹, 蒋芬, 刘世忠, 褚国伟, 孟泽, 刘菊秀. 南亚热带常绿阔叶林4个树种对增温的生理生态适应能力比较[J]. 植物生态学报, 2020, 44(12): 1203-1214. |
[12] | 周慧敏, 李品, 冯兆忠, 张殷波. 地表臭氧浓度升高与干旱交互作用对杨树非结构性碳水化合物积累和叶根分配的短期影响[J]. 植物生态学报, 2019, 43(4): 296-304. |
[13] | 刘校铭, 杨晓芳, 王璇, 张守仁. 暖温带落叶阔叶林辽东栎和五角枫生长和光合生理生态特征对模拟氮沉降的响应[J]. 植物生态学报, 2019, 43(3): 197-207. |
[14] | 李鑫豪, 闫慧娟, 卫腾宙, 周文君, 贾昕, 查天山. 油蒿资源利用效率在生长季的相对变化及对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 889-898. |
[15] | 张娜, 朱阳春, 李志强, 卢信, 范如芹, 刘丽珠, 童非, 陈静, 穆春生, 张振华. 淹水和干旱生境下铅对芦苇生长、生物量分配和光合作用的影响[J]. 植物生态学报, 2018, 42(2): 229-239. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19