植物生态学报 ›› 2017, Vol. 41 ›› Issue (6): 670-682.DOI: 10.17521/cjpe.2016.0287

• 研究论文 • 上一篇    下一篇

基于涡度相关法的麦田O3干沉降及不同沉降通道分配的特征

徐静馨1, 郑有飞1,2,*(), 麦博儒3, 赵辉1, 储仲芳2, 黄积庆2, 袁月2   

  1. 1中国气象局气溶胶与云降水重点开放实验室, 南京 210044
    2南京信息工程大学江苏省大气环境与装备技术协同创新中心, 南京 210044
    3中国气象局广州热带海洋气象研究所/广东省区域数值天气预报重点实验室, 广州 510080
  • 收稿日期:2017-02-28 接受日期:2016-09-13 出版日期:2017-06-10 发布日期:2017-07-19
  • 通讯作者: 郑有飞
  • 作者简介:* 通信作者Author for correspondence (E-mail:sunzhiqiang1956@sina.com)
  • 基金资助:
    基金项目 国家自然科学基金(41475108、41575110)和江苏省普通高校研究生科研创新计划(KYLX_ 0837)

Characteristics and partitioning of ozone dry deposition measured by eddy-covariance technology in a winter wheat field

Jing-Xin XU1, You-Fei ZHENG1,2,*(), Bo-Ru MAI3, Hui ZHAO2, Zhong-Fang CHU2, Ji-Qing HUANG2, Yue YUAN2   

  1. 1Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China;

    2Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China;
    and
    3Institute of Tropical and Marine Meteorology/Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction, China Meteorological Administration, Guangzhou 510080, China
  • Received:2017-02-28 Accepted:2016-09-13 Online:2017-06-10 Published:2017-07-19
  • Contact: You-Fei ZHENG
  • About author:KANG Jing-yao(1991-), E-mail: kangjingyao_nj@163.com

摘要:

近地层高浓度臭氧(O3)会给植物的生长发育带来严重的负效应, 而O3本身难溶于水, 主要通过干沉降方式沉降到陆地生态系统。该研究采用涡度相关法对冬小麦(Triticum aestivum)田主要生育期的O3干沉降过程进行了观测, 利用边界线技术和线性相关法分别分析了O3干沉降速率最大值(Vdmax)和太阳辐射(SR)、温度(T)、相对湿度(RH)及O3干沉降速率(Vd)和摩擦速度(u*)的关系, 并运用彭曼公式结合总初级生产力(GPP)估算不同O3沉降通道的分配比例。研究结果表明: (1)观测期间30 min平均O3浓度(CO3)、O3干沉降通量(FO3)、Vd分别为32.9 nL·L-1、-5.09 nmol·m-2·s-1、0.39 cm·s-1, CO3FO3Vd的变化范围分别为16-58 nL·L-1、-2.9 - -11.7 nmol·m-2·s-1、0.17-0.63 cm·s-1, 其中FO3CO3Vd的关系并不是同步的。(2)初步推断出较强光照(SR ≥ 400 W·m-2)、 适宜的温度(T = 18 ℃)以及较为湿润(RH > 40%)的环境条件比较有利于O3干沉降过程。其中VdmaxSR呈增长关系(y = 1.06 - exp(-0.0094 - x)), SR < 400 W·m-2VdmaxSR的增大而增大, 并在SR = 400 W·m-2左右达到最大值, 当SR ≥ 400 W·m-2Vdmax持续维持在最大值; VdmaxT呈“钟形”曲线关系(y = 1.06 - (x - 18)2/169), 当T = 18 ℃时Vdmax达到最大; 当RH < 40%时Vdmax呈下降趋势(y = 0.030x - 0.106); 当相对湿度较高时, 白天的VdRH下降有下降趋势, 而夜间的VdRH增加而上升, 因此Vd可能随RH增大而增大, 也可能随RH增大而减小。u*Vd存在一定的线性正相关关系, 但相关并不显著。(3)整个观测期平均气孔O3沉降通道和非气孔O3沉降通道占总O3干沉降通量的分配比例分别是32%和68%; 白天通过气孔O3沉降通道和非气孔O3沉降通道所沉降的O3通量平均占总O3干沉降通量的比例分别是42%和58%, 其中叶面积指数和降雨均会影响气孔O3沉降。

关键词: 涡度相关法, O3干沉降, O3通量, 冬小麦田, 气孔O3沉降通道, 非气孔O3沉降通道

Abstract:

Aims Anthropogenic pollutants cause an increase in ground-level ozone concentration, which is a known threat to plant growth and yield and has been extensively observed worldwide. Since ozone is only slightly soluble in water, it is deposited mainly through dry deposition in terrestrial ecosystem. The object of this study was to analyze the characteristics of ozone dry deposition and to estimate the contribution of stomatal and non-stomatal ozone deposition pathways to total ozone deposition in a winter wheat field.Methods The research site was a winter wheat (Triticum aestivum) field located in Yongfeng experimental station of Nanjing University of Information Science & Technology. The data used in this study were collected from March 16, 2016 to May 30, 2016. We observed ozone dry deposition with an eddy-covariance system. This system mainly included a 3D sonic anemometer, an open-path infrared absorption spectrometer, a fast-response ozone chemiluminescent analyzer and a slow-response ozone monitor. We simultaneously measured meteorological data including solar radiation (SR), air temperature (T), air relativity humidity (RH), wind speed, net radiation, and rainfall. All raw data were recorded with data-logger and averaged every 30 min.Important findings Half hourly means of ozone concentrations (CO3), ozone flux (FO3) and ozone dry deposition velocity (Vd) in the winter wheat field were 32.9 nL·L-1, -5.09 nmol·m-2·s-1, 0.39 cm·s-1, and the ranges of them were 16-58 nL·L-1, -2.9- -11.7 nmol·m-2·s-1, 0.17-0.63 cm·s-1, respectively. FO3 and CO3/Vd were found to be mismatched with phase peaks occurring at different time intervals. The ecosystem was more effective on ozone dry deposition, under conditions of moderate to high SR (SR ≥ 400 W·m-2), moderate T and humility (T = 18 °C and RH > 40%). The relationship between Vdmax and SR was this function (y = 1.06 -exp (-0.0094 - x)). Vdmax increased with SR When SR < 400 W·m-2, and Vdmax reached its maximum when SR =400 W·m-2. Vdmax maintained its maximum when SR ≥ 400 W·m-2. The relationship between Vdmax and T was “bell” curve (y = 1.06 - (x - 18)2/169). Vdmax reached its maximum when T = 18 °C. Vdmax decreased with RH when RH < 40 % (y = 0.030x - 0.106). The variation of Vd might uncertainty when RH was high. There was a liner positive relationship between friction velocity (u*) and Vd, but this relationship was not significant. The mean day-to-day and daytime contributions of stomatal and non-stomatal ozone deposition pathway to total ozone deposition were 32%, 68% and 42%, 58%, respectively, during the whole experimental period.

Key words: eddy-covariance technology, ozone dry deposition, ozone flux, winter wheat field, stomatal ozone deposition pathway, non-stomatal ozone deposition pathway