植物生态学报 ›› 2018, Vol. 42 ›› Issue (2): 229-239.DOI: 10.17521/cjpe.2017.0218
张娜1,2,3,朱阳春1,李志强5,卢信1,范如芹1,刘丽珠1,童非1,陈静3,穆春生4,*(),张振华1,*>(
)
出版日期:
2018-02-20
发布日期:
2018-04-16
通讯作者:
穆春生,张振华
基金资助:
ZHANG Na1,2,3,ZHU Yang-Chun1,LI Zhi-Qiang5,LU Xin1,FAN Ru-Qin1,LIU Li-Zhu1,TONG Fei1,CHEN Jing3,MU Chun-Sheng4,*(),ZHANG Zhen-Hua1,*(
)
Online:
2018-02-20
Published:
2018-04-16
Contact:
Chun-Sheng MU,Zhen-Hua ZHANG
Supported by:
摘要:
芦苇(Phragmites australis)作为典型的根茎型多年生湿地植物, 具有广泛的环境耐受性。该研究采用盆栽实验, 采取裂区实验设计, 水分处理为主区, 包括淹水和干旱两个水平, 铅(Pb)为副区, 包括0、500、1500、3β000、4β500 mg·kg-1 5个水平, 共10个处理, 每个处理12个重复, 研究淹水和干旱条件下Pb污染对芦苇生长、生物量分配及光合作用的影响, 以期明确不同生境下芦苇适应或忍耐重金属污染而采取的策略, 为芦苇应用于湿地恢复和污染修复提供理论依据。结果表明, 在淹水处理中, Pb显著抑制地下芽形成和根茎生长, 但对子株数没有影响; 与母株相比子株具有高的日生长速率、光合速率和生物量(母株的3-7倍)。在干旱环境中, Pb显著抑制根、地下芽和根茎生长, 母株和子株生物量积累及光合作用, 且这些指标均小于淹水处理的。无论在淹水还是干旱环境中, 芦苇体内绝大部分Pb积累在根中, 根茎和子株中Pb含量较少, 被转运至母株中的Pb大约是子株的3倍。淹水条件下子株体内Pb含量小于干旱处理的。结果表明, 干旱和Pb的协同作用显著抑制芦苇生长、生物量积累和光合作用, 可能导致子株生产力和种群密度减小甚至种群衰退。但淹水芦苇能够采取相应的Pb分配策略减缓Pb污染对芦苇生长、生理和繁殖的负面影响, 有利于芦苇种群的繁衍和稳定。
张娜, 朱阳春, 李志强, 卢信, 范如芹, 刘丽珠, 童非, 陈静, 穆春生, 张振华. 淹水和干旱生境下铅对芦苇生长、生物量分配和光合作用的影响. 植物生态学报, 2018, 42(2): 229-239. DOI: 10.17521/cjpe.2017.0218
ZHANG Na, ZHU Yang-Chun, LI Zhi-Qiang, LU Xin, FAN Ru-Qin, LIU Li-ZhuTONG , Fei, CHEN Jing, MU Chun-Sheng, ZHANG Zhen-Hua. Effect of Pb pollution on the growth, biomass allocation and photosynthesis of Phragmites australis in flood and drought environment. Chinese Journal of Plant Ecology, 2018, 42(2): 229-239. DOI: 10.17521/cjpe.2017.0218
重复测量分析 Repeated measure (p) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
铅 Pb | 水 Water | 铅 × 水 Pb × water | 时间 Time | 时间 × 铅 Time × Pb | 时间 × 水 Time × Water | 时间 × 铅 × 水 Time × Pb × Water | ||||||
母株生长 Growth of parent shoot | ||||||||||||
茎长 Stem length | < 0.001 | < 0.001 | < 0.01 | < 0.001 | < 0.01 | < 0.001 | < 0.001 | |||||
叶片死亡数 No. of dead leaves | 0.366 | < 0.001 | < 0.05 | < 0.001 | < 0.001 | < 0.001 | < 0.05 | |||||
子株生长 Growth of offspring shoot | ||||||||||||
茎长 Stem length | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | |||||
叶片死亡数 No. of dead leaves | 0.168 | < 0.001 | 0.913 | < 0.001 | < 0.05 | < 0.001 | 0.742 | |||||
生长指标 Growth parameters | 双因素方差分析 Two-way AVONA | |||||||||||
铅 Pb | 水 Water | 铅×水 Pb × water | ||||||||||
F | p | F | p | F | p | |||||||
母株叶片死亡率 Leaf mortality in parent shoots | 2.496 | 0.054 | 2.461 | 0.127 | 0.932 | 0.459 | ||||||
子株叶片死亡率 Leaf mortality in offspring shoots | 7.086 | < 0.001 | 2.185 | 0.150 | 4.353 | < 0.01 |
表1 铅和水分影响芦苇母株、子株生长的重复测量和双因素方差分析结果
Table 1 Results of Repeated-measures and two-way ANOVA of the effect of Pb and water stress on growth of mother and daughter shoots of Phragmites australis
重复测量分析 Repeated measure (p) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
铅 Pb | 水 Water | 铅 × 水 Pb × water | 时间 Time | 时间 × 铅 Time × Pb | 时间 × 水 Time × Water | 时间 × 铅 × 水 Time × Pb × Water | ||||||
母株生长 Growth of parent shoot | ||||||||||||
茎长 Stem length | < 0.001 | < 0.001 | < 0.01 | < 0.001 | < 0.01 | < 0.001 | < 0.001 | |||||
叶片死亡数 No. of dead leaves | 0.366 | < 0.001 | < 0.05 | < 0.001 | < 0.001 | < 0.001 | < 0.05 | |||||
子株生长 Growth of offspring shoot | ||||||||||||
茎长 Stem length | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | |||||
叶片死亡数 No. of dead leaves | 0.168 | < 0.001 | 0.913 | < 0.001 | < 0.05 | < 0.001 | 0.742 | |||||
生长指标 Growth parameters | 双因素方差分析 Two-way AVONA | |||||||||||
铅 Pb | 水 Water | 铅×水 Pb × water | ||||||||||
F | p | F | p | F | p | |||||||
母株叶片死亡率 Leaf mortality in parent shoots | 2.496 | 0.054 | 2.461 | 0.127 | 0.932 | 0.459 | ||||||
子株叶片死亡率 Leaf mortality in offspring shoots | 7.086 | < 0.001 | 2.185 | 0.150 | 4.353 | < 0.01 |
水分 Water level | 处理时间 Treatment time (d) | 指标 Parameter | 铅处理浓度 Pb concentration of treatments (mg·kg-1) | ||||
---|---|---|---|---|---|---|---|
对照 Control | 500 | 1 500 | 3 000 | 4 500 | |||
淹水 Flood | 30 | PSL (cm) | 18.13 ± 0.81a | 16.64 ± 0.75ab | 15.54 ± 0.40b | 13.10 ± 0.52c | 13.24 ± 0.29c |
PDLN (No.) | 1.28 ± 0.05b | 1.54 ± 0.12ab | 1.73 ± 0.11a | 1.90 ± 0.06a | 1.84 ± 0.13a | ||
PGR (cm·d-1) | 0.44 ± 0.03a | 0.39 ± 0.02ab | 0.35 ± 0.01b | 0.27 ± 0.02c | 0.28 ± 0.01c | ||
60 | PSL (cm) | 23.86 ± 0.83a | 22.34 ± 1.52ab | 22.71 ± 0.72ab | 19.22 ± 1.04b | 18.17 ± 0.54b | |
PDLN (No.) | 3.57 ± 0.15b | 3.65 ± 0.22b | 4.38 ± 0.14a | 4.50 ± 0.24a | 4.56 ± 0.08a | ||
PGR (cm·d-1) | 0.19 ± 0.02a | 0.19 ± 0.03a | 0.24 ± 0.01a | 0.21 ± 0.04a | 0.16 ± 0.02a | ||
90 | PSL (cm) | 26.00 ± 0.96a | 24.03 ± 1.84a | 24.21 ± 0.97a | 22.80 ± 0.57a | 21.68 ± 1.20a | |
PDLN (No.) | 7.02 ± 0.06a | 6.59 ± 0.43a | 6.61 ± 0.22a | 6.80 ± 0.16a | 6.43 ± 0.15a | ||
PGR (cm·d-1) | 0.07 ± 0.03a | 0.06 ± 0.01a | 0.05 ± 0.01a | 0.12 ± 0.04a | 0.12 ± 0.03a | ||
干旱 Drought | 30 | PSL (cm) | 12.17 ± 0.88a* | 11.90 ± 0.73a* | 9.30 ± 0.37b* | 7.87 ± 0.36b* | 7.72 ± 0.42b* |
PDLN (No.) | 1.64 ± 0.06c* | 2.08 ± 0.15b* | 2.13 ± 0.05ab* | 2.18 ± 0.10ab* | 2.42 ± 0.17a* | ||
PGR (cm·d-1) | 0.24 ± 0.03a* | 0.23 ± 0.02a* | 0.15 ± 0.01b* | 0.10 ± 0.01b* | 0.09 ± 0.01b* | ||
60 | PSL (cm) | 17.30 ± 0.54a* | 15.06 ± 0.89b* | 11.15 ± 0.57c* | 9.09 ± 0.42d* | 7.58 ± 0.61d* | |
PDLN (No.) | 2.60 ± 0.04b | 3.19 ± 0.27a* | 3.33 ± 0.12a* | 3.51 ± 0.17a* | 3.65 ± 0.15a* | ||
PGR (cm·d-) | 0.17 ± 0.03a | 0.11 ± 0.01b* | 0.06 ± 0.01bc* | 0.04 ± 0.00c* | 0.02 ± 0.01c* | ||
90 | PSL (cm) | 20.29 ± 0.94a* | 18.14 ± 0.74a* | 13.61 ± 0.94b* | 9.43 ± 0.10c* | 8.31 ± 0.53c* | |
PDLN (No.) | 7.32 ± 0.16a | 5.46 ± 0.15b* | 4.82 ± 0.13bc* | 4.73 ± 0.34bc* | 4.08 ± 0.36c* | ||
PGR (cm·d-1) | 0.10 ± 0.02a | 0.10 ± 0.03a | 0.08 ± 0.03ab | 0.02 ± 0.01b | 0.03 ± 0.01b* |
表2 不同时间内铅污染对不同生境下芦苇母株生长的影响(平均值±标准误差, n = 40)
Table 2 The effects of Pb on the growth of parent shoots of Phragmites australis grown in flood and dry environment after 30, 60 and 90 days of treatment (mean ± SE, n = 40)
水分 Water level | 处理时间 Treatment time (d) | 指标 Parameter | 铅处理浓度 Pb concentration of treatments (mg·kg-1) | ||||
---|---|---|---|---|---|---|---|
对照 Control | 500 | 1 500 | 3 000 | 4 500 | |||
淹水 Flood | 30 | PSL (cm) | 18.13 ± 0.81a | 16.64 ± 0.75ab | 15.54 ± 0.40b | 13.10 ± 0.52c | 13.24 ± 0.29c |
PDLN (No.) | 1.28 ± 0.05b | 1.54 ± 0.12ab | 1.73 ± 0.11a | 1.90 ± 0.06a | 1.84 ± 0.13a | ||
PGR (cm·d-1) | 0.44 ± 0.03a | 0.39 ± 0.02ab | 0.35 ± 0.01b | 0.27 ± 0.02c | 0.28 ± 0.01c | ||
60 | PSL (cm) | 23.86 ± 0.83a | 22.34 ± 1.52ab | 22.71 ± 0.72ab | 19.22 ± 1.04b | 18.17 ± 0.54b | |
PDLN (No.) | 3.57 ± 0.15b | 3.65 ± 0.22b | 4.38 ± 0.14a | 4.50 ± 0.24a | 4.56 ± 0.08a | ||
PGR (cm·d-1) | 0.19 ± 0.02a | 0.19 ± 0.03a | 0.24 ± 0.01a | 0.21 ± 0.04a | 0.16 ± 0.02a | ||
90 | PSL (cm) | 26.00 ± 0.96a | 24.03 ± 1.84a | 24.21 ± 0.97a | 22.80 ± 0.57a | 21.68 ± 1.20a | |
PDLN (No.) | 7.02 ± 0.06a | 6.59 ± 0.43a | 6.61 ± 0.22a | 6.80 ± 0.16a | 6.43 ± 0.15a | ||
PGR (cm·d-1) | 0.07 ± 0.03a | 0.06 ± 0.01a | 0.05 ± 0.01a | 0.12 ± 0.04a | 0.12 ± 0.03a | ||
干旱 Drought | 30 | PSL (cm) | 12.17 ± 0.88a* | 11.90 ± 0.73a* | 9.30 ± 0.37b* | 7.87 ± 0.36b* | 7.72 ± 0.42b* |
PDLN (No.) | 1.64 ± 0.06c* | 2.08 ± 0.15b* | 2.13 ± 0.05ab* | 2.18 ± 0.10ab* | 2.42 ± 0.17a* | ||
PGR (cm·d-1) | 0.24 ± 0.03a* | 0.23 ± 0.02a* | 0.15 ± 0.01b* | 0.10 ± 0.01b* | 0.09 ± 0.01b* | ||
60 | PSL (cm) | 17.30 ± 0.54a* | 15.06 ± 0.89b* | 11.15 ± 0.57c* | 9.09 ± 0.42d* | 7.58 ± 0.61d* | |
PDLN (No.) | 2.60 ± 0.04b | 3.19 ± 0.27a* | 3.33 ± 0.12a* | 3.51 ± 0.17a* | 3.65 ± 0.15a* | ||
PGR (cm·d-) | 0.17 ± 0.03a | 0.11 ± 0.01b* | 0.06 ± 0.01bc* | 0.04 ± 0.00c* | 0.02 ± 0.01c* | ||
90 | PSL (cm) | 20.29 ± 0.94a* | 18.14 ± 0.74a* | 13.61 ± 0.94b* | 9.43 ± 0.10c* | 8.31 ± 0.53c* | |
PDLN (No.) | 7.32 ± 0.16a | 5.46 ± 0.15b* | 4.82 ± 0.13bc* | 4.73 ± 0.34bc* | 4.08 ± 0.36c* | ||
PGR (cm·d-1) | 0.10 ± 0.02a | 0.10 ± 0.03a | 0.08 ± 0.03ab | 0.02 ± 0.01b | 0.03 ± 0.01b* |
水分 Water level | 处理时间 Treatment time (d) | 指标 Parameter | 铅处理浓度 Pb concentration of treatments (mg·kg-1) | ||||
---|---|---|---|---|---|---|---|
对照 Control | 500 | 1 500 | 3 000 | 4 500 | |||
淹水 Flood | 30 | OSL (cm) | 15.08 ± 0.88a | 13.20 ± 0.99ab | 11.28 ± 0.95b | 8.42 ± 0.26c | 7.92 ± 0.35c |
ODLN (No.) | 0.27 ± 0.09a | 0.28 ± 0.05a | 0.06 ± 0.03b | 0.06 ± 0.03b | 0.00 ± 0.00b | ||
OGR (cm·d-1) | 0.76 ± 0.05a | 0.66 ± 0.05ab | 0.57 ± 0.05b | 0.42 ± 0.01c | 0.40 ± 0.02c | ||
60 | OSL (cm) | 31.06 ± 0.37a | 30.08 ± 0.42a | 28.53 ± 0.77a | 20.12 ± 0.73b | 15.24 ± 0.83c | |
ODLN (No.) | 1.49 ± 0.10a | 1.50 ± 0.17a | 1.74 ± 0.34a | 1.82 ± 0.20a | 1.96 ± 0.22a | ||
OGR (cm·d-1) | 0.53 ± 0.03a | 0.57 ± 0.02a | 0.58 ± 0.02a | 0.39 ± 0.03b | 0.24 ± 0.03c | ||
90 | OSL (cm) | 41.22 ± 1.14a | 40.97 ± 1.19a | 40.65 ± 1.68a | 32.98 ± 1.78b | 22.41 ± 0.74c | |
ODLN (No.) | 3.28 ± 0.15a | 2.99 ± 0.27ab | 2.95 ± 0.22ab | 3.10 ± 0.20ab | 2.53 ± 0.35b | ||
OGR (cm·d-1) | 0.34 ± 0.05ab | 0.36 ± 0.03a | 0.40 ± 0.04a | 0.43 ± 0.04a | 0.24 ± 0.03b | ||
干旱Drought | 30 | OSL (cm) | 4.50 ± 0.65a* | 3.38 ± 0.63a* | 3.38 ± 0.55a* | 3.50 ± 0.29a* | 1.50 ± 0.05b* |
ODLN (No.) | 0.00 ± 0.00a* | 0.00 ± 0.00a* | 0.00 ± 0.00a | 0.00 ± 0.00a | 0.00 ± 0.00a | ||
OGR (cm·d-1) | 0.23 ± 0.03a* | 0.17 ± 0.03a* | 0.17 ± 0.03a* | 0.18 ± 0.01a* | 0.07 ± 0.00b* | ||
60 | OSL (cm) | 19.95 ± 1.08a* | 11.23 ± 0.43b* | 5.55 ± 0.75c* | 4.44 ± 0.87c* | 3.65 ± 0.61c* | |
ODLN (No.) | 0.10 ± 0.04a* | 0.14 ± 0.05a* | 0.15 ± 0.05a* | 0.25 ± 0.16a* | 0.06 ± 0.06a* | ||
OGR (cm·d-1) | 0.52 ± 0.03a | 0.26 ± 0.03b* | 0.07 ± 0.04cd* | 0.03 ± 0.02d* | 0.14 ± 0.04c | ||
90 | OSL (cm) | 28.82 ± 1.16a* | 24.56 ± 0.76b* | 14.46 ± 1.00c* | 8.45 ± 0.25d* | 4.13 ± 0.12e* | |
ODLN (No.) | 2.23 ± 0.28a* | 1.83 ± 0.11ab* | 1.40 ± 0.26ab* | 1.86 ± 0.34ab* | 1.21 ± 0.44b* | ||
OGR (cm·d-1) | 0.30 ± 0.06b | 0.44 ± 0.03a | 0.30 ± 0.05b | 0.13 ± 0.03c* | 0.03 ± 0.02c* |
表3 不同时间内铅污染对不同生境下芦苇子株生长的影响(平均值±标准误差, n = 40)
Table 3 The effects of Pb on the growth of offspring shoots of Phragmites australis grown in flood and dry environment after 30, 60 and 90 days of treatment (means ± SE, n = 40)
水分 Water level | 处理时间 Treatment time (d) | 指标 Parameter | 铅处理浓度 Pb concentration of treatments (mg·kg-1) | ||||
---|---|---|---|---|---|---|---|
对照 Control | 500 | 1 500 | 3 000 | 4 500 | |||
淹水 Flood | 30 | OSL (cm) | 15.08 ± 0.88a | 13.20 ± 0.99ab | 11.28 ± 0.95b | 8.42 ± 0.26c | 7.92 ± 0.35c |
ODLN (No.) | 0.27 ± 0.09a | 0.28 ± 0.05a | 0.06 ± 0.03b | 0.06 ± 0.03b | 0.00 ± 0.00b | ||
OGR (cm·d-1) | 0.76 ± 0.05a | 0.66 ± 0.05ab | 0.57 ± 0.05b | 0.42 ± 0.01c | 0.40 ± 0.02c | ||
60 | OSL (cm) | 31.06 ± 0.37a | 30.08 ± 0.42a | 28.53 ± 0.77a | 20.12 ± 0.73b | 15.24 ± 0.83c | |
ODLN (No.) | 1.49 ± 0.10a | 1.50 ± 0.17a | 1.74 ± 0.34a | 1.82 ± 0.20a | 1.96 ± 0.22a | ||
OGR (cm·d-1) | 0.53 ± 0.03a | 0.57 ± 0.02a | 0.58 ± 0.02a | 0.39 ± 0.03b | 0.24 ± 0.03c | ||
90 | OSL (cm) | 41.22 ± 1.14a | 40.97 ± 1.19a | 40.65 ± 1.68a | 32.98 ± 1.78b | 22.41 ± 0.74c | |
ODLN (No.) | 3.28 ± 0.15a | 2.99 ± 0.27ab | 2.95 ± 0.22ab | 3.10 ± 0.20ab | 2.53 ± 0.35b | ||
OGR (cm·d-1) | 0.34 ± 0.05ab | 0.36 ± 0.03a | 0.40 ± 0.04a | 0.43 ± 0.04a | 0.24 ± 0.03b | ||
干旱Drought | 30 | OSL (cm) | 4.50 ± 0.65a* | 3.38 ± 0.63a* | 3.38 ± 0.55a* | 3.50 ± 0.29a* | 1.50 ± 0.05b* |
ODLN (No.) | 0.00 ± 0.00a* | 0.00 ± 0.00a* | 0.00 ± 0.00a | 0.00 ± 0.00a | 0.00 ± 0.00a | ||
OGR (cm·d-1) | 0.23 ± 0.03a* | 0.17 ± 0.03a* | 0.17 ± 0.03a* | 0.18 ± 0.01a* | 0.07 ± 0.00b* | ||
60 | OSL (cm) | 19.95 ± 1.08a* | 11.23 ± 0.43b* | 5.55 ± 0.75c* | 4.44 ± 0.87c* | 3.65 ± 0.61c* | |
ODLN (No.) | 0.10 ± 0.04a* | 0.14 ± 0.05a* | 0.15 ± 0.05a* | 0.25 ± 0.16a* | 0.06 ± 0.06a* | ||
OGR (cm·d-1) | 0.52 ± 0.03a | 0.26 ± 0.03b* | 0.07 ± 0.04cd* | 0.03 ± 0.02d* | 0.14 ± 0.04c | ||
90 | OSL (cm) | 28.82 ± 1.16a* | 24.56 ± 0.76b* | 14.46 ± 1.00c* | 8.45 ± 0.25d* | 4.13 ± 0.12e* | |
ODLN (No.) | 2.23 ± 0.28a* | 1.83 ± 0.11ab* | 1.40 ± 0.26ab* | 1.86 ± 0.34ab* | 1.21 ± 0.44b* | ||
OGR (cm·d-1) | 0.30 ± 0.06b | 0.44 ± 0.03a | 0.30 ± 0.05b | 0.13 ± 0.03c* | 0.03 ± 0.02c* |
生长指标 Growth parameters | 双因素方差分析 Two-way AVONA | |||||
---|---|---|---|---|---|---|
铅 Pb | 水 Water | 铅 × 水 Pb × water | ||||
F | p | F | p | F | p | |
根长 Root length | 184.571 | < 0.001 | 273.946 | < 0.001 | 4.605 | < 0.01 |
根茎长 Rhizome length | 65.735 | < 0.001 | 126.045 | < 0.002 | 5.271 | < 0.01 |
根茎数 No. of rhizomes | 92.408 | < 0.001 | 207.906 | < 0.003 | 8.108 | < 0.001 |
芽数 No. of buds | 42.807 | < 0.001 | 51.986 | < 0.004 | 6.879 | < 0.001 |
子株数 No. of offspring shoots | 12.658 | < 0.001 | 442.488 | < 0.005 | 4.293 | < 0.01 |
表4 铅和水分处理对芦苇根茎生长、芽和子株数的双因素方差分析结果
Table 4 Results of two-way ANOVA of the effect of Pb and water stress on rhizome growth, number of buds and offspring shoots of Phragmites australis
生长指标 Growth parameters | 双因素方差分析 Two-way AVONA | |||||
---|---|---|---|---|---|---|
铅 Pb | 水 Water | 铅 × 水 Pb × water | ||||
F | p | F | p | F | p | |
根长 Root length | 184.571 | < 0.001 | 273.946 | < 0.001 | 4.605 | < 0.01 |
根茎长 Rhizome length | 65.735 | < 0.001 | 126.045 | < 0.002 | 5.271 | < 0.01 |
根茎数 No. of rhizomes | 92.408 | < 0.001 | 207.906 | < 0.003 | 8.108 | < 0.001 |
芽数 No. of buds | 42.807 | < 0.001 | 51.986 | < 0.004 | 6.879 | < 0.001 |
子株数 No. of offspring shoots | 12.658 | < 0.001 | 442.488 | < 0.005 | 4.293 | < 0.01 |
图1 淹水和干旱生境下铅污染对芦苇地下器官和地上子株数的影响(平均值±标准误差, n = 40)。不同的小写字母表示同一水分处理水平上, 不同铅处理间差异显著(p ≤ 0.05), *表示同一铅处理水平上, 淹水和干旱处理间差异显著(p ≤ 0.05)。
Fig. 1 Effects of Pb pollution on growth of below-ground organs and abundance of above-ground offspring shoots of Phragmites australis in flood and dry environment (mean ± SE, n = 40). Different lowercase letters indicate significant differences (p ≤ 0.05) between Pb levels within one water treatment level, and * indicates significant difference (p ≤ 0.05) between water treatment and drought treatment within one Pb level.
双因素方差分析 Two-way AVONA | ||||||
---|---|---|---|---|---|---|
铅 Pb | 水 Water | 铅 × 水 Pb × water | ||||
F | p | F | p | F | p | |
根 Roots | 63.55 | < 0.001 | 124.45 | < 0.001 | 2.56 | 0.06 |
根茎 Rhizomes | 55.76 | < 0.001 | 77.79 | < 0.001 | 4.41 | < 0.01 |
母株 Parent shoots | 7.31 | < 0.001 | 39.32 | < 0.001 | 7.48 | < 0.001 |
子株 Offspring shoots | 42.52 | < 0.001 | 270.30 | < 0.001 | 6.95 | < 0.001 |
表5 铅和水分处理对芦苇生物量影响的双因素方差分析结果
Table 5 Results of two-way ANOVA of the effect of Pb and water stress on biomass of Phragmites australis
双因素方差分析 Two-way AVONA | ||||||
---|---|---|---|---|---|---|
铅 Pb | 水 Water | 铅 × 水 Pb × water | ||||
F | p | F | p | F | p | |
根 Roots | 63.55 | < 0.001 | 124.45 | < 0.001 | 2.56 | 0.06 |
根茎 Rhizomes | 55.76 | < 0.001 | 77.79 | < 0.001 | 4.41 | < 0.01 |
母株 Parent shoots | 7.31 | < 0.001 | 39.32 | < 0.001 | 7.48 | < 0.001 |
子株 Offspring shoots | 42.52 | < 0.001 | 270.30 | < 0.001 | 6.95 | < 0.001 |
图2 淹水和干旱生境下铅污染对芦苇各器官生物量积累的影响(平均值±标准误差, n = 40)。不同的小写字母表示同一水处理水平上, 不同铅处理间差异显著(p ≤ 0.05), *表示同一铅处理水平上, 淹水和干旱处理间差异显著(p ≤ 0.05)。
Fig. 2 The effects of Pb pollution on biomass accumulation of different organs of Phragmites australis in flood and dry environment (mean ± SE, n = 40). Different lowercase letters indicate significant differences (p ≤ 0.05) between Pb levels within one water treatment level, and * indicates significant difference (p ≤ 0.05) between water treatment and drought treatment within one Pb level.
图3 芦苇各器官生物量分配比例(平均值±标准误差, n = 40)。不同的小写字母表示同一水处理水平上, 不同铅处理间差异显著(p ≤ 0.05), *表示同一铅处理水平上, 淹水和干旱处理间差异显著(p ≤ 0.05)。
Fig. 3 The percentage of different organ biomass in total biomass of Phragmites australis subjected to Pb concentration in flood and dry environment (mean ± SE, n = 40). Different lowercase letters indicate significant differences (p ≤ 0.05) between Pb levels within one water treatment level, and * indicates significant difference (p ≤ 0.05) between water treatment and drought treatment within one Pb level.
光合参数 Photosynthetic parameters | 双因素方差分析 Two-way AVONA | |||||
---|---|---|---|---|---|---|
铅 Pb | 水 Water | 铅 × 水 Pb × water | ||||
F | p | F | p | F | p | |
净光合速率 Net photosynthetic rate | 12.69 | <0.001 | 20.38 | <0.001 | 6.92 | <0.001 |
气孔导度 Stomatal conductance | 16.90 | <0.001 | 95.36 | <0.001 | 3.80 | <0.01 |
胞间CO2浓度 Intercellular CO2 concentration | 9.80 | <0.001 | 111.35 | <0.001 | 1.54 | 0.23 |
蒸腾速率 Transpiration rate | 6.08 | <0.001 | 88.80 | <0.001 | 1.07 | 0.38 |
表6 铅和水分处理对芦苇光合作用影响的双因素方差分析结果
Table 6 Results of two-way ANOVA of the effect of Pb and water stress on photosynthesis of Phragmites australis
光合参数 Photosynthetic parameters | 双因素方差分析 Two-way AVONA | |||||
---|---|---|---|---|---|---|
铅 Pb | 水 Water | 铅 × 水 Pb × water | ||||
F | p | F | p | F | p | |
净光合速率 Net photosynthetic rate | 12.69 | <0.001 | 20.38 | <0.001 | 6.92 | <0.001 |
气孔导度 Stomatal conductance | 16.90 | <0.001 | 95.36 | <0.001 | 3.80 | <0.01 |
胞间CO2浓度 Intercellular CO2 concentration | 9.80 | <0.001 | 111.35 | <0.001 | 1.54 | 0.23 |
蒸腾速率 Transpiration rate | 6.08 | <0.001 | 88.80 | <0.001 | 1.07 | 0.38 |
图4 淹水和干旱生境下铅污染对芦苇母株和子株光合作用的影响(平均值±标准误差, n = 16)。不同的小写字母表示同一水处理水平上, 不同铅处理间差异显著(p ≤ 0.05), *表示同一铅处理水平上, 淹水和干旱处理间差异显著(p ≤ 0.05)。
Fig. 4 The effects of Pb pollution on photosynthesis of parent and offspring shoots of Phragmites australis in flood and dry environment (mean ± SE, n = 16). Different lowercase letters indicate significant differences (p ≤ 0.05) between Pb levels within one water treatment level, and * indicates significant difference (p ≤ 0.05) between water treatment and drought treatment within one Pb level.
图5 淹水和干旱生境下芦苇不同器官中铅的含量(平均值±标准误差, n = 4)。不同的小写字母表示同一水处理水平上, 不同铅处理间差异显著(p ≤ 0.05), *表示同一铅处理水平上, 淹水和干旱处理间差异显著(p ≤ 0.05)。
Fig. 5 The Pb concentrations in different parts of Phragmites australis subjected to Pb in flood and dry environment (mean ± SE, n = 4). Different lowercase letters indicate significant differences (p ≤0.05) between Pb levels within one water treatment level, and * indicates significant difference (p ≤ 0.05) between water treatment and drought treatment within one Pb level.
双因素方差分析 Two-way AVONA | ||||||
---|---|---|---|---|---|---|
铅 Pb | 水 Water | 铅×水 Pb × water | ||||
F | p | F | p | F | p | |
根 Roots | 472.06 | <0.001 | 1 061.42 | <0.001 | 166.30 | <0.001 |
根茎 Rhizomes | 174.54 | <0.001 | 317.95 | <0.001 | 79.07 | <0.001 |
母株 Parent shoots | 3 304.20 | <0.001 | 369.17 | <0.001 | 434.26 | <0.001 |
子株 Offspring shoots | 2 392.36 | <0.001 | 42.83 | <0.001 | 31.27 | <0.001 |
表7 铅和水分处理对芦苇各器官中铅含量影响的双因素方差分析结果
Table 7 Results of two-way ANOVA of the effect of Pb and water stress on Pb concentrations in organs of Phragmites australis
双因素方差分析 Two-way AVONA | ||||||
---|---|---|---|---|---|---|
铅 Pb | 水 Water | 铅×水 Pb × water | ||||
F | p | F | p | F | p | |
根 Roots | 472.06 | <0.001 | 1 061.42 | <0.001 | 166.30 | <0.001 |
根茎 Rhizomes | 174.54 | <0.001 | 317.95 | <0.001 | 79.07 | <0.001 |
母株 Parent shoots | 3 304.20 | <0.001 | 369.17 | <0.001 | 434.26 | <0.001 |
子株 Offspring shoots | 2 392.36 | <0.001 | 42.83 | <0.001 | 31.27 | <0.001 |
[1] | Ahmad MSA, Hussain M, Ijaz S, Alvi AK (2008). Photosynthetic performance of two mung bean (Vigna radiata) cultivars under lead and copper stress. International Journal of Agriculture and Biology, 10, 167-172. |
[2] | Benson EJ (2001). Effects of Fire on Tallgrass Prairie Plant Population Dynamics. Master degree thesis, Kansas State University, Manhattan. |
[3] |
Benson EJ, Hartnett DC (2006). The role of seed and vegetative reproduction in plant recruitment and demography in tallgrass prairie.Plant Ecology, 187, 163-178.
DOI URL |
[4] |
Brewer JS, Bertness MD (1996). Disturbance and intraspecific variation in the clonal morphology of salt marsh perennials.Oikos, 77, 107-116.
DOI URL |
[5] |
Cao M, Huang PW, Zhang N, Cheng LY, Mu CS (2016). Effects of lead contamination on underground bud and output of aboveground shoots of Phragmites australis (common reed) under different water regimes. Journal of Southwest University for Nationalities (Natural Science Edition), 42(2), 131-138.
DOI URL |
[曹明, 黄蓬万, 张娜, 程露瑶, 穆春生 (2016). 不同水分生境下铅胁迫对芦苇地下芽库及其输出子株能力的影响. 西南民族大学学报(自然科学版), 42(2), 131-138.]
DOI URL |
|
[6] |
Dalgleish HJ, Hartnett DC (2006). Below-ground bud banks increase along a precipitation gradient of the North American Great Plains: A test of the meristem limitation hypothesis.New Phytologist, 171, 81-89.
DOI URL |
[7] | Davies BE (1990). Lead. In: Alloway BJ ed. Heavy Metals in Soils. John Wiley & Sons,New York. 177-196. |
[8] |
Fernandes PM, Vega JA, Jiménez E, Rigolot E (2008). Fire resistance of European pines.Forest Ecology and Management, 256, 246-255.
DOI URL |
[9] | Harper JL (1977). Population Biology of Plants. Academic Press, London. |
[10] | Hartnett DC, Setshogo MP, Dalgleish HJ (2006). Bud banks of perennial savanna grasses in Botswana.African Journal of Ecology, 44, 256-263. |
[11] | Hechmi N, Aissa NB, Abdenaceur HA, Jedidi N (2014). Evaluating the phytoremediation potential of Phragmites australis grown in pentachlorophenol and cadmium co-?contaminated soils.Environmental Science and Pollution Research, 21, 1304-1313. |
[12] | Henry C, Amoros C (1996). Are the banks a source of recolonization after disturbance: An experiment on aquatic vegetation in a former channel of the Rh?ne River.Hydrobiologia, 330, 151-162 |
[13] | Hu R, Sun K, Su X, Pan YX, Zhang YF, Wang XP (2012). Physiological responses and tolerance mechanisms to Pb in two xerophils: Salsola passerina Bunge and Chenopodium album L. Journal of Hazardous Materials, 205-206, 131-138. |
[14] | Islam E, Liu D, Li TQ, Yang XE, Jin XF, Mahmood Q, Tian S, Li JY (2008). Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. Journal of Hazardous Materials, 154, 914-926. |
[15] |
Li ZL, Zhang YT, Yu DF, Zhang N, Lin JX, Zhang JW, Tang JH, Wang JF, Mu CS (2014). The influence of precipitation regimes and elevated CO2 on photosynthesis and biomass accumulation and partitioning in seedlings of the rhizomatous perennial grassLeymus chinensis. PLOS ONE, 9, e103633. DOI: 10.1371/journal.pone.0103633.
DOI |
[16] | Liu B, Liu ZM, Wang LX, Wang ZN (2014). Responses of rhizomatous grass Phragmites communis to wind erosion: Effects on biomass allocation.Pant and Soil, 380, 389-398. |
[17] | Mony C, Puijalon S, Bornette G (2011). Resprouting response of aquatic clonal plants to cutting may explain their risistance to spate flooding. Flia Geobotanic, 46, 155-164. |
[18] | Nishihiro J, Araki S, Fujiwara N, Washitani I (2004). Germination characteristics of lakeshore plants under an arti?cially stabilizedwater regime.Aquatic Botany, 79, 333-343. |
[19] | Sharma P, Dubey RS (2005). Lead toxicity in plants.Brazilian Journal of Plant Physiology, 17(1), 35-52. |
[20] | Wang JF, Gao S, Lin JX, Mu YG, Mu CS (2010). Summer warming effects on biomass production and clonal growth ofLeymus chinensis. Crop Pasture Science, 61, 670-676. |
[21] | Wang PF, Zhang SH, Wang C, Lu J (2012). Effects of Pb on the oxidative stress and antioxidant response in a Pb bioaccumulator plantVallisneria natans. Ecotoxicology and Environmental Safety, 78, 28-34. |
[22] | Weis JS, Weis P (2004). Metal uptake, transport and release by wetland plants: Implications for phytoremediation and restoration.Environment International, 30, 685-700. |
[23] | Windham L, Weis JS, Weis P (2001). Lead uptake, distribution, and effects in two dominant salt marsh macrophytes,Spartina alterniflora (cordgrass) and Phragmites australis 42, 811-816. |
[24] | Ye ZH, Baker AJM, Wong MH, Willis AJ (1997). Zinc, lead and cadmium tolerance, uptake and accumulation by the common reed,phragmites australis(Cav.) Trin. ex Steudel. Annal of Botany, 80, 363-370. |
[25] | Zhang N, Zhang JW, Yang YH, Li XY, Lin JX, Li ZL, Cheng LY, Wang JF, Mu CS, Wang AX (2015). Effects of lead contamination on the clonal propagative ability of Phragmites australis(common reed) grown in wet and dry environments. Plant Biology, 17, 893-903. |
[26] | Zhu TC (2004). The Bio-ecology of Leymus chinensis.Jilin Science and Technology Press, Changchun. 85-89. |
[祝廷成 (2004). 羊草生物生态学. 吉林科学技术出版社, 长春. 85-89.] |
[1] | 赵小宁 田晓楠 李新 李广德 郭有正 贾黎明 段劼 席本野. Granier原始公式计算树干液流速率的适用性分析—以毛白杨为例[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[2] | 雷自然 贾国栋 余新晓 刘子赫. 植物水分来源稳定氢氧同位素偏移研究进展[J]. 植物生态学报, 2023, 47(1): 0-0. |
[3] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[4] | 朱明阳, 林琳, 佘雨龙, 肖城材, 赵通兴, 胡春相, 赵昌佑, 王文礼. 云南轿子山不同海拔急尖长苞冷杉径向生长动态及其低温阈值[J]. 植物生态学报, 2022, 46(9): 1038-1049. |
[5] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[6] | 伍敏, 田雨, 樊大勇, 张祥雪. 干旱胁迫下毛白杨和元宝槭的水力学调控[J]. 植物生态学报, 2022, 46(9): 1086-1097. |
[7] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[8] | 陈奕竹, 郎伟光, 陈效逑. 中国北方树木秋季物候的过程模拟及其区域分异归因[J]. 植物生态学报, 2022, 46(7): 753-765. |
[9] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[10] | 李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性[J]. 植物生态学报, 2022, 46(6): 687-699. |
[11] | 魏龙鑫, 耿燕, 崔可达, 乔雪涛, 岳庆敏, 范春雨, 张春雨, 赵秀海. 阔叶红松林不同林层和生长阶段树木生长对采伐强度的响应[J]. 植物生态学报, 2022, 46(6): 642-655. |
[12] | 黄冬柳, 项伟, 李忠国, 朱师丹. 南亚热带10种造林树种的水力结构和水力安全[J]. 植物生态学报, 2022, 46(5): 602-612. |
[13] | 李思源, 张照鑫, 饶良懿. 桑苗非结构性碳水化合物和生长激素对水淹胁迫的响应[J]. 植物生态学报, 2022, 46(3): 311-320. |
[14] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
[15] | 郑周涛 张扬建. 1982–2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19