植物生态学报 ›› 2021, Vol. 45 ›› Issue (12): 1365-1379.DOI: 10.17521/cjpe.2021.0164
李唐吉1, 王懋林1,2, 曹颖1,*(), 徐刚1, 杨琪祺1, 任思源1, 胡尚连1,2,*()
收稿日期:
2021-04-28
接受日期:
2021-07-15
出版日期:
2021-12-20
发布日期:
2021-09-18
通讯作者:
曹颖,胡尚连
作者简介:
Hu SL, hushanglian@126.com基金资助:
LI Tang-Ji1, WANG Mao-Lin1,2, CAO Ying1,*(), XU Gang1, YANG Qi-Qi1, REN Si-Yuan1, HU Shang-Lian1,2,*()
Received:
2021-04-28
Accepted:
2021-07-15
Online:
2021-12-20
Published:
2021-09-18
Contact:
CAO Ying,HU Shang-Lian
Supported by:
摘要:
竹子的高速生长主要发生在无枝无叶的笋期, 并对水分需求巨大。水分不仅参与植物体内各种代谢, 而且水分转运可促进光合产物、矿质元素、生长激素等物质流动。竹子夜间主要由根压驱动水分转运, 但在日间尤其是下午根压基本为负值, 明确竹笋日间蒸腾作用发生机制及其对水分运输的影响对竹林培育有重要意义。该研究以不同伸长阶段的慈竹(Bambusa emeiensis)笋为材料, 研究了茎秆和竹箨的气孔特征、气孔导度与蒸腾速率等生理特征及在离体条件下竹笋的水分转运速率。结果表明: 1)不同发育状态的竹笋茎秆及箨鞘表面均分布有大量气孔, 气孔小且凹陷, 光合速率及叶绿素a、b含量极低, 但气孔导度和蒸腾速率均显著高于成熟叶片, 表明笋体和箨鞘是竹笋主要的呼吸和蒸腾部位。2)离体条件下竹笋的番红示踪表明, 高生长阶段的竹笋茎秆中番红上升速率较快, 有着较强的蒸腾。竹箨分离后, 番红仍然能够扩散和运输, 表明笋体茎秆也存在一定的蒸腾, 但与竹箨包裹的竹笋相比, 番红在分离竹箨后的笋体中上升速度显著下降, 表明竹箨对笋体内水分运输影响较大。3)箨环处的组织解剖发现, 节间的纵向维管束在竹节处特化形成一个类板状结构, 弯曲伸入竹箨, 是竹箨影响笋体内水分运输的重要结构基础。上述结果表明, 日间竹笋水分通过茎秆和竹箨表面的气孔大量蒸散, 产生蒸腾拉力驱动笋体内水分转运。该研究也发现, 随着茎秆成熟, 竹箨松动并开始脱落, 茎秆表面的气孔宽度增加, 加大了气孔的开口大小, 增大了节间气孔与大气水气交换的有效面积, 在一定程度上弥补了竹箨脱落时减少的蒸腾拉力。
李唐吉, 王懋林, 曹颖, 徐刚, 杨琪祺, 任思源, 胡尚连. 竹笋期竹箨和笋体的日间蒸腾特性及其对水分运输的影响. 植物生态学报, 2021, 45(12): 1365-1379. DOI: 10.17521/cjpe.2021.0164
LI Tang-Ji, WANG Mao-Lin, CAO Ying, XU Gang, YANG Qi-Qi, REN Si-Yuan, HU Shang-Lian. Diurnal transpiration of bamboo culm and sheath and their potential effects on water transport during the bamboo shoot stage. Chinese Journal of Plant Ecology, 2021, 45(12): 1365-1379. DOI: 10.17521/cjpe.2021.0164
图1 慈竹不同发育阶段的箨鞘、箨叶及成熟叶片的气孔形态。A, D, 幼嫩和成熟竹箨, 虚线以上为箨叶, 虚线以下为箨鞘。B, E, 扫描电镜下幼嫩及成熟箨鞘的气孔, 右上图为气孔放大图。C, F, 扫描电镜下幼嫩及成熟箨叶的气孔。G-I, 竹子成熟叶片的形态(G)和气孔特征(H, I)。箭头指向气孔。
Fig. 1 Stoma morphology of culm sheath, sheath leaf and mature branch leaf at different developmental stages of Bambusa emeiensis. A, D, Culm sheaths at the young and mature stage, respectively, the culm sheaths and sheath leaf were represented at above and below the dotted line, respectively. B, E, The stomata of the young and mature culm sheath respectively under a scanning electron microscope. The figures at upper right corner of B and E show the enlarged stomata. C, F, The stomata of young and mature sheath leaves respectively under scanning electron microscope. G-I, Leaf morphology (G) and stoma (H, I) of mature branch leaf. Arrows point to stoma.
箨鞘 Culm sheath | 箨叶 Sheath leaf | 成熟叶片 Mature leaf | |||
---|---|---|---|---|---|
幼嫩 Young | 成熟 Mature | 幼嫩 Young | 成熟 Mature | ||
气孔长度 Stomatal length (μm) | 5.73 ± 0.37d | 7.83 ± 0.42c | 10.53 ± 0.59b | 12.14 ± 0.34a | 12.07 ± 0.63a |
气孔宽度 Stomatal width (μm) | 2.07 ± 0.16b | 2.30 ± 0.20a | 0.96 ± 0.07c | 1.13 ± 0.05c | 1.12 ± 0.05c |
气孔密度 Stomatal density (mm-2) | 425.40 ± 32.41b | 346.72 ± 14.57c | 593.31 ± 28.75a | 589.70 ± 31.01a | 561.70 ± 34.20a |
气孔长/宽 Stomatal length-to-width | 2.85 ± 0.22c | 3.40 ± 0.21b | 10.41 ± 0.87a | 10.60 ± 0.65a | 10.71 ± 0.77a |
表1 慈竹不同发育阶段箨鞘、箨叶及成熟叶片的气孔大小和密度(平均值±标准差)
Table 1 Stoma size and density of culm sheath, sheath leaf and mature branch leaf at different stages of Bambusa emeiensis (mean ± SD)
箨鞘 Culm sheath | 箨叶 Sheath leaf | 成熟叶片 Mature leaf | |||
---|---|---|---|---|---|
幼嫩 Young | 成熟 Mature | 幼嫩 Young | 成熟 Mature | ||
气孔长度 Stomatal length (μm) | 5.73 ± 0.37d | 7.83 ± 0.42c | 10.53 ± 0.59b | 12.14 ± 0.34a | 12.07 ± 0.63a |
气孔宽度 Stomatal width (μm) | 2.07 ± 0.16b | 2.30 ± 0.20a | 0.96 ± 0.07c | 1.13 ± 0.05c | 1.12 ± 0.05c |
气孔密度 Stomatal density (mm-2) | 425.40 ± 32.41b | 346.72 ± 14.57c | 593.31 ± 28.75a | 589.70 ± 31.01a | 561.70 ± 34.20a |
气孔长/宽 Stomatal length-to-width | 2.85 ± 0.22c | 3.40 ± 0.21b | 10.41 ± 0.87a | 10.60 ± 0.65a | 10.71 ± 0.77a |
图2 慈竹不同发育阶段笋体(茎秆)的气孔形态。A-F, 不同高度竹笋茎秆基部形态。基部第一节间正在伸长(A, B); 基部第一节间完全伸长, 节间部分露出竹箨(C, D), 箭头指向节间露出位置(C); 基部第一节间成熟, 竹箨松动并开始脱落(E, F), 箭头指向竹箨松动处(E)。B, D, F中的方框为取样部位, 箭头指向气孔, 虚线以上为无根节, 虚线以下为有根节。G-L, 扫描电镜下竹笋茎秆基部第一节间的气孔形态。G-I分别为节间的伸长期, 完全伸长期和成熟期; J-L分别为G-I中方框位置的局部放大图。
Fig. 2 Stoma morphology of shoot body (culm) at different development stages of Bambusa emeiensis. A-F, the morphology of basal bamboo shoots with different height, in elongating (A, B), elongated fully (C, D), and mature (E, F) stages respectively in the first basal internodes. Above the dotted line are rootless nodes, below the dotted line are rooted nodes (B, D, F). The arrow in C points to the culm exposed from the culm sheath; arrow in E, to the loose position of the culm sheath. G-L, the stomatal morphology, under scanning electron microscope, in elongating (G), elongated fully (H), and mature (I) stages respectively in the first basal internode, the arrow points to the stomata. J-L, enlarged pictures of the boxes in G-I, respectively.
基部第一节间 Basal first internode | 伸长期 Elongating | 完全伸长期 Fully elongated | 成熟期 Mature |
---|---|---|---|
节间长 Internode length (cm) | 4.50 ± 0.20b | 12.43 ± 0.55a | 12.40 ± 0.92a |
节间宽 Internode width (cm) | 3.56 ± 0.35b | 7.46 ± 0.15a | 7.43 ± 0.25a |
节间表面 Internode surface area (cm2) | 48.44 ± 6.12b | 279.69 ± 9.53a | 278.01 ± 25.34a |
气孔长度 Stoma length (μm) | 1.60 ± 0.15b | 3.43 ± 0.31a | 3.46 ± 0.21a |
气孔宽度 Stoma width (μm) | 0.31 ± 0.03c | 0.54 ± 0.03b | 0.76 ± 0.05a |
气孔密度 Stoma density (mm-2) | 197.33 ± 18.63a | 43.61 ± 4.51b | 44.21 ± 2.79b |
气孔长/宽 Stoma length-to-width | 5.16 ± 0.33b | 6.35 ± 0.41a | 4.55 ± 0.27b |
表2 慈竹不同发育阶段笋体(茎秆)气孔大小和密度(平均值±标准差)
Table 2 Size and density of stoma in shoot body (culm) at different developmental stages of Bambusa emeiensis (mean ± SD)
基部第一节间 Basal first internode | 伸长期 Elongating | 完全伸长期 Fully elongated | 成熟期 Mature |
---|---|---|---|
节间长 Internode length (cm) | 4.50 ± 0.20b | 12.43 ± 0.55a | 12.40 ± 0.92a |
节间宽 Internode width (cm) | 3.56 ± 0.35b | 7.46 ± 0.15a | 7.43 ± 0.25a |
节间表面 Internode surface area (cm2) | 48.44 ± 6.12b | 279.69 ± 9.53a | 278.01 ± 25.34a |
气孔长度 Stoma length (μm) | 1.60 ± 0.15b | 3.43 ± 0.31a | 3.46 ± 0.21a |
气孔宽度 Stoma width (μm) | 0.31 ± 0.03c | 0.54 ± 0.03b | 0.76 ± 0.05a |
气孔密度 Stoma density (mm-2) | 197.33 ± 18.63a | 43.61 ± 4.51b | 44.21 ± 2.79b |
气孔长/宽 Stoma length-to-width | 5.16 ± 0.33b | 6.35 ± 0.41a | 4.55 ± 0.27b |
图3 慈竹不同发育阶段的笋体、竹箨和成熟叶片的叶绿素(平均值±标准差)。I1, 节间伸长期; I2, 节间完全伸长期; I3, 节间成熟期; L, 竹子的成熟叶片; S1, 幼嫩箨鞘; S2, 成熟箨鞘; SL1, 幼嫩箨叶; SL2, 成熟箨叶。不同小写字母表示笋体、竹箨、成熟叶片之间差异显著(p < 0.05)。
Fig. 3 Chlorophyll of shoot body, bamboo sheath and mature branch leaf at different developmental stages of Bambusa emeiensis (mean ± SD). I1, elongating internode; I2, fully elongated internode; I3, mature internode; L, mature branch leaf; S1, young culm sheath; S2, mature culm sheath; SL1, young sheath leaf; SL2, mature sheath leaf. Different lowercase letters indicate significant differences among shoot body, bamboo sheath and mature branch leaf (p < 0.05).
图4 慈竹不同发育阶段的笋体、竹箨和成熟叶片的光合速率、蒸腾速率、气孔导度(平均值±标准差)。I1, 节间伸长期; I2, 节间完全伸长期; I3, 节间成熟期; L, 竹子的成熟叶片; S1, 幼嫩箨鞘; S2, 成熟箨鞘; SL1, 幼嫩箨叶; SL2, 成熟箨叶。不同小写字母表示笋体、竹箨、成熟叶片之间差异显著(p < 0.05)。
Fig. 4 Stomatal conductance (Gs), net photosynthetic rate (Pn), transpiration rate (Tr) of shoot body, bamboo sheath and mature branch leaf at different developmental stages of Bambusa emeiensis (mean ± SD). I1, elongating internode; I2, fully elongated internode; I3, mature internode; L, mature branch leaf; S1, young culm sheath; S2, mature culm sheath; SL1, young sheath leaf; SL2, mature sheath leaf. Different lowercase letters indicate significant differences among shoot body, bamboo sheath and mature branch leaf (p < 0.05).
图5 番红溶液在快速伸长的节间扩散(基部第5节间, Int5)。A, B, 正在伸长节间组织的横切和纵切石蜡切片。A中可见大量的薄壁细胞(PC), B中木质部导管(V)连续。C, H, 0.5%番红溶液处理1 h和4 h时茎秆中番红扩散情况。D-G, 处理1 h时徒手切片中番红扩散情况; I-L, 处理4 h时徒手切片中番红扩散情况. D, E, I, J, 白光下的横切和纵切图; F, G, K, L, 红色滤光片(510-560 nm)下的番红荧光。
Fig. 5 Diffusion of safranine solution in the rapid elongating bamboo shoot (5th internode at base, Int5). A, B, the paraffin section in the elongating internodes. A, a large number of parenchymal cells (PC) are shown, and B shows the continuous xylem vessel (V). C, H, the diffusion of safranine in culm as treated with 0.5% safranine solution for 1 h and 4 h, respectively. D-G, I-L, the diffusion of safranine in the freehand section were showed after 1 h and 4 h treatment, respectively. D, E, I and J, the transverse and longitudinal sections respectively under white light, while F, G, K and L, the corresponding safranine fluorescence under the red filter (510-560 nm) respectively.
图6 竹节中存在“类板状结构” (PLS)。A, B, 茎秆中番红溶液流入幼嫩竹箨。B为A矩形框的纵切徒手切片, 可见番红溶液在竹节处转向竹箨。C, 在竹节部观察到类板状结构(PLS)存在。D, 竹节纵切的连续石蜡切片的组合图, 可见PLS及纵向导管。E, 竹节的横切图, PLS在不同方向存在, 贯穿竹节。F, G, C中①和②处的石蜡切片横切图, 可见PLS中存在大量的导管(V)和韧皮部(P)。图中箭头a和c分别指示箨环(竹箨在竹节的着生处)和秆环(竹节与节间的分隔处), 虚线(不成框)表示竹节位置; 箭头b示节间的纵向导管, d为竹隔。
Fig. 6 A “plate-like structure” (PLS) in the bamboo node. A, B, the safranine solution in the culm flowed into the young bamboo sheath. B was the free-hand longitudinal section of the rectangular frame in A, in which the safranine solution was found turnning into the culm sheath at the node. C, a PLS was showed. D, a serial longitudinal paraffin section of bamboo node, showing the presence of PLS and longitudinal vessel. E, the free-hand transverse section of the node, in which PLS existed in different directions and running through the node. F, G, transverse paraffin sections at ① and ② in C, respectively, there were a large number of vessels (V) and phloem (P) in the PLS. Arrows a and c in A-D pointed the sheath ring (the joint between the culm sheath and the node) and the rod ring (the joint between the bamboo node and the node), respectively. The dashed line (no box) in A-D show the bamboo node; arrow b shows the longitudinal vessels of internodes, and d is the bamboo septum.
图7 离体条件下不同高度竹笋的番红溶液示踪(平均值±标准差)。A, 竹笋各部分的名称。B, 竹笋茎秆的日伸长速度及伸长部分占比。C, D, 竹笋茎秆中番红溶液向上运输的高度及占比。E, F, 将竹笋外层所有竹箨切离后, 茎秆中番红溶液运输高度及占比。伸长部分占比=正在伸长部分/笋体净高; 番红上升比=番红上升高度/笋体净高。
Fig. 7 Tracing of safranine solution of bamboo shoots at different development stages in vitro (mean ± SD). A, Index picture of bamboo shoot. B, Daily elongation rate and elongation ratio of bamboo shoots with different height. C, D, The height and proportion of safranine transported upward respectively in the intact bamboo shoots wrapped by sheaths. E, F, The height and proportion of safranine transported upward respectively in pure shoot body when culm sheaths were separated. Elongation ratio = elongating part/shoot body height; rise ratio of safranine solution = rise height of safranine/shoot body height.
[1] |
Becker T, Knoche M (2011). Water movement through the surfaces of the grape berry and its stem. American Journal of Enology and Viticulture, 62, 340-350.
DOI URL |
[2] | Belin C, Thomine S, Schroeder JI (2010). Water balance and the regulation of stomatal movements//Pareek A, Sopory S, Bohnert H. Abiotic Stress Adaptation in Plants. Springer, Dordrecht. 283-305. |
[3] | Cai XA, Zeng XP, Cheng YQ (2015). Stem corticular photosynthesis: ecophysiological functions and their measurement. Acta Ecologica Sinica, 35, 6909-6922. |
[ 蔡锡安, 曾小平, 陈远其 (2015). 树干皮层光合作用--生理生态功能和测定方法. 生态学报, 35, 6909-6922.] | |
[4] |
Casson SA, Hetherington AM (2010). Environmental regulation of stomatal development. Current Opinion in Plant Biology, 13, 90-95.
DOI URL |
[5] |
Čermák J, Kučera J, Bauerle WL, Phillips N, Hinckley TM (2007). Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees. Tree Physiology, 27, 181-198.
DOI URL |
[6] |
Chen YJ, Bongers F, Tomlinson K, Fan ZX, Lin H, Zhang SB, Zheng YL, Li YP, Cao KF, Zhang JL (2016). Time lags between crown and basal sap flows in tropical lianas and co-occurring trees. Tree Physiology, 36, 736-747.
DOI URL |
[7] | Cheng LY, Wen X, Ma DD, Li DD, Xu XL, Gao Y, Zhang RM (2017). Spatial and temporal change of carbohydrates during rapid growth processes of Phyllostachys edulis. Journal of Zhejiang A&F University, 34, 261-267. |
[ 程路芸, 温星, 马丹丹, 李丹丹, 许馨露, 高岩, 张汝民 (2017). 毛竹快速生长过程中碳水化合物的时空变化. 浙江农林大学学报, 34, 261-267.] | |
[8] | Cui K, He CY, Zhang JG, Liao SX (2012). Characteristics of temporal and spatial tissue development during the rapidly growing stage of moso bamboo culms. Forest Research, 25, 425-431. |
[ 崔凯, 何彩云, 张建国, 廖声熙 (2012). 毛竹茎秆组织速生的时空发育特征. 林业科学研究, 25, 425-431.] | |
[9] |
Damesin C (2003). Respiration and photosynthesis characteristics of current-year stems of Fagus sylvatica: from the seasonal pattern to an annual balance. New Phytologist, 158, 465-475.
DOI URL |
[10] | Ding YL, Fan RW, Huang JS (2000). Development and ultrastructure of the phloem ganglion in bamboo node. Acta Botanica Sinica, 42, 1009-1013. |
[11] | Ding YL, Liese W (1995). On the nodal structure of bamboo. Journal of Bamboo Research, (1), 24-32. |
[ 丁雨龙, Liese W (1995). 竹节解剖构造的研究. 竹子学报, (1), 24-32.] | |
[12] | Dong RY (2010). Chemical Analysis of Phyllostachys Nigra Materials and the Skin Pigment. PhD dissertation, Zhejiang A&F University, Hangzhou. |
[ 董荣莹 (2010). 紫竹杆化学成分和表皮色素的研究. 博士学位论文, 浙江农林大学, 杭州.] | |
[13] |
Drake PL, Froend RH, Franks PJ (2013). Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. Journal of Experimental Botany, 64, 495-505.
DOI PMID |
[14] |
Fang DM, Mei TT, Röll A, Hölscher D (2019). Water transfer between bamboo culms in the period of sprouting. Frontiers in Plant Science, 10, 786. DOI: 10.3389/fpls.2019. 00786.
DOI URL |
[15] | Franks PJ, Drake PL, Beerling DJ (2009). Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using Eucalyptus globulus. Plant, Cell & Environment, 32, 1737-1748. |
[16] |
Granier A, Biron P, Lemoine D (2000). Water balance, transpiration and canopy conductance in two beech stands. Agricultural and Forest Meteorology, 100, 291-308.
DOI URL |
[17] | Johnson DM, Meinzer FC, Woodruff DR, McCulloh KA (2009). Leaf xylem embolism, detected acoustically and by cryo-SEM, corresponds to decreases in leaf hydraulic conductance in four evergreen species. Plant, Cell & Environment, 32, 828-836. |
[18] |
Jupa R, Plavcová L, Flamiková B, Gloser V (2016). Effects of limited water availability on xylem transport in Liana Humulus lupulus L. Environmental and Experimental Botany, 130, 22-32.
DOI URL |
[19] | Kadambi K (1949). On the ecology and silviculture of Dendrocalamus strictus in the bamboo forests of Bhadravati Division, Mysore State, and comparative notes on the species Bambusa arundinacea, Oxytenanthera monostigma and Oxytenanthera stocksii. Indian Forester, 75(9), 334-349. |
[20] |
Kim HK, Park J, Hwang I (2014). Investigating water transport through the xylem network in vascular plants. Journal of Experimental Botany, 65, 1895-1904.
DOI URL |
[21] |
Lacombe B, Achard P (2016). Long-distance transport of phytohormones through the plant vascular system. Current Opinion in Plant Biology, 34, 1-8.
DOI PMID |
[22] | Li QL, Wang LJ, Gao PJ, Wei SJ, Lü JX, Gao Y, Zhang RM (2020). Gene expression of starch decomposing enzymes in Phyllostachys edulis stems during the rapid growth period. Journal of Zhejiang A&F University, 37, 1128-1135. |
[ 栗青丽, 王灵杰, 高培军, 韦赛君, 吕嘉欣, 高岩, 张汝民 (2020). 竹茎秆快速生长期淀粉分解相关酶基因表达的分析. 浙江农林大学学报, 37, 1128-1135.] | |
[23] | Liese W (1998). The Anatomy of Bamboo Culms. International Network for Bamboo and Rattan, Beijing |
[24] | Liese W, Köhl M (2015). Bamboo-The Plant and Its Uses. Springer, Cham, Switzerland. |
[25] |
Lima RAF, Rother DC, Muler AE, Lepsch IF, Rodrigues RR (2012). Bamboo overabundance alters forest structure and dynamics in the Atlantic forest hotspot. Biological Conservation, 147, 32-39.
DOI URL |
[26] |
Liu CC, He NP, Zhang JH, Li Y, Wang QF, Sack L, Yu GR (2018). Variation of stomatal traits from cold temperate to tropical forests and association with water use efficiency. Functional Ecology, 32, 20-28.
DOI URL |
[27] | Liu XQ, Wang ZL (2013). 15 kinds of bamboo and their properties of pulping and papermaking. Paper and Paper Making, 32(1), 33-36. |
[ 刘秀琼, 汪治林 (2013). 15种竹材及其制浆造纸性能. 纸和造纸, 32(1), 33-36.] | |
[28] |
Maier CA (2001). Stem growth and respiration in loblolly pine plantations differing in soil resource availability. Tree Physiology, 21, 1183-1193.
PMID |
[29] | Pan RC (2004). Plant Physiology. 5th ed. Higher Education Press, Beijing. |
[ 潘瑞炽 (2004). 植物生理学. 5版. 高等教育出版社, 北京.] | |
[30] | Qiu NW, Wang XS, Yang FB, Yang XG, Yang W, Diao RJ, Wang X, Cui J, Zhou F (2016). Fast extraction and precise determination of chlorophyll. Chinese Bulletin of Botany, 51, 667-678. |
[ 邱念伟, 王修顺, 杨发斌, 杨晓刚, 杨文, 刁润洁, 王秀, 崔静, 周峰 (2016). 叶绿素的快速提取与精密测定. 植物学报, 51, 667-678.] | |
[31] | Ren Y, Zhang B, She XP (2010). Mechanism on response of abaxial and adaxial stomatal movement of broad bean to light/dark. Journal of Shaanxi Normal University (Natural Science Edition), 38, 68-71. |
[ 任筠, 张蓓, 佘小平 (2010). 蚕豆上、下表皮气孔运动光/暗响应机制. 陕西师范大学学报(自然科学版), 38, 68-71.] | |
[32] | Shi H, Wang HX, Li YY, Liu X (2011). Leaf surface microstructure of Ligustrum lucidum and Viburnum odoratissimum observed by atomic force microscopy (AFM). Acta Ecologica Sinica, 31, 1471-1477. |
[ 石辉, 王会霞, 李秧秧, 刘肖 (2011). 女贞和珊瑚树叶片表面特征的AFM观察. 生态学报, 31, 1471-1477.] | |
[33] |
Song XZ, Peng CH, Zhou GM, Gu HH, Li Q, Zhang C (2016). Dynamic allocation and transfer of non-structural carbohydrates, a possible mechanism for the explosive growth of moso bamboo (Phyllostachys heterocycla). Scientific Reports, 6, 25908. DOI: 10.1038/srep25908.
DOI URL |
[34] | Sun CF, Wang ML, Hu SL (2018). Effects of different soil water content on growth of Bambusa emeiensis. Journal of Northeast Forestry University, 46(10), 9-12. |
[ 孙昌法, 王懋林, 胡尚连 (2018). 不同土壤含水量对慈竹(Bambusa emeiensis)生长的影响. 东北林业大学学报, 46(10), 9-12.] | |
[35] | Sun HY, Lou YF, Li LC, Zhao HS, Gao ZM (2017). Research advances in the growth and development of bamboo culm. World Forestry Research, 30, 18-23. |
[ 孙化雨, 娄永峰, 李利超, 赵韩生, 高志民 (2017). 竹类植物茎秆生长发育研究进展. 世界林业研究, 30, 18-23.] | |
[36] | Sun M, Tian K, Zhang Y, Wang H, Guan DX, Yue HT (2017). Research on leaf functional traits and their environmental adaptation. Plant Science Journal, 35, 940-949. |
[ 孙梅, 田昆, 张贇, 王行, 管东旭, 岳海涛 (2017). 植物叶片功能性状及其环境适应研究. 植物科学学报, 35, 940-949.] | |
[37] |
Taylor SH, Franks PJ, Hulme SP, Spriggs E, Christin PA, Edwards EJ, Woodward FI, Osborne CP (2012). Photosynthetic pathway and ecological adaptation explain stomatal trait diversity amongst grasses. New Phytologist, 193, 387-396.
DOI PMID |
[38] |
Tikhonov KG, Khristin MS, Klimov VV, Sundireva MA, Kreslavski VD, Sidorov RA, Tsidendambayev VD, Savchenko TV (2017). Structural and functional characteristics of photosynthetic apparatus of chlorophyll-containing grape vine tissue. Russian Journal of Plant Physiology, 64, 73-82.
DOI URL |
[39] |
Wang FS, Tian XL, Ding YL, Wan XC, Tyree MT (2011). A survey of root pressure in 53 Asian species of bamboo. Annals of Forest Science, 68, 783-791.
DOI URL |
[40] |
Wang SG (2017). Bamboo sheath-A modified branch based on the anatomical observations. Scientific Reports, 7, 16132. DOI: 10.1038/s41598-017-16470-7.
DOI URL |
[41] |
Wang SG, He WZ, Zhan H (2018). Culm sheaths affect height growth of bamboo shoots in Fargesia yunnanensis. Brazilian Journal of Botany, 41, 255-266.
DOI URL |
[42] |
Wang SG, Pei JL, Li J, Tang GJ, Zhao JW, Peng XP, Nie SX, Ding YL, Wang CM (2020a). Sucrose and starch metabolism during Fargesia yunnanensis shoot growth. Physiologia Plantarum, 168, 188-204.
DOI URL |
[43] |
Wang SG, Zhan H, Li PC, Chu CH, Li J, Wang CM (2020b). Physiological mechanism of internode bending growth after the excision of shoot sheath in Fargesia yunnanensis and its implications for understanding the rapid growth of bamboos. Frontiers in Plant Science, 11, 418. DOI: 10.3389/fpls.2020.00418.
DOI URL |
[44] | Wang WJ (2004). Methods for the determination of CO2 flux from non-photosynthetic organs of trees and their influences on the results. Acta Ecologica Sinica, 24, 2056-2067. |
[ 王文杰 (2004). 林木非同化器官CO2通量的测定方法及对结果的影响. 生态学报, 24, 2056-2067.] | |
[45] | Wang WJ, Yang FJ, Zu YG, Wang HM, Kentaro K, Kaichiro S, Takayoshi K (2003). Stem respiration of a larch (Larix gmelini) plantation in Northeast China. Acta Botanica Sinica, 45, 1387-1397. |
[ 王文杰, 杨逢建, 祖元刚, 王慧梅, Kentaro K, Kaichiro S, Takayoshi K (2003). 中国东北地区兴安落叶松林树干呼吸的研究. 植物学报, 45, 1387-1397.] | |
[46] |
Wang XX, Liu L, Zhang J, Wang YK, Wen GS, Gao RF, Gao Y, Zhang RM (2012). Changes of photosynthetic pigment and photosynthetic enzyme activity in stems of Phyllostachys pubescens during rapid growth stage after shooting. Chinese Journal of Plant Ecology, 36, 456-462.
DOI URL |
[ 王星星, 刘琳, 张洁, 王玉魁, 温国胜, 高荣孚, 高岩, 张汝民 (2012). 毛竹出笋后快速生长期内茎秆中光合色素和光合酶活性的变化. 植物生态学报, 36, 456-462.]
DOI |
|
[47] |
Wegner LH (2014). Root pressure and beyond: energetically uphill water transport into xylem vessels? Journal of Experimental Botany, 65, 381-393.
DOI PMID |
[48] | Xia HT, Ji HB, Wang YY, Li XW, Lu X (2019). Height-growth rhythm of young sympodial bamboos including Dendrocalamus brandisii. Journal of Zhejiang Agricultural Sciences, 60, 807-809. |
[ 夏海涛, 季海宝, 王月英, 李效文, 卢翔 (2019). 勃氏甜龙竹等丛生竹幼竹的高生长规律. 浙江农业科学, 60, 807-809.] | |
[49] | Xie ZS, Cao HM, Li B, Li WF, Xu WP, Wang SP (2012). Changes of water transportation in berry vascular bundle at different developmental phases of kyoho grape berry. Scientia Agricultura Sinica, 45, 111-117. |
[ 谢兆森, 曹红梅, 李勃, 李为福, 许文平, 王世平 (2012). 巨峰葡萄果实不同发育期维管束水分运输变化. 中国农业科学, 45, 111-117.] | |
[50] | Xie ZS, Du HR, Xiang DF, Qi YS (2018). The changes of anatomical structure of vascular bundles and water transport in blueberry fruit during different growth and development stages. Plant Physiology Journal, 54, 45-53. |
[ 谢兆森, 杜鸿儒, 项殿芳, 齐永顺 (2018). 蓝莓果实不同发育期维管束解剖结构与水分运输变化. 植物生理学报, 54, 45-53.] | |
[51] | Xiong WY, Ding ZF, Li YF (1980). Intercalary meristem and internodal elongation of bamboo plants. Scientia Silvae Sinicae, (2), 81-89. |
[ 熊文愈, 丁祖福, 李又芬 (1980). 竹类植物的居间分生组织与节间生长--I秆茎的居间分生组织与节间生长. 林业科学, (2), 81-89.] | |
[52] |
Xu M, DeBiase TA, Qi Y, Goldstein A, Liu ZG (2001). Ecosystem respiration in a young ponderosa pine plantation in the Sierra Nevada Mountains, California. Tree Physiology, 21, 309-318.
PMID |
[53] |
Yang SJ, Zhang YJ, Goldstein G, Sun M, Ma RY, Cao KF (2015). Determinants of water circulation in a woody bamboo species: afternoon use and night-time recharge of culm water storage. Tree Physiology, 35, 964-974.
DOI URL |
[54] |
Yang SJ, Zhang YJ, Sun M, Goldstein G, Cao KF (2012). Recovery of diurnal depression of leaf hydraulic conductance in a subtropical woody bamboo species: embolism refilling by nocturnal root pressure. Tree Physiology, 32, 414-422.
DOI URL |
[55] | Yang Y, Yang QJ, Yan SS, Ma SM, Wang YF (2013). Study on stomatal characteristics in different varieties of Codiaeum variegatum. Guangdong Agricultural Sciences, 40, 30-32. |
[ 杨洋, 杨荞嘉, 鄢思斯, 马三梅, 王永飞 (2013). 不同品种变叶木表皮气孔特性的研究. 广东农业科学, 40, 30-32.] | |
[56] | Yu F, Ding YL, Yin ZF (2007). Ultracytochemical localization of Ca2+-ATPase during the phloem ganglion development in Phyllostachys edulis. Acta Botanica Boreali-Occidentalia Sinica, 27, 4645-4650. |
[57] | Yu M (2004). A stain for freehand slices with a polychromatic reaction. Bulletin of Biology, 39(3), 58-63. |
[ 于明 (2004). 一种呈多色反应的徒手切片染色剂. 生物学通报, 39, 58-63.] | |
[58] | Zhang GJ, Zhou Q, Wang Q, Gao LP, Li DY, Zuo JH (2021). Research status of preservation technology on postharvest lettuce. Storage and Process, 21, 135-140. |
[ 张桂君, 周茜, 王清, 高丽朴, 李大勇, 左进华 (2021). 生菜采后保鲜技术研究现状. 保鲜与加工, 21, 135-140.] | |
[59] | Zhang J, Liu MY (2008). Research on photosynthetic characteristics of Physalis alkekengi. Jiangsu Agricultural Sciences, 36, 166-167. |
[ 张健, 刘美艳 (2008). 黄果酸浆的光合特性研究. 江苏农业科学, 36, 166-167.] | |
[60] | Zhang YJ, Meinzer FC, Qi JH, Goldstein G, Cao KF (2013). Midday stomatal conductance is more related to stem rather than leaf water status in subtropical deciduous and evergreen broadleaf trees. Plant, Cell & Environment, 36, 149-158. |
[61] | Zhao B, Hu SL, Liu H (2017). Advance in postharvest physiology and storage technology of bamboo shoots. Journal of Bamboo Research, 36, 66-71. |
[ 赵博, 胡尚连, 刘红 (2017). 竹笋采后生理及储藏保鲜技术的研究进展. 竹子学报, 36, 66-71.] |
[1] | 蒋海港, 曾云鸿, 唐华欣, 刘伟, 李杰林, 何国华, 秦海燕, 王丽超, 姚银安. 三种藓类植物固碳耗水节律调节作用[J]. 植物生态学报, 2023, 47(7): 988-997. |
[2] | 王嘉仪, 王襄平, 徐程扬, 夏新莉, 谢宗强, 冯飞, 樊大勇. 北京市行道树绒毛梣的水力结构对城市不透水表面比例的响应[J]. 植物生态学报, 2023, 47(7): 998-1009. |
[3] | 马艳泽, 杨熙来, 徐彦森, 冯兆忠. 四种常见树木叶片光合模型关键参数对臭氧浓度升高的响应[J]. 植物生态学报, 2022, 46(3): 321-329. |
[4] | 罗丹丹, 王传宽, 金鹰. 木本植物水力系统对干旱胁迫的响应机制[J]. 植物生态学报, 2021, 45(9): 925-941. |
[5] | 叶子飘, 于冯, 安婷, 王复标, 康华靖. 植物气孔导度对CO2响应模型的构建[J]. 植物生态学报, 2021, 45(4): 420-428. |
[6] | 杨克彤, 常海龙, 陈国鹏, 俞筱押, 鲜骏仁. 兰州市主要绿化植物气孔性状特征[J]. 植物生态学报, 2021, 45(2): 187-196. |
[7] | 陈胜楠, 陈左司南, 张志强. 北京山区油松和元宝槭冠层气孔导度特征及其环境响应[J]. 植物生态学报, 2021, 45(12): 1329-1340. |
[8] | 李旭, 吴婷, 程严, 谭钠丹, 蒋芬, 刘世忠, 褚国伟, 孟泽, 刘菊秀. 南亚热带常绿阔叶林4个树种对增温的生理生态适应能力比较[J]. 植物生态学报, 2020, 44(12): 1203-1214. |
[9] | 王景旭, 黄华国, 林起楠, 王冰, 黄侃. 红外热成像监测云南松切梢小蠹虫害: 针叶尺度 观测[J]. 植物生态学报, 2019, 43(11): 959-968. |
[10] | 杨继鸿, 李亚楠, 卜海燕, 张世挺, 齐威. 青藏高原东缘常见阔叶木本植物叶片性状对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 863-876. |
[11] | 罗丹丹, 王传宽, 金鹰. 植物水分调节对策: 等水与非等水行为[J]. 植物生态学报, 2017, 41(9): 1020-1032. |
[12] | 徐静馨, 郑有飞, 麦博儒, 赵辉, 储仲芳, 黄积庆, 袁月. 基于涡度相关法的麦田O3干沉降及不同沉降通道分配的特征[J]. 植物生态学报, 2017, 41(6): 670-682. |
[13] | 范嘉智, 王丹, 胡亚林, 景盼盼, 王朋朋, 陈吉泉. 最优气孔行为理论和气孔导度模拟[J]. 植物生态学报, 2016, 40(6): 631-642. |
[14] | 郝晨淞, 王庆凯, 孙小玲. 异质性光对野牛草叶片解剖结构的影响[J]. 植物生态学报, 2016, 40(3): 246-254. |
[15] | 段贝贝, 赵成章, 徐婷, 郑慧玲, 冯威, 韩玲. 兰州北山不同坡向刺槐叶脉密度与气孔性状的关联性分析[J]. 植物生态学报, 2016, 40(12): 1289-1297. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19