植物生态学报 ›› 2023, Vol. 47 ›› Issue (3): 389-403.DOI: 10.17521/cjpe.2022.0197
祝维, 周欧, 孙一鸣, 古丽米热·依力哈木, 王亚飞, 杨红青, 贾黎明(), 席本野
收稿日期:
2022-05-17
接受日期:
2022-09-12
出版日期:
2023-03-20
发布日期:
2023-02-28
通讯作者:
贾黎明
作者简介:
* 贾黎明: ORCID: 0000-0002-6680-04IX (jlm@bjfu.edu.cn)基金资助:
ZHU Wei, ZHOU Ou, SUN Yi-Ming, Gulimire YILIHAMU, WANG Ya-Fei, YANG Hong-Qing, JIA Li-Ming(), XI Ben-Ye
Received:
2022-05-17
Accepted:
2022-09-12
Online:
2023-03-20
Published:
2023-02-28
Contact:
JIA Li-Ming
Supported by:
摘要:
资源吸收的动态生态位划分研究对于认识植物共存机制具有重要意义, 然而至今对于该领域的理解仍然不足。在2019年生长季内, 对华北平原上的一片毛白杨(Populus tomentosa)-刺槐(Robinia pseudoacacia)成熟混交林进行了同位素和土壤含水率的重复取样, 并于生长季末进行细根取样。通过氢氧稳定同位素方法和贝叶斯混合模型(MixSIAR)确定了树木的季节性吸水模式, 使用Pianka的标准化重叠值判断了毛白杨和刺槐的生态位重叠程度。结果显示: 两个树种都具有深根系, 但是, 毛白杨倾向水平侧根的发育并在浅土层(0-30 cm)分布更高比例的细根, 而刺槐则倾向垂直主根的发育, 在深土层(100-600 cm)分布高比例细根。就整个生长季的平均而言, 毛白杨和刺槐的主要水源均是中层(30-100 cm)和深层土壤水。但是, 浅层和中层土壤水对毛白杨吸水的贡献高于刺槐, 深层土壤水和地下水则反之。在应对干旱和夏季强降雨时, 毛白杨和刺槐表现出完全相反的吸水策略。在旱季, 毛白杨增加中土层的吸水贡献, 而刺槐则提高了对地下水的相对吸水量。当强降雨事件发生时, 毛白杨增加浅土层的吸水贡献, 而刺槐却增加深土层的吸水贡献。总之, 毛白杨和刺槐之间存在细根和吸水生态位互补, 并且吸水生态位互补程度随着季节而变化, 在旱季的吸水生态位互补程度相对高于其他季节。此外, 该研究还表明细根生态位划分不能代表树木的资源吸收划分。该研究为进一步理解植物共存机制提供了证据支撑, 并且为未来应对气候变化的混交林管理策略的制定提供重要参考。
祝维, 周欧, 孙一鸣, 古丽米热·依力哈木, 王亚飞, 杨红青, 贾黎明, 席本野. 混交林内毛白杨和刺槐根系吸水的动态生态位划分. 植物生态学报, 2023, 47(3): 389-403. DOI: 10.17521/cjpe.2022.0197
ZHU Wei, ZHOU Ou, SUN Yi-Ming, Gulimire YILIHAMU, WANG Ya-Fei, YANG Hong-Qing, JIA Li-Ming, XI Ben-Ye. Dynamic niche partitioning in root water uptake of Populus tomentosa and Robinia pseudoacacia in mixed forest. Chinese Journal of Plant Ecology, 2023, 47(3): 389-403. DOI: 10.17521/cjpe.2022.0197
图1 华北平原毛白杨和刺槐混交林细根、同位素和土壤含水率取样设计和林分结构示意图。
Fig. 1 Schematic diagram of fine root, isotope, and soil water content (SWC) sampling design and stand structure in a mixed forest of Populus tomentosa and Robinia pseudoacacia on the North China Plain.
图2 2019年华北平原毛白杨和刺槐混交林实验地日降水量和参考蒸散量。
Fig. 2 Daily precipitation and reference evapotranspiration at the experimental site in a mixed forest of Populus tomentosa and Robinia pseudoacacia on the North China Plain in 2019.
图4 华北平原毛白杨和刺槐混交林不同水源, 刺槐和毛白杨木质部水的氢氧稳定同位素比值(δD、δ18O)月变化。水平带表示置信区间。
Fig. 4 Monthly variations in hydrogen and oxygen stable isotopes ratio (δD, δ18O) of different water sources, tree xylem water of Populus tomentosa and Robinia pseudoacacia in a mixed forest of P. tomentosa and R. pseudoacacia on the North China Plain. Horizontal bands depict confidence interval.
土层 Soil layer (cm) | 土壤含水率 Soil water content (%) | ||||||
---|---|---|---|---|---|---|---|
4月 Apr. | 5月 May | 6月 June | 7月 July | 8月 Aug. | 9月 Sept. | 平均值 Mean | |
0-30 | 6.60 ± 0.61bB | 3.24 ± 0.37cC | 3.85 ± 0.37cB | 4.19 ± 0.32cB | 8.11 ± 1.23abB | 8.71 ± 1.76aAB | 5.78 ± 2.33B |
30-100 | 4.99 ± 0.58cC | 4.29 ± 0.20cdB | 3.99 ± 0.35dB | 4.13 ± 0.29cdB | 8.18 ± 0.47aB | 6.61 ± 0.95bB | 5.36 ± 1.64B |
100-600 | 10.30 ± 0.40aA | 10.20 ± 0.71aA | 7.21 ± 0.35bA | 6.82 ± 0.70bA | 11.60 ± 1.41aA | 11.10 ± 1.12aA | 9.59 ± 2.06A |
平均值 Mean | 7.32 ± 2.44ab | 5.94 ± 3.31bc | 5.02 ± 1.67c | 5.05 ± 1.39c | 9.32 ± 2.01a | 8.82 ± 2.28a |
表1 华北平原毛白杨和刺槐混交林各土层土壤含水率的季节动态(平均值±标准差)
Table 1 Seasonal dynamics of soil water content in each soil layer in a mixed forest of Populus tomentosa and Robinia pseudoacacia on the North China Plain (mean ± SD)
土层 Soil layer (cm) | 土壤含水率 Soil water content (%) | ||||||
---|---|---|---|---|---|---|---|
4月 Apr. | 5月 May | 6月 June | 7月 July | 8月 Aug. | 9月 Sept. | 平均值 Mean | |
0-30 | 6.60 ± 0.61bB | 3.24 ± 0.37cC | 3.85 ± 0.37cB | 4.19 ± 0.32cB | 8.11 ± 1.23abB | 8.71 ± 1.76aAB | 5.78 ± 2.33B |
30-100 | 4.99 ± 0.58cC | 4.29 ± 0.20cdB | 3.99 ± 0.35dB | 4.13 ± 0.29cdB | 8.18 ± 0.47aB | 6.61 ± 0.95bB | 5.36 ± 1.64B |
100-600 | 10.30 ± 0.40aA | 10.20 ± 0.71aA | 7.21 ± 0.35bA | 6.82 ± 0.70bA | 11.60 ± 1.41aA | 11.10 ± 1.12aA | 9.59 ± 2.06A |
平均值 Mean | 7.32 ± 2.44ab | 5.94 ± 3.31bc | 5.02 ± 1.67c | 5.05 ± 1.39c | 9.32 ± 2.01a | 8.82 ± 2.28a |
图5 华北平原毛白杨和刺槐混交林不同物种垂直细根分布格局(平均值±标准差)。A, 细根根长密度。B, 累积细根比例。C, 各土层细根比例。*, 不同物种的细根指标差异显著(p < 0.05); β, 细根消减系数, 较大的β值意味着更深的生根剖面。
Fig. 5 Vertical fine root distributions of different species in a mixed forest of Populus tomentosa and Robinia pseudoacacia on the North China Plain (mean ± SD). A, Fine root length density (FRLD). B, Cumulative fine root fraction. C, Fine root fraction in each soil layer. *, significant differences (p < 0.05) in the fine root index between different species; β, the root extinction coefficient, larger values of β imply deeper rooting profiles.
因子 Factor | 月份 Month | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | 5 | 6 | 7 | 8 | 9 | 平均值 Mean | ||||||||
F | p | F | p | F | p | F | p | F | p | F | p | F | p | |
水源 Water source | 1.93 | ns | 74.47 | * | 17.78 | * | 2.50 | * | 86.42 | * | 104.66 | * | 2.35 | * |
物种 Species | 0.01 | ns | 0.80 | ns | 0.70 | ns | 0.10 | ns | 0.32 | ns | 0.13 | ns | 0.01 | ns |
水源×物种 Water source × species | 19.73 | * | 11.61 | * | 93.43 | * | 10.09 | * | 94.23 | * | 47.36 | * | 5.70 | * |
表2 利用线性混合效应模型分析水源和物种对华北平原毛白杨和刺槐混交林不同物种吸水贡献的影响
Table 2 Analyses by linear mixed-effects models for the effects of water source and species on water uptake contributions of different species in a mixed forest of Populus tomentosa and Robinia pseudoacacia on the North China Plain
因子 Factor | 月份 Month | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | 5 | 6 | 7 | 8 | 9 | 平均值 Mean | ||||||||
F | p | F | p | F | p | F | p | F | p | F | p | F | p | |
水源 Water source | 1.93 | ns | 74.47 | * | 17.78 | * | 2.50 | * | 86.42 | * | 104.66 | * | 2.35 | * |
物种 Species | 0.01 | ns | 0.80 | ns | 0.70 | ns | 0.10 | ns | 0.32 | ns | 0.13 | ns | 0.01 | ns |
水源×物种 Water source × species | 19.73 | * | 11.61 | * | 93.43 | * | 10.09 | * | 94.23 | * | 47.36 | * | 5.70 | * |
图6 华北平原毛白杨和刺槐混交林不同物种对不同水源吸水贡献(生长季平均)的影响(平均值±标准差)。A, 浅、中、深层土壤水以及地下水(GW)。B, 垂直吸水模式。*, 不同物种之间的吸水贡献有显著差异(p < 0.05); ns, 没有显著差异(p > 0.05)。根据最小显著差异检验, 不同小写字母表示同一物种不同水源之间吸水贡献差异显著(p < 0.05)。
Fig. 6 Effects of species on water uptake contributions of different water sources (mean values of the growing season) in a mixed forest of Populus tomentosa and Robinia pseudoacacia on the North China Plain (mean ± SD). A, Shallow, middle, and deep soil water and groundwater (GW). B, Vertical water uptake patterns. *, significant differences (p < 0.05) in water uptake contributions between different species; ns, no significant differences between different species (p > 0.05). Different lowercase letters indicate significant differences (p < 0.05) in water uptake contributions among water sources, according to the least significance difference test.
图7 华北平原毛白杨和刺槐混交林不同物种垂直吸水模式的季节动态(平均值±标准差)。GW, 地下水。
Fig. 7 Seasonal dynamics of vertical water uptake patterns of different species in a mixed forest of Populus tomentosa and Robinia pseudoacacia on the North China Plain (mean ± SD). GW, groundwater.
指标 Index | 生态位重叠指数 Niche overlap index | ||||||
---|---|---|---|---|---|---|---|
4月 Apr. | 5月 May | 6月 June | 7月 July | 8月 Aug. | 9月 Sept. | 平均值 Mean | |
吸水贡献 Contribution to water uptake | 0.79 ± 0.03b | 0.94 ± 0.06a | 0.83 ± 0.05b | 0.84 ± 0.05b | 0.90 ± 0.03a | 0.94 ± 0.03a | 0.87 ± 0.03A |
根长密度 Fine root length density | - | - | - | - | - | - | 0.40 ± 0.06B |
表3 华北平原毛白杨和刺槐混交林分别使用根长密度和吸水贡献计算的生态位重叠指数(平均值±标准差)
Table 3 Niche overlap index calculated using root length density and water uptake contribution in a mixed forest of Populus tomentosa and Robinia pseudoacacia on the North China Plain (mean ± SD)
指标 Index | 生态位重叠指数 Niche overlap index | ||||||
---|---|---|---|---|---|---|---|
4月 Apr. | 5月 May | 6月 June | 7月 July | 8月 Aug. | 9月 Sept. | 平均值 Mean | |
吸水贡献 Contribution to water uptake | 0.79 ± 0.03b | 0.94 ± 0.06a | 0.83 ± 0.05b | 0.84 ± 0.05b | 0.90 ± 0.03a | 0.94 ± 0.03a | 0.87 ± 0.03A |
根长密度 Fine root length density | - | - | - | - | - | - | 0.40 ± 0.06B |
[1] |
Allen MR, Ingram WJ (2002). Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 228-232.
DOI |
[2] | Allen RG, Pereira LS, Raes D, Smith M (1998). Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56. FAO, Rome. |
[3] |
Araya YN, Silvertown J, Gowing DJ, McConway KJ, Linder HP, Midgley G (2011). A fundamental, eco-hydrological basis for niche segregation in plant communities. New Phytologist, 189, 253-258.
DOI PMID |
[4] |
Bachmann D, Gockele A, Ravenek JM, Roscher C, Strecker T, Weigelt A, Buchmann N (2015). No evidence of complementary water use along a plant species richness gradient in temperate experimental grasslands. PLoS ONE, 10, e0116367. DOI: 10.1371/journal.pone.0116367.
DOI |
[5] |
Barberon M, Vermeer JEM, de Bellis D, Wang P, Naseer S, Andersen TG, Humbel BM, Nawrath C, Takano J, Salt DE, Geldner N (2016). Adaptation of root function by nutrient-induced plasticity of endodermal differentiation. Cell, 164, 447-459.
DOI PMID |
[6] |
Bello J, Hasselquist NJ, Vallet P, Kahmen A, Perot T, Korboulewsky N (2019). Complementary water uptake depth of Quercus petraea and Pinus sylvestris in mixed stands during an extreme drought. Plant and Soil, 437, 93-115.
DOI |
[7] |
Bennett AC, McDowell NG, Allen CD, Anderson-Teixeira KJ (2015). Larger trees suffer most during drought in forests worldwide. Nature Plants, 1, 15139. DOI: 10.1038/nplants.2015.139.
DOI |
[8] |
Block RMA, van Rees KCJ, Knight JD (2006). A review of fine root dynamics in Populus plantations. Agroforestry Systems, 67, 73-84.
DOI URL |
[9] |
Bolte A, Villanueva I (2006). Interspecific competition impacts on the morphology and distribution of fine roots in European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.). European Journal of Forest Research, 125, 15-26.
DOI URL |
[10] |
Brassard BW, Chen HYH, Bergeron Y (2009). Influence of environmental variability on root dynamics in northern forests. Critical Reviews in Plant Sciences, 28, 179-197.
DOI URL |
[11] |
Brassard BW, Chen HYH, Bergeron Y, Paré D (2011). Differences in fine root productivity between mixed- and single-species stands. Functional Ecology, 25, 238-246.
DOI URL |
[12] |
Brassard BW, Chen HYH, Cavard X, Laganière J, Reich PB, Bergeron Y, Paré D, Yuan ZY (2013). Tree species diversity increases fine root productivity through increased soil volume filling. Journal of Ecology, 101, 210-219.
DOI URL |
[13] |
Cai GC, Vanderborght J, Couvreur V, Mboh CM, Vereecken H (2018). Parameterization of root water uptake models considering dynamic root distributions and water uptake compensation. Vadose Zone Journal, 17, 160125. DOI: DOI:10.2136/vzj2016.12.0125.
DOI |
[14] |
Coleman MD, Aubrey DP (2018). Stand development and other intrinsic factors largely control fine-root dynamics with only subtle modifications from resource availability. Tree Physiology, 38, 1805-1819.
DOI PMID |
[15] |
D’Amato AW, Bradford JB, Fraver S, Palik BJ (2011). Forest management for mitigation and adaptation to climate change: insights from long-term silviculture experiments. Forest Ecology and Management, 262, 803-816.
DOI URL |
[16] |
Dawson TE, Ehleringer JR (1991). Streamside trees that do not use stream water. Nature, 350, 335-337.
DOI |
[17] |
Dawson TE, Pate JS (1996). Seasonal water uptake and movement in root systems of Australian phraeatophytic plants of dimorphic root morphology: a stable isotope investigation. Oecologia, 107, 13-20.
DOI PMID |
[18] |
Dawud SM, Raulund-Rasmussen K, Domisch T, Finér L, Jaroszewicz B, Vesterdal L (2016). Is tree species diversity or species identity the more important driver of soil carbon stocks, C/N ratio, and pH? Ecosystems, 19, 645-660.
DOI URL |
[19] |
del Castillo J, Comas C, Voltas J, Ferrio JP (2016). Dynamics of competition over water in a mixed oak-pine Mediterranean forest: spatio-temporal and physiological components. Forest Ecology and Management, 382, 214-224.
DOI URL |
[20] | Di N (2019). Root Traits Spatial-Temporal Variation and Root-Water Uptake Characteristics and Mechanisms of Populus tomentosa. PhD dissertation, Beijing Forestry University, Beijing. |
[邸楠 (2019). 毛白杨根系性状时空变异及土壤水分吸收利用特征与机制. 博士学位论文, 北京林业大学, 北京.] | |
[21] |
Di N, Liu Y, Mead DJ, Xie YQ, Jia LM, Xi BY (2018). Root-system characteristics of plantation-grown Populus tomentosa adapted to seasonal fluctuation in the groundwater table. Trees, 32, 137-149.
DOI URL |
[22] |
Dore MHI (2005). Climate change and changes in global precipitation patterns: What do we know? Environment International, 31, 1167-1181.
PMID |
[23] |
Drake PL, Froend RH, Franks PJ (2011). Linking hydraulic conductivity and photosynthesis to water-source partitioning in trees versus seedlings. Tree Physiology, 31, 763-773.
DOI PMID |
[24] |
Ellner SP, Snyder RE, Adler PB, Hooker G (2019). An expanded modern coexistence theory for empirical applications. Ecology Letters, 22, 3-18.
DOI PMID |
[25] |
Feild TS, Dawson TE (1998). Water sources used by Didymopanax pittieri at different life stages in a tropical cloud forest. Ecology, 79, 1448-1452.
DOI URL |
[26] |
Finér L, Helmisaari HS, Lõhmus K, Majdi H, Brunner I, Børja I, Eldhuset T, Godbold D, Grebenc T, Konôpka B, Kraigher H, Möttönen MR, Ohashi M, Oleksyn J, Ostonen I, et al. (2007). Variation in fine root biomass of three European tree species: beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosystems, 141, 394-405.
DOI URL |
[27] |
Finér L, Ohashi M, Noguchi K, Hirano Y (2011). Factors causing variation in fine root biomass in forest ecosystems. Forest Ecology and Management, 261, 265-277.
DOI URL |
[28] |
Fruleux A, Bogeat-Triboulot MB, Collet C, Bonal D (2020). Lack of effect of admixture proportion and tree density on water acquisition depth for European beech (Fagus sylvatica L.) and sycamore maple (Acer pseudoplatanus L.). Annals of Forest Science, 77, 36. DOI: 10.1007/s13595-020-00937-1.
DOI |
[29] |
Fruleux A, Bogeat-Triboulot MB, Collet C, Deveau A, Saint-André L, Santenoise P, Bonal D (2018). Aboveground overyielding in a mixed temperate forest is not explained by belowground processes. Oecologia, 188, 1183-1193.
DOI PMID |
[30] |
Gale MR, Grigal DF (1987). Vertical root distributions of northern tree species in relation to successional status. Canadian Journal of Forest Research, 17, 829-834.
DOI URL |
[31] |
Geng QH, Ma XC, Fu XF, Yan ZM, Liu X, Xu X (2022). Effects of stand age and inter-annual precipitation variability on fine root biomass in poplar plantations in the eastern coastal China. Forest Ecology and Management, 505, 119883. DOI: 10.1016/jforeco.2021.119883.
DOI |
[32] |
Gong C, Tan QY, Xu MX, Liu GB (2020). Mixed-species plantations can alleviate water stress on the Loess Plateau. Forest Ecology and Management, 458, 117767. DOI: 10.1016/j.foreco.2019.117767.
DOI |
[33] |
Grant GE, Dietrich WE (2017). The frontier beneath our feet. Water Resources Research, 53, 2605-2609.
DOI URL |
[34] |
Guderle M, Bachmann D, Milcu A, Gockele A, Bechmann M, Fischer C, Roscher C, Landais D, Ravel O, Devidal S, Roy J, Gessler A, Buchmann N, Weigelt A, Hildebrandt A (2018). Dynamic niche partitioning in root water uptake facilitates efficient water use in more diverse grassland plant communities. Functional Ecology, 32, 214-227.
DOI URL |
[35] |
Hagerman SM, Pelai R (2018). Responding to climate change in forest management: two decades of recommendations. Frontiers in Ecology and the Environment, 16, 579-587.
DOI URL |
[36] |
He YL, Xi BY, Li GD, Wang Y, Jia LM, Zhao DH (2021). Influence of drip irrigation, nitrogen fertigation, and precipitation on soil water and nitrogen distribution, tree seasonal growth and nitrogen uptake in young triploid poplar (Populus tomentosa) plantations. Agricultural Water Management, 243, 106460. DOI: 10.1016/j.agwat.2020.106460.
DOI |
[37] |
Hodge A (2004). The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist, 162, 9-24.
DOI URL |
[38] |
Huo GP, Zhao XN, Gao XD, Wang SF, Pan YH (2018). Seasonal water use patterns of rainfed jujube trees in stands of different ages under semiarid plantations in China. Agriculture, Ecosystems & Environment, 265, 392-401.
DOI URL |
[39] |
Jacob A, Hertel D, Leuschner C (2013). On the significance of belowground overyielding in temperate mixed forests: separating species identity and species diversity effects. Oikos, 122, 463-473.
DOI URL |
[40] |
Jactel H, Brockerhoff EG (2007). Tree diversity reduces herbivory by forest insects. Ecology Letters, 10, 835-848.
PMID |
[41] |
Jagodzinski AM, Ziółkowski J, Warnkowska A, Prais H (2016). Tree age effects on fine root biomass and morphology over chronosequences of Fagus sylvatica, Quercus robur and Alnus glutinosa stands. PLoS ONE, 11, e0148668. DOI: 10.1371/journal.pone.0148668.
DOI |
[42] |
Javaux M, Couvreur V, Vanderborght J, Vereecken H (2013). Root water uptake: from three-dimensional biophysical processes to macroscopic modeling approaches. Vadose Zone Journal, 12, vzj2013.02.0042. DOI: 10.2136/vzj2013.02.0042.
DOI |
[43] |
Kulmatiski A, Adler PB, Foley KM (2020a). Hydrologic niches explain species coexistence and abundance in a shrub-steppe system. Journal of Ecology, 108, 998-1008.
DOI URL |
[44] |
Kulmatiski A, Adler PB, Stark JM, Tredennick AT (2017). Water and nitrogen uptake are better associated with resource availability than root biomass. Ecosphere, 8, e01738. DOI: 10.1002/ecs2.1738.
DOI |
[45] |
Kulmatiski A, Beard KH (2013). Root niche partitioning among grasses, saplings, and trees measured using a tracer technique. Oecologia, 171, 25-37.
DOI PMID |
[46] |
Kulmatiski A, Beard KH, Holdrege MC, February EC (2020b). Small differences in root distributions allow resource niche partitioning. Ecology and Evolution, 10, 9776-9787.
DOI URL |
[47] |
Kulmatiski A, Beard KH, Verweij RJT, February EC (2010). A depth-controlled tracer technique measures vertical, horizontal and temporal patterns of water use by trees and grasses in a subtropical savanna. New Phytologist, 188, 199-209.
DOI PMID |
[48] |
Kumar R, Shankar V, Jat MK (2015). Evaluation of root water uptake models—A review. ISH Journal of Hydraulic Engineering, 21, 115-124.
DOI URL |
[49] |
Letten AD, Ke P, Fukami T (2017). Linking modern coexistence theory and contemporary niche theory. Ecological Monographs, 87, 161-177.
DOI URL |
[50] |
Letten AD, Keith DA, Tozer MG, Hui FKC (2015). Fine-scale hydrological niche differentiation through the lens of multi-species co-occurrence models. Journal of Ecology, 103, 1264-1275.
DOI URL |
[51] |
Li DD, Fernández JE, Li X, Xi BY, Jia LM, Hernandez-Santana V (2020). Tree growth patterns and diagnosis of water status based on trunk diameter fluctuations in fast-growing Populus tomentosa plantations. Agricultural Water Management, 241, 106348. DOI: 10.1016/j.agwat.2020.106348.
DOI |
[52] |
Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001). Biodiversity and ecosystem functioning: current knowledge and future challenges. Science, 294, 804-808.
DOI PMID |
[53] |
Ma Y, Song XF (2016). Using stable isotopes to determine seasonal variations in water uptake of summer maize under different fertilization treatments. Science of the Total Environment, 550, 471-483.
DOI URL |
[54] |
Maeght JL, Rewald B, Pierret A (2013). How to study deep roots—And why it matters. Frontiers in Plant Science, 4, 299. DOI: 10.3389/fpls.2013.00299.
DOI |
[55] |
McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo DL, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Leppälammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, et al. (2015). Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist, 207, 505-518.
DOI PMID |
[56] | McKane RB, Johnson LC, Shaver GR, Nadelhoffer KJ, Rastetter EB, Fry B, Giblin AE, Kielland K, Kwiatkowski BL, Laundre JA, Murray G (2002). Resource-based niches provide a basis for plant species diversity and dominance in Arctic tundra. Nature, 415, 68-71. |
[57] |
Meinen C, Leuschner C, Ryan NT, Hertel D (2009). No evidence of spatial root system segregation and elevated fine root biomass in multi-species temperate broad-leaved forests. Trees, 23, 941-950.
DOI URL |
[58] |
Meinzer FC, Goldstein G, Franco AC, Bustamante M, Igler E, Jackson P, Caldas L, Rundel PW (1999). Atmospheric and hydraulic limitations on transpiration in Brazilian cerrado woody species. Functional Ecology, 13, 273-282.
DOI URL |
[59] |
Montagnoli A, Dumroese RK, Terzaghi M, Onelli E, Scippa GS, Chiatante D (2019). Seasonality of fine root dynamics and activity of root and shoot vascular cambium in a Quercus ilex L. forest (Italy). Forest Ecology and Management, 431, 26-34.
DOI |
[60] |
Nippert JB, Holdo RM (2015). Challenging the maximum rooting depth paradigm in grasslands and savannas. Functional Ecology, 29, 739-745.
DOI URL |
[61] |
O’Keefe K, Nippert JB, McCulloh KA (2019). Plant water uptake along a diversity gradient provides evidence for complementarity in hydrological niches. Oikos, 128, 1748-1760.
DOI URL |
[62] |
Peng S, Chen HYH (2021). Global responses of fine root biomass and traits to plant species mixtures in terrestrial ecosystems. Global Ecology and Biogeography, 30, 289-304.
DOI URL |
[63] |
Pianka ER (1973). The structure of lizard communities. Annual Review of Ecology and Systematics, 4, 53-74.
DOI URL |
[64] |
Pierret A, Maeght JL, Clément C, Montoroi JP, Hartmann C, Gonkhamdee S (2016). Understanding deep roots and their functions in ecosystems: an advocacy for more unconventional research. Annals of Botany, 118, 621-635.
DOI PMID |
[65] |
Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002). Fine root architecture of nine North American trees. Ecological Monographs, 72, 293-309.
DOI URL |
[66] |
Puri S, Singh V, Bhushan B, Singh S (1994). Biomass production and distribution of roots in three stands of Populus deltoides. Forest Ecology and Management, 65, 135-147.
DOI URL |
[67] |
Quijano JC, Kumar P, Drewry DT, Goldstein A, Misson L (2012). Competitive and mutualistic dependencies in multispecies vegetation dynamics enabled by hydraulic redistribution. Water Resources Research, 48, W05518. DOI: 10.1029/2011WR011416.
DOI |
[68] | Russell RS (1977). Plant Root Systems: Their Function and Interaction with the Soil. McGraw Hill, London. |
[69] |
Sarmiento G, Goldstein G, Meinzer F (1985). Adaptive strategies of woody species in neotropical savannas. Biological Reviews, 60, 315-355.
DOI URL |
[70] |
Schenk HJ (2008). The shallowest possible water extraction profile: a null model for global root distributions. Vadose Zone Journal, 7, 1119-1124.
DOI URL |
[71] |
Schwendenmann L, Pendall E, Sanchez-Bragado R, Kunert N, Hölscher D (2015). Tree water uptake in a tropical plantation varying in tree diversity: interspecific differences, seasonal shifts and complementarity. Ecohydrology, 8, 1-12.
DOI URL |
[72] |
Schymanski SJ, Sivapalan M, Roderick ML, Beringer J, Hutley LB (2008). An optimality-based model of the coupled soil moisture and root dynamics. Hydrology and Earth System Sciences, 12, 913-932.
DOI URL |
[73] | Shen GF, Jia LM, Zhai MP (1998). The soil amelioration effect of poplar-black locust mixed plantation on sand soil and the interaction of mutual supplement of nutrient between tree species. Scientia Silvae Sinicae, 34(5), 12-20. |
[沈国舫, 贾黎明, 翟明普 (1998). 沙地杨树刺槐人工混交林的改良土壤功能及养分互补关系. 林业科学, 34(5), 12-20.] | |
[74] |
Sillmann J, Thorarinsdottir T, Keenlyside N, Schaller N, Alexander LV, Hegerl G, Seneviratne SI, Vautard R, Zhang X, Zwiers FW (2017). Understanding, modeling and predicting weather and climate extremes: challenges and opportunities. Weather and Climate Extremes, 18, 65-74.
DOI URL |
[75] |
Silvertown J, Araya Y, Gowing D (2015). Hydrological niches in terrestrial plant communities: a review. Journal of Ecology, 103, 93-108.
DOI URL |
[76] |
Smithwick EAH, Lucash MS, McCormack ML, Sivandran G (2014). Improving the representation of roots in terrestrial models. Ecological Modelling, 291, 193-204.
DOI URL |
[77] |
Stock BC, Jackson AL, Ward EJ, Parnell AC, Phillips DL, Semmens BX (2018). Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ, 6, e5096. DOI: 10.7717/peerj.5096.
DOI |
[78] |
Stovall AEL, Shugart H, Yang X (2019). Tree height explains mortality risk during an intense drought. Nature Communications, 10, 4385. DOI: 10.1038/s41467-019-12380-6.
DOI |
[79] | Sun CL, Guo YW, Tong CR, Xu LC, Wang Z (1997). A study on the soil microbes and soil enzyme activities in various poplar mixed stands. Scientia Silvae Sinicae, 33, 488-497. |
[孙翠玲, 郭玉文, 佟超然, 徐兰成, 王珍 (1997). 杨树混交林地土壤微生物与酶活性的变异研究. 林业科学, 33, 488-497.] | |
[80] |
Sun SJ, Meng P, Zhang JS, Wan XC (2011). Variation in soil water uptake and its effect on plant water status in Juglans regia L. during dry and wet seasons. Tree Physiology, 31, 1378-1389.
DOI URL |
[81] |
Sun Z, Liu X, Schmid B, Bruelheide H, Bu W, Ma K (2017). Positive effects of tree species richness on fine-root production in a subtropical forest in SE-China. Journal of Plant Ecology, 10, 146-157.
DOI URL |
[82] |
Tang YK, Wu X, Chen YM, Wen J, Xie YL, Lu SB (2018). Water use strategies for two dominant tree species in pure and mixed plantations of the semiarid Chinese Loess Plateau. Ecohydrology, 11, e1943. DOI: 10.1002/eco.1943.
DOI |
[83] |
Trogisch S, Salmon Y, He J, Hector A, Scherer-Lorenzen M (2016). Spatio-temporal water uptake patterns of tree saplings are not altered by interspecific interaction in the early stage of a subtropical forest. Forest Ecology and Management, 367, 52-61.
DOI URL |
[84] |
Valverde-Barrantes OJ, Smemo KA, Feinstein LM, Kershner MW, Blackwood CB (2013). The distribution of below-ground traits is explained by intrinsic species differences and intraspecific plasticity in response to root neighbours. Journal of Ecology, 101, 933-942.
DOI URL |
[85] |
van der Ploeg MJ, Gooren HPA, Bakker G, de Rooij GH (2008). Matric potential measurements by polymer tensiometers in cropped lysimeters under water-stressed conditions. Vadose Zone Journal, 7, 1048-1054.
DOI URL |
[86] |
Wang J, Fu BJ, Jiao L, Lu N, Li JY, Chen WL, Wang LX (2021). Age-related water use characteristics of Robinia pseudoacacia on the Loess Plateau. Agricultural and Forest Meteorology, 301-302, 108344. DOI: 10.1016/j.agrformet.2021.108344.
DOI |
[87] |
Wang J, Fu BJ, Lu N, Zhang L (2017). Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau. Science of the Total Environment, 609, 27-37.
DOI URL |
[88] |
Wang P, Huang KL, Hu SJ (2020a). Distinct fine-root responses to precipitation changes in herbaceous and woody plants: a meta-analysis. New Phytologist, 225, 1491-1499.
DOI URL |
[89] |
Wang S, An J, Zhao X, Gao X, Wu P, Huo G, Robinson BH (2020b). Age- and climate-related water use patterns of apple trees on China’s Loess Plateau. Journal of Hydrology, 582, 124462. DOI: 10.1016/j.jhydrol.2019.124462.
DOI |
[90] |
Weemstra M, Kiorapostolou N, Ruijven J, Mommer L, Vries J, Sterck F (2020). The role of fine-root mass, specific root length and life span in tree performance: a whole-tree exploration. Functional Ecology, 34, 575-585.
DOI URL |
[91] | Williams DG, Ehleringer JR (2000). Intra- and interspecific variation for summer precipitation use in pinyon-juniper woodlands. Ecological Monographs, 70, 517-537. |
[92] |
Wu J, Zeng H, Zhao F, Chen C, Singh A, Jiang X, Yang B, Liu W (2022). Plant hydrological niches become narrow but stable as the complexity of interspecific competition increases. Agricultural and Forest Meteorology, 320, 108953. DOI: 10.1016/j.agrformet.2022.108953.
DOI |
[93] | Xi BY (2013). Research on Theories of Irrigation Management and Key Techniques of High Efficient Subsurface Drip Irrigation in Populus tomentosa Plantation. PhD dissertation, Beijing Forestry University, Beijing. |
[席本野 (2013). 毛白杨人工林灌溉管理理论及高效地下滴灌关键技术研究. 博士学位论文, 北京林业大学, 北京.] | |
[94] |
Yuan ZY, Chen HYH (2010). Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: literature review and meta-analyses. Critical Reviews in Plant Sciences, 29, 204-221.
DOI URL |
[95] |
Yuan ZY, Chen HYH (2012). Fine root dynamics with stand development in the boreal forest. Functional Ecology, 26, 991-998.
DOI URL |
[96] |
Zhang ZD, Huang MB, Zhang YK (2018). Vertical distribution of fine-root area in relation to stand age and environmental factors in black locust (Robinia pseudoacacia) forests of the Chinese Loess Plateau. Canadian Journal of Forest Research, 48, 1148-1158.
DOI URL |
[97] | Zhao LS, Wang JL (1995). Research on relations between growth effect and soil enzyme activities and soil nutrient factors in mixed poplar and black locust plantations. Journal of Beijing Forestry University, 17(4), 1-8. |
[赵林森, 王九龄 (1995). 杨槐混交林生长及土壤酶与肥力的相互关系. 北京林业大学学报, 17(4), 1-8.] | |
[98] |
Zhao YL, Wang YQ, He MN, Tong YP, Zhou JX, Guo XY, Liu JZ, Zhang XC (2020). Transference of Robinia pseudoacacia water-use patterns from deep to shallow soil layers during the transition period between the dry and rainy seasons in a water-limited region. Forest Ecology and Management, 457, 117727. DOI: 10.1016/j.foreco.2019.117727.
DOI |
[99] |
Zhou ZX, Wang YQ, An ZS, Li RJ, Xu YT, Zhang PP, Yang Y, Wang T (2022). Deep root information “hidden in the dark”: a case study on the 21-m soil profile of Robinia pseudoacacia in the critical zone of the Chinese Loess Plateau. Catena, 213, 106121. DOI: 10.1016/j.catena.2022.106121.
DOI |
[1] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[2] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. |
[3] | 刘洋, 马煦, 邸楠, 曾子航, 付海曼, 李新, 席本野. 毛白杨根系液流与水力再分配特征[J]. 植物生态学报, 2023, 47(1): 123-133. |
[4] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[5] | 冯印成, 王云琦, 王玉杰, 王凯, 王松年, 王杰帅. 重庆缙云山针阔混交林水汽通量特征及其影响因子[J]. 植物生态学报, 2022, 46(8): 890-903. |
[6] | 秦江环, 张春雨, 赵秀海. 基于温带针阔混交林植物-土壤反馈的Janzen- Connell假说检验[J]. 植物生态学报, 2022, 46(6): 624-631. |
[7] | 郝建锋, 周润惠, 姚小兰, 喻静, 陈聪琳, 向琳, 王姚瑶, 苏天成, 齐锦秋. 二代野猪放牧对夹金山针阔混交林物种多样性与土壤理化性质的影响[J]. 植物生态学报, 2022, 46(2): 197-207. |
[8] | 贺忠权, 刘长成, 蔡先立, 郭柯. 黔中高原喀斯特常绿与落叶阔叶混交林类型及群落特征[J]. 植物生态学报, 2021, 45(6): 670-680. |
[9] | 贺露炎, 侯满福, 唐伟, 刘雨婷, 赵俊. 滇东菌子山喀斯特森林的植被类型及其特征[J]. 植物生态学报, 2021, 45(12): 1380-1390. |
[10] | 赵飞飞, 马煦, 邸楠, 王烨, 刘洋, 李广德, 贾黎明, 席本野. 毛白杨茎干不同方位夜间液流变化规律及其主要影响因子[J]. 植物生态学报, 2020, 44(8): 864-874. |
[11] | 王进, 朱江, 艾训儒, 姚兰, 黄小, 吴漫玲, 朱强, 洪建峰. 湖北星斗山地形变化对不同生活型植物叶功能性状的影响[J]. 植物生态学报, 2019, 43(5): 447-457. |
[12] | 高思涵, 葛珏希, 周李奕, 朱宝琳, 葛星宇, 李凯, 倪健. 测定森林树木叶面积的最适叶片数是多少?[J]. 植物生态学报, 2018, 42(9): 917-925. |
[13] | 李豆豆, 席本野, 王斐, 贾素苹, 赵洪林, 贺曰林, 刘洋, 贾黎明. 毛白杨叶片膨压变化规律及其对环境因子的响应[J]. 植物生态学报, 2018, 42(7): 741-751. |
[14] | 孟令君, 姚杰, 秦江环, 范春雨, 张春雨, 赵秀海. 吉林蛟河针阔混交林乔木幼苗组成及其密度格局影响因素[J]. 植物生态学报, 2018, 42(6): 653-662. |
[15] | 辜翔, 张仕吉, 刘兆丹, 李雷达, 陈金磊, 王留芳, 方晰. 中亚热带植被恢复对土壤有机碳含量、碳密度的影响[J]. 植物生态学报, 2018, 42(5): 595-608. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19