植物生态学报 ›› 2023, Vol. 47 ›› Issue (3): 404-417.DOI: 10.17521/cjpe.2022.0321
赵小宁1, 田晓楠1, 李新2, 李广德3, 郭有正1, 贾黎明1, 段劼1, 席本野1,**()
收稿日期:
2022-07-29
接受日期:
2022-09-12
出版日期:
2023-03-20
发布日期:
2023-02-28
通讯作者:
席本野
作者简介:
** 席本野: ORCID:0000-0003-4730-6384 (benyexi@bjfu.edu.cn)*同等贡献
基金资助:
ZHAO Xiao-Ning1, TIAN Xiao-Nan1, LI Xin2, LI Guang-De3, GUO You-Zheng1, JIA Li-Ming1, DUAN Jie1, XI Ben-Ye1,**()
Received:
2022-07-29
Accepted:
2022-09-12
Online:
2023-03-20
Published:
2023-02-28
Contact:
XI Ben-Ye
About author:
First author contact:*Contributed equally to this work
Supported by:
摘要:
热扩散探针(TDP)在林木蒸腾研究中应用极广, 其测定数据的计算精度直接影响对林木和林分耗水的精准定量。Granier原始公式(Fd = 0.0119K1.231, Fd为液流速率(cm·s-1), K为温差系数)是计算TDP测定数据的标准方法, 但其准确性备受质疑。为系统了解Granier原始公式的适用性和明确对其校正的必要性, 该研究以毛白杨(Populus tomentosa)为实验材料, 采用室内茎段法和整树容器法, 针对不同型号的TDP探针评估Granier原始公式的精度, 并对比不同方法校正公式的应用效果。与茎段法实测值相比, Granier原始公式计算的液流速率平均低估52.3%-61.4%。通过茎段法和整树容器法得到的校正公式分别为Fd = 0.0362K1.870和Fd = 0.0105K0.976; 且一种方法下得到的校正公式, 在其他方法条件下应用时存在较大偏差。与Granier原始公式相比, 整树容器法校正公式计算的大田生长状态下的7株林木的平均液流速率没有显著变化, 但茎段法和其他研究中得到的毛白杨校正公式的计算结果均显著变大。以整树容器法做对比, Granier原始公式的精度明显高于其他校正公式, 其相对平均绝对误差和均方根误差分别为10%和0.000 5 cm·s-1。此外, 校正公式的系数在不同林木间存在较大差异, 但其数值与导水边材中探针长度所占比例呈显著负相关关系。综上, 利用TDP测定液流时, 可能有必要对Granier原始公式进行校正, 但不同方法校正公式的应用效果差异巨大, 表明以往研究中得到的校正公式具有很大局限性。同时, 该研究未找到充足证据支撑“有必要采用校正公式以精确估算毛白杨液流速率”的观点, 尤其是考虑到整树容器法校正公式对大田栽植的毛白杨的液流速率估算结果与Granier原始公式并无显著差异, 因此建议继续对该树种延用Granier原始公式。
赵小宁, 田晓楠, 李新, 李广德, 郭有正, 贾黎明, 段劼, 席本野. Granier原始公式计算树干液流速率的适用性分析——以毛白杨为例. 植物生态学报, 2023, 47(3): 404-417. DOI: 10.17521/cjpe.2022.0321
ZHAO Xiao-Ning, TIAN Xiao-Nan, LI Xin, LI Guang-De, GUO You-Zheng, JIA Li-Ming, DUAN Jie, XI Ben-Ye. Analysis of applicability of Granier’s original equation for calculating the stem sap flux density—Take Populus tomentosa as an example. Chinese Journal of Plant Ecology, 2023, 47(3): 404-417. DOI: 10.17521/cjpe.2022.0321
茎段编号 Stem number | 直径 Diameter (cm) | 安装探针类型 Sensor type | 圆盘面积 Disc area (cm2) | 平均边材厚度 Average sapwood depth (cm) | 具有导水能力的边材面积 Area of water conducting sapwood (cm2) |
---|---|---|---|---|---|
1 | 9.80 | TDP-20, TDP-30 | 72.7 | 1.2 | 32.5 |
2 | 10.50 | TDP-20, TDP-30 | 86.1 | 0.9 | 25.4 |
3 | 10.20 | TDP-20, TDP-30 | 87.2 | 1.5 | 43.8 |
4 | 10.91 | TDP-20, TDP-30 | 97.6 | 1.9 | 54.8 |
5 | 11.20 | TDP-20, TDP-30 | 103.3 | 1.2 | 38.9 |
6 | 12.00 | TDP-20, TDP-30 | 111.9 | 1.1 | 36.6 |
7 | 11.80 | TDP-30 | 106.8 | 0.8 | 25.0 |
表1 室内茎段法实验中各茎段及其液流测定处圆盘的基本信息
Table 1 Basic information on the stems and their discs where the sap flux density was measured in the stem-weighing method experiment
茎段编号 Stem number | 直径 Diameter (cm) | 安装探针类型 Sensor type | 圆盘面积 Disc area (cm2) | 平均边材厚度 Average sapwood depth (cm) | 具有导水能力的边材面积 Area of water conducting sapwood (cm2) |
---|---|---|---|---|---|
1 | 9.80 | TDP-20, TDP-30 | 72.7 | 1.2 | 32.5 |
2 | 10.50 | TDP-20, TDP-30 | 86.1 | 0.9 | 25.4 |
3 | 10.20 | TDP-20, TDP-30 | 87.2 | 1.5 | 43.8 |
4 | 10.91 | TDP-20, TDP-30 | 97.6 | 1.9 | 54.8 |
5 | 11.20 | TDP-20, TDP-30 | 103.3 | 1.2 | 38.9 |
6 | 12.00 | TDP-20, TDP-30 | 111.9 | 1.1 | 36.6 |
7 | 11.80 | TDP-30 | 106.8 | 0.8 | 25.0 |
图2 毛白杨不同茎段染色后的横截面。图中红色区域为导水边材。
Fig. 2 Cross-section of different stem segments after dyeing of Populus tomentosa. The red area in the cross sections indicates the water-conducting sapwood.
图3 Granier原始公式液流速率计算值与室内茎段法液流速率真实值对比。不同颜色R2和p值代表对应颜色茎段的线性回归结果。
Fig. 3 Comparison between the calculated sap flux density by Granier’s original equation and the actual sap flux density measured with the stem-weighing method. R2 and p values represent the linear regression results of stems with data points having corresponding color.
图4 Granier原始公式液流速率估算值较室内茎段法真实值的低估程度。
Fig. 4 Degree of underestimation for sap flux density predicted with Granier’s original equation and compared with the actual value measured by the stem-weighing method.
图7 Granier原始公式校正系数与导水边材中探针长度所占比例的关系。
Fig. 7 Relationship between the calibrated parameters of Granier’s original equation and the proportion of probe inserted into water-conducting sapwood.
图8 利用室内茎段法实验数据验证Granier原始公式和不同的毛白杨校正公式。M1, Granier原始公式; M2, 茎段法校正公式; M3, 整树容器法校正公式; M4, 马玉洁等(2020)校正公式; M5, Xie和Wan (2018)校正公式。
Fig. 8 Verification of Granier’s original equation and other calibrated equations of Populus tomentosa using the data of the stem-weighing method. M1, Granier’s original equation; M2, calibrated equation of stem-weighing method; M3, calibrated equation of whole-tree potometer method; M4, calibrated equation of Ma et al. (2020); M5, calibrated equation of Xie & Wan (2018).
图9 利用整树容器法数据验证Granier原始公式和不同的毛白杨液流速率校正公式。M1, Granier原始公式; M2, 茎段法校正公式; M3, 整树容器法校正公式; M4, 马玉洁等(2020)校正公式; M5, Xie和Wan (2018)校正公式。
Fig. 9 Verification of Granier’s original equation and other calibrated equations of Populus tomentosa using the data of the whole-tree potometer method. M1, Granier’s original equation; M2, calibrated equation of stem-weighing method; M3, calibrated equation of whole-tree potometer method; M4, calibrated equation of Ma et al. (2020); M5, calibrated equation of Xie & Wan (2018).
图10 Granier原始公式和其他校正公式估算的大田栽植的毛白杨液流速率对比(平均值±标准误)。图中不同小写字母表示差异显著(p < 0.05),检验方法为Turkey检验。M1, Granier原始公式; M2, 茎段法校正公式; M3, 整树容器法校正公式; M4, 马玉洁等(2020)校正公式; M5, Xie和Wan (2018)校正公式。
Fig. 10 Comparison of sap flux density predicted with Granier’s original equation and other calibrated equations for field grown Populus tomentosa (mean ± SE). Different lowercase letters indicate a significant difference at p <0.05, according to Tukey’s test. M1, Granier’s original equation; M2, calibrated equation of stem-weighing method; M3, calibrated equation of whole-tree potometer method; M4, calibrated equation of Ma et al. (2020); M5, calibrated equation of Xie & Wan (2018).
[1] |
Børja I, Svĕtlík J, Nadezhdin V, Čermák J, Rosner S, Nadezhdina N (2016). Sap flux—A real time assessment of health status in Norway spruce. Scandinavian Journal of Forest Research, 31, 450-457.
DOI URL |
[2] |
Burgess SSO, Adams MA, Turner NC, Beverly CR, Ong CK, Khan AAH, Bleby TM (2001). An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiology, 21, 589-598.
PMID |
[3] |
Bush SE, Hultine KR, Sperry JS, Ehleringer JR (2010). Calibration of thermal dissipation sap flow probes for ring- and diffuse-porous trees. Tree Physiology, 30, 1545-1554.
DOI PMID |
[4] |
Clearwater MJ, Meinzer FC, Andrade JL, Goldstein G, Holbrook NM (1999). Potential errors in measurement of nonuniform sap flow using heat dissipation probes. Tree Physiology, 19, 681-687.
PMID |
[5] |
Dix MJ, Aubrey DP (2021a). Calibration approach and range of observed sap flow influences transpiration estimates from thermal dissipation sensors. Agricultural and Forest Meteorology, 307, 108534. DOI: 10.1016/j.agrformet.2021.108534.
DOI |
[6] | Dix MJ, Aubrey DP (2021b). Recalibrating best practices, challenges, and limitations of estimating tree transpiration via sap flow. Current Forestry Reports, 7, 31-37. |
[7] | FAO (2020). Global Forest Resources Assessment 2020: Main Report. Food and Agriculture Organization of the United Nations, Rome. |
[8] |
Flo V, Martinez-Vilalta J, Steppe K, Schuldt B, Poyatos R (2019). A synthesis of bias and uncertainty in sap flow methods. Agricultural and Forest Meteorology, 271, 362-374.
DOI |
[9] |
Fricke W (2019). Night-time transpiration—Favouring growth? Trends in Plant Science, 24, 311-317.
DOI URL |
[10] | Fuchs S, Leuschner C, Link R, Coners H, Schuldt B (2017). Calibration and comparison of thermal dissipation, heat ratio and heat field deformation sap flow probes for diffuse-porous trees. Agricultural and Forest Meteorology, 244- 245, 151-161. |
[11] |
Granier A (1985). A new method of sap flow measurement in tree stems. Annales des Sciences Forestières, 42, 193-200.
DOI URL |
[12] |
Green S, Clothier B, Jardine B (2003). Theory and practical application of heat pulse to measure sap flow. Agronomy Journal, 95, 1371-1379.
DOI URL |
[13] |
Iqbal S, Zha TS, Jia X, Hayat M, Qian D, Bourque CPA, Tian Y, Bai YJ, Liu P, Yang RZ, Khan A (2021). Interannual variation in sap flow response in three xeric shrub species to periodic drought. Agricultural and Forest Meteorology, 297, 108276. DOI: 10.1016/j.agrformet.2020.108276.
DOI |
[14] |
Jasechko S, Sharp ZD, Gibson JJ, Birks SJ, Yi Y, Fawcett PJ (2013). Terrestrial water fluxes dominated by transpiration. Nature, 496, 347-350.
DOI |
[15] |
Komatsu H, Shinohara Y, Nogata M, Tsuruta K, Otsuki K (2013). Changes in canopy transpiration due to thinning of a Cryptomeria japonica plantation. Hydrological Research Letters, 7, 60-65.
DOI URL |
[16] |
Köstner BMM, Schulze ED, Kelliher FM, Hollinger DY, Byers JN, Hunt JE, McSeveny TM, Meserth R, Weir PL (1992). Transpiration and canopy conductance in a pristine broad- leaved forest of Nothofagus: an analysis of xylem sap flow and eddy correlation measurements. Oecologia, 91, 350-359.
DOI PMID |
[17] |
Li DD, Liu JQ, Verhoef A, Xi BY, Hernandez-Santana V (2021). Understanding the relationship between biomass production and water use of Populus tomentosa trees throughout an entire short-rotation. Agricultural Water Management, 246, 106710. DOI: 10.1016/j.agrformet.2020.106710.
DOI |
[18] | Li GD, Fu FZ, Xi BY, Wang Y, Jia LM (2016). Study of transpiration and water consumption of triploid Populus tomentosa at individual tree and stand scales by using thermal dissipation technology. Acta Ecologica Sinica, 36, 2945-2953. |
[李广德, 富丰珍, 席本野, 王烨, 贾黎明 (2016). 基于热扩散技术的三倍体毛白杨单木及林分蒸腾耗水研究. 生态学报, 36, 2945-2953.] | |
[19] | Li GD, Jia LM, Fu FZ (2014). Comparison on the whole-tree water use of hybrid triploid of Chinese white poplar between the whole tree potometer and thermal dissipation probe. China Forestry Science and Technology, 28(5), 41-44. |
[李广德, 贾黎明, 富丰珍 (2014). 不同方法测定三倍体毛白杨整树蒸腾的比较. 林业科技开发, 28(5), 41-44.] | |
[20] |
Link RM, Fuchs S, Arias Aguilar D, Leuschner C, Castillo Ugalde M, Valverde Otarola JC, Schuldt B (2020). Tree height predicts the shape of radial sap flow profiles of Costa-Rican tropical dry forest tree species. Agricultural and Forest Meteorology, 287, 107913. DOI: 10.1016/j.agrformet.2020.107913.
DOI |
[21] |
Liu JQ, Li DD, Fernández JE, Coleman M, Hu W, Di N, Zou SY, Liu Y, Xi BY, Clothier B (2022). Variations in water- balance components and carbon stocks in poplar plantations with differing water inputs over a whole rotation: implications for sustainable forest management under climate change. Agricultural and Forest Meteorology, 320, 108958. DOI: 10.1016/j.agrformet.2022.108958.
DOI |
[22] |
Liu QX, Meng P, Zhang JS, Gao J, Sun SJ, Ren YF (2013). Calibration coefficients of Granier original formula based on sap flow of Platycladus orientalis. Acta Ecologica Sinica, 33, 1944-1951.
DOI URL |
[刘庆新, 孟平, 张劲松, 高峻, 孙守家, 任迎丰 (2013). 基于侧柏液流的测定对Granier原始公式系数进行校正. 生态学报, 33, 1944-1951.] | |
[23] |
Lu P, Woo KC, Liu ZT (2002). Estimation of whole-plant transpiration of bananas using sap flow measurements. Journal of Experimental Botany, 53, 1771-1779.
PMID |
[24] | Ma CM, Zhang HH, Han Y, Meng QX, Zhang JS, Ma YJ (2021). Error and correction formula of Granier’s original formula to calculate the stem sap flux density of clone 107 poplar. Scientia Silvae Sinicae, 57(3), 161-169. |
[马长明, 张含含, 韩煜, 孟庆星, 张劲松, 马玉洁 (2021). Granier原始公式测算107杨树干液流通量密度的误差及校正公式. 林业科学, 57(3), 161-169.] | |
[25] | Ma YJ, Wu PF, Wang X, Zhang JS, Yin CJ, Ma CM (2020). Adaptability of Granier empirical formula in sap flow measurement of Populus tomentosa based on whole tree weighing method. Chinese Journal of Applied Ecology, 31, 1518-1524. |
[马玉洁, 武鹏飞, 王晓, 张劲松, 尹昌君, 马长明 (2020). 基于整树称重法的Granier经验公式对毛白杨树干液流测定的适用性. 应用生态学报, 31, 1518-1524.]
DOI |
|
[26] |
McCulloh KA, Winter K, Meinzer FC, Garcia M, Aranda J, Lachenbruch B (2007). A comparison of daily water use estimates derived from constant-heat sap-flow probe values and gravimetric measurements in pot-grown saplings. Tree Physiology, 27, 1355-1360.
PMID |
[27] |
Nadezhdina N (2018). Revisiting the Heat Field Deformation (HFD) method for measuring sap flow. iForest, 11, 118-130.
DOI URL |
[28] |
Niu JF, Xu Y, Peng YH, Chen YJ, Zhao P (2022). Small inaccuracies in estimating narrow sapwood depth produce large error in sap velocity corrections. Ecohydrology, 15, e2409. DOI: 10.1002/eco.2409.
DOI |
[29] |
Ouyang L, Wu J, Zhao P, Zhu LW, Ni GY (2021). Stand age rather than soil moisture gradient mainly regulates the compromise between plant growth and water use of Eucalyptus urophylla in hilly South China. Land Degradation & Development, 32, 2423-2436.
DOI URL |
[30] |
Pasqualotto G, Carraro V, Menardi R, Anfodillo T (2019). Calibration of granier-type (TDP) sap flow probes by a high precision electronic potometer. Sensors, 19, 2419. DOI: 10.3390/s19102419.
DOI |
[31] |
Peters RL, Fonti P, Frank DC, Poyatos R, Pappas C, Kahmen A, Carraro V, Prendin AL, Schneider L, Baltzer JL, Baron-Gafford GA, Dietrich L, Heinrich I, Minor RL, Sonnentag O, Matheny AM, Wightman MG, Steppe K, et al. (2018). Quantification of uncertainties in conifer sap flow measured with the thermal dissipation method. New Phytologist, 219, 1283-1299.
DOI PMID |
[32] | Poyatos R, Granda V, Flo V, Adams MA, Adorján B, Aguadé D, Aidar MPM, Allen S, Alvarado-Barrientos MS, Anderson-Teixeira KJ, Aparecido LM, Arain MA, Aranda I, Asbjornsen H, Baxter R, et al. (2021). Global transpiration data from sap flow measurements: the SAPFLUXNET database. Earth System Science Data, 13, 2607-2649. |
[33] | Rafael P, Víctor G, Víctor F, Adams MA, Balázs A, David A, Aidar Marcos PM, Scott A, Susana ABM, Anderson Kristina J, Maria AL, Altaf AM, Ismael A, Heidi A, Robert B, et al. (2021). Global transpiration data from sap flow measurements: the SAPFLUXNET database. Earth System Science Data, 13, 2607-2649. |
[34] | Schlesinger WH, Jasechko S (2014). Transpiration in the global water cycle. Agricultural and Forest Meteorology, 189- 190, 115-117. |
[35] |
Schwärzel K, Zhang LL, Montanarella L, Wang YH, Sun G (2020). How afforestation affects the water cycle in drylands: a process-based comparative analysis. Global Change Biology, 26, 944-959.
DOI PMID |
[36] |
Smith DM, Allen SJ (1996). Measurement of sap flow in plant stems. Journal of Experimental Botany, 47, 1833-1844.
DOI URL |
[37] |
Steppe K, de Pauw DJW, Doody TM, Teskey RO (2010). A comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods. Agricultural and Forest Meteorology, 150, 1046-1056.
DOI URL |
[38] |
Sun HZ, Aubrey DP, Teskey RO (2012). A simple calibration improved the accuracy of the thermal dissipation technique for sap flow measurements in juvenile trees of six species. Trees, 26, 631-640.
DOI URL |
[39] | Taiz L, Zeiger E (2006). Plant Physiology. 4th ed. Sinauer Associates, Sunderland, USA. |
[40] |
Taneda H, Sperry JS (2008). A case-study of water transport in co-occurring ring-versus diffuse-porous trees: contrasts in water-status, conducting capacity, cavitation and vessel refilling. Tree Physiology, 28, 1641-1651.
DOI URL |
[41] |
Wang HB, Li X, Xiao JF, Ma MG (2021). Evapotranspiration components and water use efficiency from desert to alpine ecosystems in drylands. Agricultural and Forest Meteorology, 298-299, 108283. DOI: 10.1016/j.agrformet.2020.108283.
DOI |
[42] |
Wei ZW, Yoshimura K, Wang LX, Miralles D, Jasechko S, Lee X (2017). Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophysical Research Letters, 44, 2792-2801.
DOI URL |
[43] |
Xi BY, Di N, Wang Y, Duan J, Jia LM (2017). Modeling stand water use response to soil water availability and groundwater level for a mature Populus tomentosa plantation located on the North China Plain. Forest Ecology and Management, 391, 63-74.
DOI URL |
[44] |
Xi BY, Wang Y, Di N, Jia LM, Li GD, Huang XF, Gao YY (2012). Effects of soil water potential on the growth and physiological characteristics of Populus tomentosa pulpwood plantation under subsurface drip irrigation. Acta Ecologica Sinica, 32, 5318-5319.
DOI URL |
[席本野, 王烨, 邸楠, 贾黎明, 李广德, 黄祥丰, 高园园 (2012). 地下滴灌下土壤水势对毛白杨纸浆林生长及生理特性的影响. 生态学报, 32, 5318-5329.] | |
[45] |
Xie J, Wan XC (2018). The accuracy of the thermal dissipation technique for estimating sap flow is affected by the radial distribution of conduit diameter and density. Acta Physiologiae Plantarum, 40, 88.
DOI |
[46] | Zhao XH, Zhao P, Zhou J, Zhang ZZ, Sun ZW, Zhong WC (2015). Applicability evaluation of transpiration of five bamboo species by using TDP (thermal dissipation probe) method. Journal of Tropical and Subtropical Botany, 23, 567-575. |
[赵秀华, 赵平, 周娟, 张振振, 孙振伟, 钟文超 (2015). 热消散法(TDP)在5种竹子蒸腾耗水测定中的适用性评价. 热带亚热带植物学报, 23, 567-575.] |
[1] | 杨尚锦, 范云翔, 章毓文, 韩巧玲, 赵玥, 段劼, 邸楠, 席本野. 树木夜间液流组分划分方法对比——以毛白杨为例[J]. 植物生态学报, 2024, 48(4): 496-507. |
[2] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[3] | 张敏, 桑英, 宋金凤. 水培富贵竹的根压及其影响因素[J]. 植物生态学报, 2023, 47(7): 1010-1019. |
[4] | 蒋海港, 曾云鸿, 唐华欣, 刘伟, 李杰林, 何国华, 秦海燕, 王丽超, 姚银安. 三种藓类植物固碳耗水节律调节作用[J]. 植物生态学报, 2023, 47(7): 988-997. |
[5] | 杨丽琳, 邢万秋, 王卫光, 曹明珠. 新安江源区杉木树干液流速率变化及其对环境因子的响应[J]. 植物生态学报, 2023, 47(4): 571-583. |
[6] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[7] | 范云翔, 邸楠, 刘洋, 章毓文, 段劼, 李新, 王海红, 席本野. 毛白杨茎干夜间液流时空动态及其环境影响因子[J]. 植物生态学报, 2023, 47(2): 262-274. |
[8] | 熊博文, 李桐, 黄樱, 鄢春华, 邱国玉. 不同参考温度取值对三温模型反演植被蒸腾精度的影响[J]. 植物生态学报, 2022, 46(4): 383-393. |
[9] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[10] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[11] | 桂子洋, 秦树高, 胡朝, 白凤, 石慧书, 张宇清. 毛乌素沙地两种典型灌木叶片凝结水吸收能力及吸水途径[J]. 植物生态学报, 2021, 45(6): 583-593. |
[12] | 赵文芹, 席本野, 刘金强, 刘洋, 邹松言, 宋午椰, 陈立欣. 不同灌溉条件下杨树人工林蒸腾过程及环境响应[J]. 植物生态学报, 2021, 45(4): 370-382. |
[13] | 韩璐, 杨菲, 吴应明, 牛云明, 曾祎明, 陈立欣. 晋西黄土区典型乔灌木短期水分利用效率对环境因子的响应[J]. 植物生态学报, 2021, 45(12): 1350-1364. |
[14] | 李唐吉, 王懋林, 曹颖, 徐刚, 杨琪祺, 任思源, 胡尚连. 竹笋期竹箨和笋体的日间蒸腾特性及其对水分运输的影响[J]. 植物生态学报, 2021, 45(12): 1365-1379. |
[15] | 陈胜楠, 陈左司南, 张志强. 北京山区油松和元宝槭冠层气孔导度特征及其环境响应[J]. 植物生态学报, 2021, 45(12): 1329-1340. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19