植物生态学报 ›› 2018, Vol. 42 ›› Issue (2): 229-239.DOI: 10.17521/cjpe.2017.0218
张娜1,2,3,朱阳春1,李志强5,卢信1,范如芹1,刘丽珠1,童非1,陈静3,穆春生4,*(),张振华1,*>(
)
出版日期:
2018-02-20
发布日期:
2018-04-16
通讯作者:
穆春生,张振华
基金资助:
ZHANG Na1,2,3,ZHU Yang-Chun1,LI Zhi-Qiang5,LU Xin1,FAN Ru-Qin1,LIU Li-Zhu1,TONG Fei1,CHEN Jing3,MU Chun-Sheng4,*(),ZHANG Zhen-Hua1,*(
)
Online:
2018-02-20
Published:
2018-04-16
Contact:
Chun-Sheng MU,Zhen-Hua ZHANG
Supported by:
摘要:
芦苇(Phragmites australis)作为典型的根茎型多年生湿地植物, 具有广泛的环境耐受性。该研究采用盆栽实验, 采取裂区实验设计, 水分处理为主区, 包括淹水和干旱两个水平, 铅(Pb)为副区, 包括0、500、1500、3β000、4β500 mg·kg-1 5个水平, 共10个处理, 每个处理12个重复, 研究淹水和干旱条件下Pb污染对芦苇生长、生物量分配及光合作用的影响, 以期明确不同生境下芦苇适应或忍耐重金属污染而采取的策略, 为芦苇应用于湿地恢复和污染修复提供理论依据。结果表明, 在淹水处理中, Pb显著抑制地下芽形成和根茎生长, 但对子株数没有影响; 与母株相比子株具有高的日生长速率、光合速率和生物量(母株的3-7倍)。在干旱环境中, Pb显著抑制根、地下芽和根茎生长, 母株和子株生物量积累及光合作用, 且这些指标均小于淹水处理的。无论在淹水还是干旱环境中, 芦苇体内绝大部分Pb积累在根中, 根茎和子株中Pb含量较少, 被转运至母株中的Pb大约是子株的3倍。淹水条件下子株体内Pb含量小于干旱处理的。结果表明, 干旱和Pb的协同作用显著抑制芦苇生长、生物量积累和光合作用, 可能导致子株生产力和种群密度减小甚至种群衰退。但淹水芦苇能够采取相应的Pb分配策略减缓Pb污染对芦苇生长、生理和繁殖的负面影响, 有利于芦苇种群的繁衍和稳定。
张娜, 朱阳春, 李志强, 卢信, 范如芹, 刘丽珠, 童非, 陈静, 穆春生, 张振华. 淹水和干旱生境下铅对芦苇生长、生物量分配和光合作用的影响. 植物生态学报, 2018, 42(2): 229-239. DOI: 10.17521/cjpe.2017.0218
ZHANG Na, ZHU Yang-Chun, LI Zhi-Qiang, LU Xin, FAN Ru-Qin, LIU Li-ZhuTONG , Fei, CHEN Jing, MU Chun-Sheng, ZHANG Zhen-Hua. Effect of Pb pollution on the growth, biomass allocation and photosynthesis of Phragmites australis in flood and drought environment. Chinese Journal of Plant Ecology, 2018, 42(2): 229-239. DOI: 10.17521/cjpe.2017.0218
重复测量分析 Repeated measure (p) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
铅 Pb | 水 Water | 铅 × 水 Pb × water | 时间 Time | 时间 × 铅 Time × Pb | 时间 × 水 Time × Water | 时间 × 铅 × 水 Time × Pb × Water | ||||||
母株生长 Growth of parent shoot | ||||||||||||
茎长 Stem length | < 0.001 | < 0.001 | < 0.01 | < 0.001 | < 0.01 | < 0.001 | < 0.001 | |||||
叶片死亡数 No. of dead leaves | 0.366 | < 0.001 | < 0.05 | < 0.001 | < 0.001 | < 0.001 | < 0.05 | |||||
子株生长 Growth of offspring shoot | ||||||||||||
茎长 Stem length | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | |||||
叶片死亡数 No. of dead leaves | 0.168 | < 0.001 | 0.913 | < 0.001 | < 0.05 | < 0.001 | 0.742 | |||||
生长指标 Growth parameters | 双因素方差分析 Two-way AVONA | |||||||||||
铅 Pb | 水 Water | 铅×水 Pb × water | ||||||||||
F | p | F | p | F | p | |||||||
母株叶片死亡率 Leaf mortality in parent shoots | 2.496 | 0.054 | 2.461 | 0.127 | 0.932 | 0.459 | ||||||
子株叶片死亡率 Leaf mortality in offspring shoots | 7.086 | < 0.001 | 2.185 | 0.150 | 4.353 | < 0.01 |
表1 铅和水分影响芦苇母株、子株生长的重复测量和双因素方差分析结果
Table 1 Results of Repeated-measures and two-way ANOVA of the effect of Pb and water stress on growth of mother and daughter shoots of Phragmites australis
重复测量分析 Repeated measure (p) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
铅 Pb | 水 Water | 铅 × 水 Pb × water | 时间 Time | 时间 × 铅 Time × Pb | 时间 × 水 Time × Water | 时间 × 铅 × 水 Time × Pb × Water | ||||||
母株生长 Growth of parent shoot | ||||||||||||
茎长 Stem length | < 0.001 | < 0.001 | < 0.01 | < 0.001 | < 0.01 | < 0.001 | < 0.001 | |||||
叶片死亡数 No. of dead leaves | 0.366 | < 0.001 | < 0.05 | < 0.001 | < 0.001 | < 0.001 | < 0.05 | |||||
子株生长 Growth of offspring shoot | ||||||||||||
茎长 Stem length | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | |||||
叶片死亡数 No. of dead leaves | 0.168 | < 0.001 | 0.913 | < 0.001 | < 0.05 | < 0.001 | 0.742 | |||||
生长指标 Growth parameters | 双因素方差分析 Two-way AVONA | |||||||||||
铅 Pb | 水 Water | 铅×水 Pb × water | ||||||||||
F | p | F | p | F | p | |||||||
母株叶片死亡率 Leaf mortality in parent shoots | 2.496 | 0.054 | 2.461 | 0.127 | 0.932 | 0.459 | ||||||
子株叶片死亡率 Leaf mortality in offspring shoots | 7.086 | < 0.001 | 2.185 | 0.150 | 4.353 | < 0.01 |
水分 Water level | 处理时间 Treatment time (d) | 指标 Parameter | 铅处理浓度 Pb concentration of treatments (mg·kg-1) | ||||
---|---|---|---|---|---|---|---|
对照 Control | 500 | 1 500 | 3 000 | 4 500 | |||
淹水 Flood | 30 | PSL (cm) | 18.13 ± 0.81a | 16.64 ± 0.75ab | 15.54 ± 0.40b | 13.10 ± 0.52c | 13.24 ± 0.29c |
PDLN (No.) | 1.28 ± 0.05b | 1.54 ± 0.12ab | 1.73 ± 0.11a | 1.90 ± 0.06a | 1.84 ± 0.13a | ||
PGR (cm·d-1) | 0.44 ± 0.03a | 0.39 ± 0.02ab | 0.35 ± 0.01b | 0.27 ± 0.02c | 0.28 ± 0.01c | ||
60 | PSL (cm) | 23.86 ± 0.83a | 22.34 ± 1.52ab | 22.71 ± 0.72ab | 19.22 ± 1.04b | 18.17 ± 0.54b | |
PDLN (No.) | 3.57 ± 0.15b | 3.65 ± 0.22b | 4.38 ± 0.14a | 4.50 ± 0.24a | 4.56 ± 0.08a | ||
PGR (cm·d-1) | 0.19 ± 0.02a | 0.19 ± 0.03a | 0.24 ± 0.01a | 0.21 ± 0.04a | 0.16 ± 0.02a | ||
90 | PSL (cm) | 26.00 ± 0.96a | 24.03 ± 1.84a | 24.21 ± 0.97a | 22.80 ± 0.57a | 21.68 ± 1.20a | |
PDLN (No.) | 7.02 ± 0.06a | 6.59 ± 0.43a | 6.61 ± 0.22a | 6.80 ± 0.16a | 6.43 ± 0.15a | ||
PGR (cm·d-1) | 0.07 ± 0.03a | 0.06 ± 0.01a | 0.05 ± 0.01a | 0.12 ± 0.04a | 0.12 ± 0.03a | ||
干旱 Drought | 30 | PSL (cm) | 12.17 ± 0.88a* | 11.90 ± 0.73a* | 9.30 ± 0.37b* | 7.87 ± 0.36b* | 7.72 ± 0.42b* |
PDLN (No.) | 1.64 ± 0.06c* | 2.08 ± 0.15b* | 2.13 ± 0.05ab* | 2.18 ± 0.10ab* | 2.42 ± 0.17a* | ||
PGR (cm·d-1) | 0.24 ± 0.03a* | 0.23 ± 0.02a* | 0.15 ± 0.01b* | 0.10 ± 0.01b* | 0.09 ± 0.01b* | ||
60 | PSL (cm) | 17.30 ± 0.54a* | 15.06 ± 0.89b* | 11.15 ± 0.57c* | 9.09 ± 0.42d* | 7.58 ± 0.61d* | |
PDLN (No.) | 2.60 ± 0.04b | 3.19 ± 0.27a* | 3.33 ± 0.12a* | 3.51 ± 0.17a* | 3.65 ± 0.15a* | ||
PGR (cm·d-) | 0.17 ± 0.03a | 0.11 ± 0.01b* | 0.06 ± 0.01bc* | 0.04 ± 0.00c* | 0.02 ± 0.01c* | ||
90 | PSL (cm) | 20.29 ± 0.94a* | 18.14 ± 0.74a* | 13.61 ± 0.94b* | 9.43 ± 0.10c* | 8.31 ± 0.53c* | |
PDLN (No.) | 7.32 ± 0.16a | 5.46 ± 0.15b* | 4.82 ± 0.13bc* | 4.73 ± 0.34bc* | 4.08 ± 0.36c* | ||
PGR (cm·d-1) | 0.10 ± 0.02a | 0.10 ± 0.03a | 0.08 ± 0.03ab | 0.02 ± 0.01b | 0.03 ± 0.01b* |
表2 不同时间内铅污染对不同生境下芦苇母株生长的影响(平均值±标准误差, n = 40)
Table 2 The effects of Pb on the growth of parent shoots of Phragmites australis grown in flood and dry environment after 30, 60 and 90 days of treatment (mean ± SE, n = 40)
水分 Water level | 处理时间 Treatment time (d) | 指标 Parameter | 铅处理浓度 Pb concentration of treatments (mg·kg-1) | ||||
---|---|---|---|---|---|---|---|
对照 Control | 500 | 1 500 | 3 000 | 4 500 | |||
淹水 Flood | 30 | PSL (cm) | 18.13 ± 0.81a | 16.64 ± 0.75ab | 15.54 ± 0.40b | 13.10 ± 0.52c | 13.24 ± 0.29c |
PDLN (No.) | 1.28 ± 0.05b | 1.54 ± 0.12ab | 1.73 ± 0.11a | 1.90 ± 0.06a | 1.84 ± 0.13a | ||
PGR (cm·d-1) | 0.44 ± 0.03a | 0.39 ± 0.02ab | 0.35 ± 0.01b | 0.27 ± 0.02c | 0.28 ± 0.01c | ||
60 | PSL (cm) | 23.86 ± 0.83a | 22.34 ± 1.52ab | 22.71 ± 0.72ab | 19.22 ± 1.04b | 18.17 ± 0.54b | |
PDLN (No.) | 3.57 ± 0.15b | 3.65 ± 0.22b | 4.38 ± 0.14a | 4.50 ± 0.24a | 4.56 ± 0.08a | ||
PGR (cm·d-1) | 0.19 ± 0.02a | 0.19 ± 0.03a | 0.24 ± 0.01a | 0.21 ± 0.04a | 0.16 ± 0.02a | ||
90 | PSL (cm) | 26.00 ± 0.96a | 24.03 ± 1.84a | 24.21 ± 0.97a | 22.80 ± 0.57a | 21.68 ± 1.20a | |
PDLN (No.) | 7.02 ± 0.06a | 6.59 ± 0.43a | 6.61 ± 0.22a | 6.80 ± 0.16a | 6.43 ± 0.15a | ||
PGR (cm·d-1) | 0.07 ± 0.03a | 0.06 ± 0.01a | 0.05 ± 0.01a | 0.12 ± 0.04a | 0.12 ± 0.03a | ||
干旱 Drought | 30 | PSL (cm) | 12.17 ± 0.88a* | 11.90 ± 0.73a* | 9.30 ± 0.37b* | 7.87 ± 0.36b* | 7.72 ± 0.42b* |
PDLN (No.) | 1.64 ± 0.06c* | 2.08 ± 0.15b* | 2.13 ± 0.05ab* | 2.18 ± 0.10ab* | 2.42 ± 0.17a* | ||
PGR (cm·d-1) | 0.24 ± 0.03a* | 0.23 ± 0.02a* | 0.15 ± 0.01b* | 0.10 ± 0.01b* | 0.09 ± 0.01b* | ||
60 | PSL (cm) | 17.30 ± 0.54a* | 15.06 ± 0.89b* | 11.15 ± 0.57c* | 9.09 ± 0.42d* | 7.58 ± 0.61d* | |
PDLN (No.) | 2.60 ± 0.04b | 3.19 ± 0.27a* | 3.33 ± 0.12a* | 3.51 ± 0.17a* | 3.65 ± 0.15a* | ||
PGR (cm·d-) | 0.17 ± 0.03a | 0.11 ± 0.01b* | 0.06 ± 0.01bc* | 0.04 ± 0.00c* | 0.02 ± 0.01c* | ||
90 | PSL (cm) | 20.29 ± 0.94a* | 18.14 ± 0.74a* | 13.61 ± 0.94b* | 9.43 ± 0.10c* | 8.31 ± 0.53c* | |
PDLN (No.) | 7.32 ± 0.16a | 5.46 ± 0.15b* | 4.82 ± 0.13bc* | 4.73 ± 0.34bc* | 4.08 ± 0.36c* | ||
PGR (cm·d-1) | 0.10 ± 0.02a | 0.10 ± 0.03a | 0.08 ± 0.03ab | 0.02 ± 0.01b | 0.03 ± 0.01b* |
水分 Water level | 处理时间 Treatment time (d) | 指标 Parameter | 铅处理浓度 Pb concentration of treatments (mg·kg-1) | ||||
---|---|---|---|---|---|---|---|
对照 Control | 500 | 1 500 | 3 000 | 4 500 | |||
淹水 Flood | 30 | OSL (cm) | 15.08 ± 0.88a | 13.20 ± 0.99ab | 11.28 ± 0.95b | 8.42 ± 0.26c | 7.92 ± 0.35c |
ODLN (No.) | 0.27 ± 0.09a | 0.28 ± 0.05a | 0.06 ± 0.03b | 0.06 ± 0.03b | 0.00 ± 0.00b | ||
OGR (cm·d-1) | 0.76 ± 0.05a | 0.66 ± 0.05ab | 0.57 ± 0.05b | 0.42 ± 0.01c | 0.40 ± 0.02c | ||
60 | OSL (cm) | 31.06 ± 0.37a | 30.08 ± 0.42a | 28.53 ± 0.77a | 20.12 ± 0.73b | 15.24 ± 0.83c | |
ODLN (No.) | 1.49 ± 0.10a | 1.50 ± 0.17a | 1.74 ± 0.34a | 1.82 ± 0.20a | 1.96 ± 0.22a | ||
OGR (cm·d-1) | 0.53 ± 0.03a | 0.57 ± 0.02a | 0.58 ± 0.02a | 0.39 ± 0.03b | 0.24 ± 0.03c | ||
90 | OSL (cm) | 41.22 ± 1.14a | 40.97 ± 1.19a | 40.65 ± 1.68a | 32.98 ± 1.78b | 22.41 ± 0.74c | |
ODLN (No.) | 3.28 ± 0.15a | 2.99 ± 0.27ab | 2.95 ± 0.22ab | 3.10 ± 0.20ab | 2.53 ± 0.35b | ||
OGR (cm·d-1) | 0.34 ± 0.05ab | 0.36 ± 0.03a | 0.40 ± 0.04a | 0.43 ± 0.04a | 0.24 ± 0.03b | ||
干旱Drought | 30 | OSL (cm) | 4.50 ± 0.65a* | 3.38 ± 0.63a* | 3.38 ± 0.55a* | 3.50 ± 0.29a* | 1.50 ± 0.05b* |
ODLN (No.) | 0.00 ± 0.00a* | 0.00 ± 0.00a* | 0.00 ± 0.00a | 0.00 ± 0.00a | 0.00 ± 0.00a | ||
OGR (cm·d-1) | 0.23 ± 0.03a* | 0.17 ± 0.03a* | 0.17 ± 0.03a* | 0.18 ± 0.01a* | 0.07 ± 0.00b* | ||
60 | OSL (cm) | 19.95 ± 1.08a* | 11.23 ± 0.43b* | 5.55 ± 0.75c* | 4.44 ± 0.87c* | 3.65 ± 0.61c* | |
ODLN (No.) | 0.10 ± 0.04a* | 0.14 ± 0.05a* | 0.15 ± 0.05a* | 0.25 ± 0.16a* | 0.06 ± 0.06a* | ||
OGR (cm·d-1) | 0.52 ± 0.03a | 0.26 ± 0.03b* | 0.07 ± 0.04cd* | 0.03 ± 0.02d* | 0.14 ± 0.04c | ||
90 | OSL (cm) | 28.82 ± 1.16a* | 24.56 ± 0.76b* | 14.46 ± 1.00c* | 8.45 ± 0.25d* | 4.13 ± 0.12e* | |
ODLN (No.) | 2.23 ± 0.28a* | 1.83 ± 0.11ab* | 1.40 ± 0.26ab* | 1.86 ± 0.34ab* | 1.21 ± 0.44b* | ||
OGR (cm·d-1) | 0.30 ± 0.06b | 0.44 ± 0.03a | 0.30 ± 0.05b | 0.13 ± 0.03c* | 0.03 ± 0.02c* |
表3 不同时间内铅污染对不同生境下芦苇子株生长的影响(平均值±标准误差, n = 40)
Table 3 The effects of Pb on the growth of offspring shoots of Phragmites australis grown in flood and dry environment after 30, 60 and 90 days of treatment (means ± SE, n = 40)
水分 Water level | 处理时间 Treatment time (d) | 指标 Parameter | 铅处理浓度 Pb concentration of treatments (mg·kg-1) | ||||
---|---|---|---|---|---|---|---|
对照 Control | 500 | 1 500 | 3 000 | 4 500 | |||
淹水 Flood | 30 | OSL (cm) | 15.08 ± 0.88a | 13.20 ± 0.99ab | 11.28 ± 0.95b | 8.42 ± 0.26c | 7.92 ± 0.35c |
ODLN (No.) | 0.27 ± 0.09a | 0.28 ± 0.05a | 0.06 ± 0.03b | 0.06 ± 0.03b | 0.00 ± 0.00b | ||
OGR (cm·d-1) | 0.76 ± 0.05a | 0.66 ± 0.05ab | 0.57 ± 0.05b | 0.42 ± 0.01c | 0.40 ± 0.02c | ||
60 | OSL (cm) | 31.06 ± 0.37a | 30.08 ± 0.42a | 28.53 ± 0.77a | 20.12 ± 0.73b | 15.24 ± 0.83c | |
ODLN (No.) | 1.49 ± 0.10a | 1.50 ± 0.17a | 1.74 ± 0.34a | 1.82 ± 0.20a | 1.96 ± 0.22a | ||
OGR (cm·d-1) | 0.53 ± 0.03a | 0.57 ± 0.02a | 0.58 ± 0.02a | 0.39 ± 0.03b | 0.24 ± 0.03c | ||
90 | OSL (cm) | 41.22 ± 1.14a | 40.97 ± 1.19a | 40.65 ± 1.68a | 32.98 ± 1.78b | 22.41 ± 0.74c | |
ODLN (No.) | 3.28 ± 0.15a | 2.99 ± 0.27ab | 2.95 ± 0.22ab | 3.10 ± 0.20ab | 2.53 ± 0.35b | ||
OGR (cm·d-1) | 0.34 ± 0.05ab | 0.36 ± 0.03a | 0.40 ± 0.04a | 0.43 ± 0.04a | 0.24 ± 0.03b | ||
干旱Drought | 30 | OSL (cm) | 4.50 ± 0.65a* | 3.38 ± 0.63a* | 3.38 ± 0.55a* | 3.50 ± 0.29a* | 1.50 ± 0.05b* |
ODLN (No.) | 0.00 ± 0.00a* | 0.00 ± 0.00a* | 0.00 ± 0.00a | 0.00 ± 0.00a | 0.00 ± 0.00a | ||
OGR (cm·d-1) | 0.23 ± 0.03a* | 0.17 ± 0.03a* | 0.17 ± 0.03a* | 0.18 ± 0.01a* | 0.07 ± 0.00b* | ||
60 | OSL (cm) | 19.95 ± 1.08a* | 11.23 ± 0.43b* | 5.55 ± 0.75c* | 4.44 ± 0.87c* | 3.65 ± 0.61c* | |
ODLN (No.) | 0.10 ± 0.04a* | 0.14 ± 0.05a* | 0.15 ± 0.05a* | 0.25 ± 0.16a* | 0.06 ± 0.06a* | ||
OGR (cm·d-1) | 0.52 ± 0.03a | 0.26 ± 0.03b* | 0.07 ± 0.04cd* | 0.03 ± 0.02d* | 0.14 ± 0.04c | ||
90 | OSL (cm) | 28.82 ± 1.16a* | 24.56 ± 0.76b* | 14.46 ± 1.00c* | 8.45 ± 0.25d* | 4.13 ± 0.12e* | |
ODLN (No.) | 2.23 ± 0.28a* | 1.83 ± 0.11ab* | 1.40 ± 0.26ab* | 1.86 ± 0.34ab* | 1.21 ± 0.44b* | ||
OGR (cm·d-1) | 0.30 ± 0.06b | 0.44 ± 0.03a | 0.30 ± 0.05b | 0.13 ± 0.03c* | 0.03 ± 0.02c* |
生长指标 Growth parameters | 双因素方差分析 Two-way AVONA | |||||
---|---|---|---|---|---|---|
铅 Pb | 水 Water | 铅 × 水 Pb × water | ||||
F | p | F | p | F | p | |
根长 Root length | 184.571 | < 0.001 | 273.946 | < 0.001 | 4.605 | < 0.01 |
根茎长 Rhizome length | 65.735 | < 0.001 | 126.045 | < 0.002 | 5.271 | < 0.01 |
根茎数 No. of rhizomes | 92.408 | < 0.001 | 207.906 | < 0.003 | 8.108 | < 0.001 |
芽数 No. of buds | 42.807 | < 0.001 | 51.986 | < 0.004 | 6.879 | < 0.001 |
子株数 No. of offspring shoots | 12.658 | < 0.001 | 442.488 | < 0.005 | 4.293 | < 0.01 |
表4 铅和水分处理对芦苇根茎生长、芽和子株数的双因素方差分析结果
Table 4 Results of two-way ANOVA of the effect of Pb and water stress on rhizome growth, number of buds and offspring shoots of Phragmites australis
生长指标 Growth parameters | 双因素方差分析 Two-way AVONA | |||||
---|---|---|---|---|---|---|
铅 Pb | 水 Water | 铅 × 水 Pb × water | ||||
F | p | F | p | F | p | |
根长 Root length | 184.571 | < 0.001 | 273.946 | < 0.001 | 4.605 | < 0.01 |
根茎长 Rhizome length | 65.735 | < 0.001 | 126.045 | < 0.002 | 5.271 | < 0.01 |
根茎数 No. of rhizomes | 92.408 | < 0.001 | 207.906 | < 0.003 | 8.108 | < 0.001 |
芽数 No. of buds | 42.807 | < 0.001 | 51.986 | < 0.004 | 6.879 | < 0.001 |
子株数 No. of offspring shoots | 12.658 | < 0.001 | 442.488 | < 0.005 | 4.293 | < 0.01 |
图1 淹水和干旱生境下铅污染对芦苇地下器官和地上子株数的影响(平均值±标准误差, n = 40)。不同的小写字母表示同一水分处理水平上, 不同铅处理间差异显著(p ≤ 0.05), *表示同一铅处理水平上, 淹水和干旱处理间差异显著(p ≤ 0.05)。
Fig. 1 Effects of Pb pollution on growth of below-ground organs and abundance of above-ground offspring shoots of Phragmites australis in flood and dry environment (mean ± SE, n = 40). Different lowercase letters indicate significant differences (p ≤ 0.05) between Pb levels within one water treatment level, and * indicates significant difference (p ≤ 0.05) between water treatment and drought treatment within one Pb level.
双因素方差分析 Two-way AVONA | ||||||
---|---|---|---|---|---|---|
铅 Pb | 水 Water | 铅 × 水 Pb × water | ||||
F | p | F | p | F | p | |
根 Roots | 63.55 | < 0.001 | 124.45 | < 0.001 | 2.56 | 0.06 |
根茎 Rhizomes | 55.76 | < 0.001 | 77.79 | < 0.001 | 4.41 | < 0.01 |
母株 Parent shoots | 7.31 | < 0.001 | 39.32 | < 0.001 | 7.48 | < 0.001 |
子株 Offspring shoots | 42.52 | < 0.001 | 270.30 | < 0.001 | 6.95 | < 0.001 |
表5 铅和水分处理对芦苇生物量影响的双因素方差分析结果
Table 5 Results of two-way ANOVA of the effect of Pb and water stress on biomass of Phragmites australis
双因素方差分析 Two-way AVONA | ||||||
---|---|---|---|---|---|---|
铅 Pb | 水 Water | 铅 × 水 Pb × water | ||||
F | p | F | p | F | p | |
根 Roots | 63.55 | < 0.001 | 124.45 | < 0.001 | 2.56 | 0.06 |
根茎 Rhizomes | 55.76 | < 0.001 | 77.79 | < 0.001 | 4.41 | < 0.01 |
母株 Parent shoots | 7.31 | < 0.001 | 39.32 | < 0.001 | 7.48 | < 0.001 |
子株 Offspring shoots | 42.52 | < 0.001 | 270.30 | < 0.001 | 6.95 | < 0.001 |
图2 淹水和干旱生境下铅污染对芦苇各器官生物量积累的影响(平均值±标准误差, n = 40)。不同的小写字母表示同一水处理水平上, 不同铅处理间差异显著(p ≤ 0.05), *表示同一铅处理水平上, 淹水和干旱处理间差异显著(p ≤ 0.05)。
Fig. 2 The effects of Pb pollution on biomass accumulation of different organs of Phragmites australis in flood and dry environment (mean ± SE, n = 40). Different lowercase letters indicate significant differences (p ≤ 0.05) between Pb levels within one water treatment level, and * indicates significant difference (p ≤ 0.05) between water treatment and drought treatment within one Pb level.
图3 芦苇各器官生物量分配比例(平均值±标准误差, n = 40)。不同的小写字母表示同一水处理水平上, 不同铅处理间差异显著(p ≤ 0.05), *表示同一铅处理水平上, 淹水和干旱处理间差异显著(p ≤ 0.05)。
Fig. 3 The percentage of different organ biomass in total biomass of Phragmites australis subjected to Pb concentration in flood and dry environment (mean ± SE, n = 40). Different lowercase letters indicate significant differences (p ≤ 0.05) between Pb levels within one water treatment level, and * indicates significant difference (p ≤ 0.05) between water treatment and drought treatment within one Pb level.
光合参数 Photosynthetic parameters | 双因素方差分析 Two-way AVONA | |||||
---|---|---|---|---|---|---|
铅 Pb | 水 Water | 铅 × 水 Pb × water | ||||
F | p | F | p | F | p | |
净光合速率 Net photosynthetic rate | 12.69 | <0.001 | 20.38 | <0.001 | 6.92 | <0.001 |
气孔导度 Stomatal conductance | 16.90 | <0.001 | 95.36 | <0.001 | 3.80 | <0.01 |
胞间CO2浓度 Intercellular CO2 concentration | 9.80 | <0.001 | 111.35 | <0.001 | 1.54 | 0.23 |
蒸腾速率 Transpiration rate | 6.08 | <0.001 | 88.80 | <0.001 | 1.07 | 0.38 |
表6 铅和水分处理对芦苇光合作用影响的双因素方差分析结果
Table 6 Results of two-way ANOVA of the effect of Pb and water stress on photosynthesis of Phragmites australis
光合参数 Photosynthetic parameters | 双因素方差分析 Two-way AVONA | |||||
---|---|---|---|---|---|---|
铅 Pb | 水 Water | 铅 × 水 Pb × water | ||||
F | p | F | p | F | p | |
净光合速率 Net photosynthetic rate | 12.69 | <0.001 | 20.38 | <0.001 | 6.92 | <0.001 |
气孔导度 Stomatal conductance | 16.90 | <0.001 | 95.36 | <0.001 | 3.80 | <0.01 |
胞间CO2浓度 Intercellular CO2 concentration | 9.80 | <0.001 | 111.35 | <0.001 | 1.54 | 0.23 |
蒸腾速率 Transpiration rate | 6.08 | <0.001 | 88.80 | <0.001 | 1.07 | 0.38 |
图4 淹水和干旱生境下铅污染对芦苇母株和子株光合作用的影响(平均值±标准误差, n = 16)。不同的小写字母表示同一水处理水平上, 不同铅处理间差异显著(p ≤ 0.05), *表示同一铅处理水平上, 淹水和干旱处理间差异显著(p ≤ 0.05)。
Fig. 4 The effects of Pb pollution on photosynthesis of parent and offspring shoots of Phragmites australis in flood and dry environment (mean ± SE, n = 16). Different lowercase letters indicate significant differences (p ≤ 0.05) between Pb levels within one water treatment level, and * indicates significant difference (p ≤ 0.05) between water treatment and drought treatment within one Pb level.
图5 淹水和干旱生境下芦苇不同器官中铅的含量(平均值±标准误差, n = 4)。不同的小写字母表示同一水处理水平上, 不同铅处理间差异显著(p ≤ 0.05), *表示同一铅处理水平上, 淹水和干旱处理间差异显著(p ≤ 0.05)。
Fig. 5 The Pb concentrations in different parts of Phragmites australis subjected to Pb in flood and dry environment (mean ± SE, n = 4). Different lowercase letters indicate significant differences (p ≤0.05) between Pb levels within one water treatment level, and * indicates significant difference (p ≤ 0.05) between water treatment and drought treatment within one Pb level.
双因素方差分析 Two-way AVONA | ||||||
---|---|---|---|---|---|---|
铅 Pb | 水 Water | 铅×水 Pb × water | ||||
F | p | F | p | F | p | |
根 Roots | 472.06 | <0.001 | 1 061.42 | <0.001 | 166.30 | <0.001 |
根茎 Rhizomes | 174.54 | <0.001 | 317.95 | <0.001 | 79.07 | <0.001 |
母株 Parent shoots | 3 304.20 | <0.001 | 369.17 | <0.001 | 434.26 | <0.001 |
子株 Offspring shoots | 2 392.36 | <0.001 | 42.83 | <0.001 | 31.27 | <0.001 |
表7 铅和水分处理对芦苇各器官中铅含量影响的双因素方差分析结果
Table 7 Results of two-way ANOVA of the effect of Pb and water stress on Pb concentrations in organs of Phragmites australis
双因素方差分析 Two-way AVONA | ||||||
---|---|---|---|---|---|---|
铅 Pb | 水 Water | 铅×水 Pb × water | ||||
F | p | F | p | F | p | |
根 Roots | 472.06 | <0.001 | 1 061.42 | <0.001 | 166.30 | <0.001 |
根茎 Rhizomes | 174.54 | <0.001 | 317.95 | <0.001 | 79.07 | <0.001 |
母株 Parent shoots | 3 304.20 | <0.001 | 369.17 | <0.001 | 434.26 | <0.001 |
子株 Offspring shoots | 2 392.36 | <0.001 | 42.83 | <0.001 | 31.27 | <0.001 |
[1] | Ahmad MSA, Hussain M, Ijaz S, Alvi AK (2008). Photosynthetic performance of two mung bean (Vigna radiata) cultivars under lead and copper stress. International Journal of Agriculture and Biology, 10, 167-172. |
[2] | Benson EJ (2001). Effects of Fire on Tallgrass Prairie Plant Population Dynamics. Master degree thesis, Kansas State University, Manhattan. |
[3] |
Benson EJ, Hartnett DC (2006). The role of seed and vegetative reproduction in plant recruitment and demography in tallgrass prairie.Plant Ecology, 187, 163-178.
DOI URL |
[4] |
Brewer JS, Bertness MD (1996). Disturbance and intraspecific variation in the clonal morphology of salt marsh perennials.Oikos, 77, 107-116.
DOI URL |
[5] |
Cao M, Huang PW, Zhang N, Cheng LY, Mu CS (2016). Effects of lead contamination on underground bud and output of aboveground shoots of Phragmites australis (common reed) under different water regimes. Journal of Southwest University for Nationalities (Natural Science Edition), 42(2), 131-138.
DOI URL |
[曹明, 黄蓬万, 张娜, 程露瑶, 穆春生 (2016). 不同水分生境下铅胁迫对芦苇地下芽库及其输出子株能力的影响. 西南民族大学学报(自然科学版), 42(2), 131-138.]
DOI URL |
|
[6] |
Dalgleish HJ, Hartnett DC (2006). Below-ground bud banks increase along a precipitation gradient of the North American Great Plains: A test of the meristem limitation hypothesis.New Phytologist, 171, 81-89.
DOI URL |
[7] | Davies BE (1990). Lead. In: Alloway BJ ed. Heavy Metals in Soils. John Wiley & Sons,New York. 177-196. |
[8] |
Fernandes PM, Vega JA, Jiménez E, Rigolot E (2008). Fire resistance of European pines.Forest Ecology and Management, 256, 246-255.
DOI URL |
[9] | Harper JL (1977). Population Biology of Plants. Academic Press, London. |
[10] | Hartnett DC, Setshogo MP, Dalgleish HJ (2006). Bud banks of perennial savanna grasses in Botswana.African Journal of Ecology, 44, 256-263. |
[11] | Hechmi N, Aissa NB, Abdenaceur HA, Jedidi N (2014). Evaluating the phytoremediation potential of Phragmites australis grown in pentachlorophenol and cadmium co-?contaminated soils.Environmental Science and Pollution Research, 21, 1304-1313. |
[12] | Henry C, Amoros C (1996). Are the banks a source of recolonization after disturbance: An experiment on aquatic vegetation in a former channel of the Rh?ne River.Hydrobiologia, 330, 151-162 |
[13] | Hu R, Sun K, Su X, Pan YX, Zhang YF, Wang XP (2012). Physiological responses and tolerance mechanisms to Pb in two xerophils: Salsola passerina Bunge and Chenopodium album L. Journal of Hazardous Materials, 205-206, 131-138. |
[14] | Islam E, Liu D, Li TQ, Yang XE, Jin XF, Mahmood Q, Tian S, Li JY (2008). Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. Journal of Hazardous Materials, 154, 914-926. |
[15] |
Li ZL, Zhang YT, Yu DF, Zhang N, Lin JX, Zhang JW, Tang JH, Wang JF, Mu CS (2014). The influence of precipitation regimes and elevated CO2 on photosynthesis and biomass accumulation and partitioning in seedlings of the rhizomatous perennial grassLeymus chinensis. PLOS ONE, 9, e103633. DOI: 10.1371/journal.pone.0103633.
DOI |
[16] | Liu B, Liu ZM, Wang LX, Wang ZN (2014). Responses of rhizomatous grass Phragmites communis to wind erosion: Effects on biomass allocation.Pant and Soil, 380, 389-398. |
[17] | Mony C, Puijalon S, Bornette G (2011). Resprouting response of aquatic clonal plants to cutting may explain their risistance to spate flooding. Flia Geobotanic, 46, 155-164. |
[18] | Nishihiro J, Araki S, Fujiwara N, Washitani I (2004). Germination characteristics of lakeshore plants under an arti?cially stabilizedwater regime.Aquatic Botany, 79, 333-343. |
[19] | Sharma P, Dubey RS (2005). Lead toxicity in plants.Brazilian Journal of Plant Physiology, 17(1), 35-52. |
[20] | Wang JF, Gao S, Lin JX, Mu YG, Mu CS (2010). Summer warming effects on biomass production and clonal growth ofLeymus chinensis. Crop Pasture Science, 61, 670-676. |
[21] | Wang PF, Zhang SH, Wang C, Lu J (2012). Effects of Pb on the oxidative stress and antioxidant response in a Pb bioaccumulator plantVallisneria natans. Ecotoxicology and Environmental Safety, 78, 28-34. |
[22] | Weis JS, Weis P (2004). Metal uptake, transport and release by wetland plants: Implications for phytoremediation and restoration.Environment International, 30, 685-700. |
[23] | Windham L, Weis JS, Weis P (2001). Lead uptake, distribution, and effects in two dominant salt marsh macrophytes,Spartina alterniflora (cordgrass) and Phragmites australis 42, 811-816. |
[24] | Ye ZH, Baker AJM, Wong MH, Willis AJ (1997). Zinc, lead and cadmium tolerance, uptake and accumulation by the common reed,phragmites australis(Cav.) Trin. ex Steudel. Annal of Botany, 80, 363-370. |
[25] | Zhang N, Zhang JW, Yang YH, Li XY, Lin JX, Li ZL, Cheng LY, Wang JF, Mu CS, Wang AX (2015). Effects of lead contamination on the clonal propagative ability of Phragmites australis(common reed) grown in wet and dry environments. Plant Biology, 17, 893-903. |
[26] | Zhu TC (2004). The Bio-ecology of Leymus chinensis.Jilin Science and Technology Press, Changchun. 85-89. |
[祝廷成 (2004). 羊草生物生态学. 吉林科学技术出版社, 长春. 85-89.] |
[1] | 薛峰 江源 董满宇 王明昌 丁新原 杨显基 崔明皓 康慕谊. 不同去趋势方法对基于Dendrometer数据的茎干水分动态分析的影响——以白扦为例[J]. 植物生态学报, 2021, 45(8): 0-0. |
[2] | 靳川 田赟 李鑫豪 蒋燕 徐铭泽 贾昕 刘鹏 查天山. 黑沙蒿光合能量分配组分在生长季的相对变化与调控机制[J]. 植物生态学报, 2021, 45(8): 0-0. |
[3] | 尹晓雷, 刘旭阳, 金强, 李先德, 林少颖, 阳祥, 王维奇, 张永勋. 不同管理模式对茶树碳氮磷含量及其生态化学计量比的影响[J]. 植物生态学报, 2021, 45(7): 749-759. |
[4] | 桂子洋, 秦树高, 胡朝, 白凤, 石慧书, 张宇清. 毛乌素沙地两种典型灌木叶片凝结水吸收能力及吸水途径[J]. 植物生态学报, 2021, 45(6): 583-593. |
[5] | 叶子飘, 于冯, 安婷, 王复标, 康华靖. 植物气孔导度对CO2响应模型的构建[J]. 植物生态学报, 2021, 45(4): 420-428. |
[6] | 武洪敏, 双升普, 张金燕, 寸竹, 孟珍贵, 李龙根, 沙本才, 陈军文. 短期生长环境光强骤增导致典型阴生植物三七光系统受损的机制[J]. 植物生态学报, 2021, 45(4): 404-419. |
[7] | 杨克彤, 常海龙, 陈国鹏, 俞筱押, 鲜骏仁. 兰州市主要绿化植物气孔性状特征[J]. 植物生态学报, 2021, 45(2): 187-196. |
[8] | 黎松松, 王宁欣, 郑伟, 朱亚琼, 王祥, 马军, 朱进忠. 一年生和多年生豆禾混播草地超产与多样性效应的比较[J]. 植物生态学报, 2021, 45(1): 23-37. |
[9] | 叶学华, 薛建国, 谢秀芳, 黄振英. 外部干扰对根茎型克隆植物甘草自然种群植株生长及主要药用成分含量的影响[J]. 植物生态学报, 2020, 44(9): 951-961. |
[10] | 李景, 王欣, 王振华, 王斌, 王成章, 邓美凤, 刘玲莉. 臭氧和气溶胶复合污染对杨树叶片光合作用的影响[J]. 植物生态学报, 2020, 44(8): 854-863. |
[11] | 邢磊, 段娜, 李清河, 刘成功, 李慧卿, 孙高洁. 白刺不同物候期的生物量分配规律[J]. 植物生态学报, 2020, 44(7): 763-771. |
[12] | 周雄, 孙鹏森, 张明芳, 刘世荣. 西南高山亚高山区植被水分利用效率时空特征及其与气候因子的关系[J]. 植物生态学报, 2020, 44(6): 628-641. |
[13] | 冯继广, 朱彪. 氮磷添加对树木生长和森林生产力影响的研究进展[J]. 植物生态学报, 2020, 44(6): 583-597. |
[14] | 冯兆忠, 李品, 张国友, 李征珍, 平琴, 彭金龙, 刘硕. 二氧化碳浓度升高对陆地生态系统的影响: 问题与展望[J]. 植物生态学报, 2020, 44(5): 461-474. |
[15] | 冯银平, 沈海花, 罗永开, 徐龙超, 刘上石, 朱言坤, 赵梦颖, 邢爱军, 方精云. 种植密度对苜蓿生长及生物量的影响[J]. 植物生态学报, 2020, 44(3): 248-256. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19