植物生态学报 ›› 2019, Vol. 43 ›› Issue (10): 863-876.DOI: 10.17521/cjpe.2019.0174
所属专题: 青藏高原植物生态学:群落生态学; 植物功能性状
收稿日期:
2019-07-08
接受日期:
2019-10-02
出版日期:
2019-10-20
发布日期:
2020-02-24
通讯作者:
齐威
基金资助:
YANG Ji-Hong,LI Ya-Nan,BU Hai-Yan,ZHANG Shi-Ting,QI Wei()
Received:
2019-07-08
Accepted:
2019-10-02
Online:
2019-10-20
Published:
2020-02-24
Contact:
QI Wei
Supported by:
摘要:
叶片性状-环境关系对于预测气候变化对植物的影响至关重要。该研究以青藏高原东缘常见阔叶木本植物为研究对象, 从47个样点采集了332个物种共666个种群的叶片, 测量了15个叶片性状, 调查了该区域木本植物叶片性状的变异程度, 并从种内和种间水平探讨了叶片性状对环境的响应及适应策略。结果表明, 反眏叶片大小的性状均具有较高的变异, 其中, 叶片面积是变异程度最大的性状。除气孔密度外, 大多数叶片性状与海拔显著相关。气候是叶片性状变异的重要驱动因素, 3.3%-29.5%的叶片性状变异由气候因子组合解释。其中, 气温对叶片性状变异解释度最高, 日照时间能解释大部分叶片性状的变异, 而降水量对叶片性状变异的解释度相对较小。与环境(海拔和气候因子)显著相关的叶片性状在种内明显少于种间水平, 可能是植物性状之间的协同变化与权衡使种内性状变异比较小, 从而减弱了种内叶片性状与环境因子的相关性。研究结果总体表明,叶片性状与木本植物对环境的适应策略密切相关, 植物通过选择小而厚的叶片和较短的叶柄以适应高海拔的 环境。
杨继鸿, 李亚楠, 卜海燕, 张世挺, 齐威. 青藏高原东缘常见阔叶木本植物叶片性状对环境因子的响应. 植物生态学报, 2019, 43(10): 863-876. DOI: 10.17521/cjpe.2019.0174
YANG Ji-Hong, LI Ya-Nan, BU Hai-Yan, ZHANG Shi-Ting, QI Wei. Response of leaf traits of common broad-leaved woody plants to environmental factors on the eastern Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 2019, 43(10): 863-876. DOI: 10.17521/cjpe.2019.0174
海拔段 Altitude belt (m) | 气候带 Climatic zone | 年平均气温 Mean annual air temperature (℃) | 无霜期 Frost-free period (d) | 生长季 Growing season (d) | 地带性木本植被类型 Zonal woody vegetation type |
---|---|---|---|---|---|
1 600-1 900 | 亚热带-暖温带 Subtropical-warm temperate | 11-15 | 200-240 | 230-270 | 温带-北亚热带阔叶林 Temperate-North subtropical broad-leaved forest |
1 900-2 200 | 暖温带 Warm temperate | 8-12 | 160-210 | 210-250 | 温带落叶阔叶林 Temperate deciduous broad-leaved forest |
2 200-2 500 | 暖温带-中温带 Warm temperate-medium temperature | 5-9 | 120-170 | 190-230 | 温带落叶阔叶林及针阔混交林 Temperate deciduous broad-leaved forest and coniferous and broad-leaved mixed forest |
2 500-2 800 | 中温带 Medium temperature | 3-7 | 80-130 | 170-210 | 温带针阔混交林 Temperate coniferous and broad-leaved mixed forest |
2 800-3 100 | 中温带-亚高山带 Medium temperate-subalpine | 1-5 | 40-90 | 150-190 | 温带及亚高山针阔混交林 Temperate and subalpine coniferous and broad-leaved mixed forest |
3 100-3 400 | 亚高山带 subalpine zone | -1-3 | 0-50 | 140-170 | 亚高山针阔混交林 Subalpine coniferous and broad-leaved mixed forest |
3 400-3 700 | 亚高山带-高寒带 Subalpine-alpine | -3-1 | 0-20 | 120-160 | 高寒及亚高山灌丛 Alpine and subalpine shrub |
3 700-4 000 | 高寒带 Alpine | -5- -1 | 0 | 100-140 | 高寒灌丛 Alpine shrub |
表1 青藏高原东缘研究区各海拔段气候和植被特征
Table 1 Climate and vegetation characteristics of each altitude belt of study area on the eastern Qinghai-Xizang Plateau
海拔段 Altitude belt (m) | 气候带 Climatic zone | 年平均气温 Mean annual air temperature (℃) | 无霜期 Frost-free period (d) | 生长季 Growing season (d) | 地带性木本植被类型 Zonal woody vegetation type |
---|---|---|---|---|---|
1 600-1 900 | 亚热带-暖温带 Subtropical-warm temperate | 11-15 | 200-240 | 230-270 | 温带-北亚热带阔叶林 Temperate-North subtropical broad-leaved forest |
1 900-2 200 | 暖温带 Warm temperate | 8-12 | 160-210 | 210-250 | 温带落叶阔叶林 Temperate deciduous broad-leaved forest |
2 200-2 500 | 暖温带-中温带 Warm temperate-medium temperature | 5-9 | 120-170 | 190-230 | 温带落叶阔叶林及针阔混交林 Temperate deciduous broad-leaved forest and coniferous and broad-leaved mixed forest |
2 500-2 800 | 中温带 Medium temperature | 3-7 | 80-130 | 170-210 | 温带针阔混交林 Temperate coniferous and broad-leaved mixed forest |
2 800-3 100 | 中温带-亚高山带 Medium temperate-subalpine | 1-5 | 40-90 | 150-190 | 温带及亚高山针阔混交林 Temperate and subalpine coniferous and broad-leaved mixed forest |
3 100-3 400 | 亚高山带 subalpine zone | -1-3 | 0-50 | 140-170 | 亚高山针阔混交林 Subalpine coniferous and broad-leaved mixed forest |
3 400-3 700 | 亚高山带-高寒带 Subalpine-alpine | -3-1 | 0-20 | 120-160 | 高寒及亚高山灌丛 Alpine and subalpine shrub |
3 700-4 000 | 高寒带 Alpine | -5- -1 | 0 | 100-140 | 高寒灌丛 Alpine shrub |
性状 Traits | 物种数量 N | 平均值 Mean | 最小值 Min | 最大值 Max | 标准误差 SE | 变异系数 CV | 偏度 Skewness |
---|---|---|---|---|---|---|---|
LL (cm) | 329 | 7.54 | 0.80 | 40.68 | 0.26 | 0.63 | 2.24 |
LW (cm) | 329 | 4.79 | 0.36 | 27.18 | 0.21 | 0.81 | 1.85 |
LL/LW | 329 | 2.02 | 0.26 | 12.97 | 0.07 | 0.62 | 3.24 |
LA (cm2) | 330 | 32.77 | 0.36 | 1 312.49 | 4.68 | 2.59 | 11.43 |
LT (mm) | 314 | 0.18 | 0.05 | 0.44 | 0.003 | 0.28 | 1.25 |
LWC | 280 | 0.60 | 0.33 | 0.85 | 0.01 | 0.14 | -0.28 |
PL (cm) | 310 | 2.13 | 0.19 | 18.89 | 0.13 | 1.08 | 2.64 |
SLA (cm2·g-1) | 320 | 173.49 | 46.47 | 392.15 | 3.29 | 0.34 | 0.93 |
LA/PL (cm2·cm-1) | 310 | 15.05 | 1.61 | 109.17 | 0.75 | 0.87 | 3.17 |
SD (No·mm-2) | 318 | 279.93 | 32.55 | 896.50 | 7.43 | 0.47 | 1.35 |
SL (μm) | 320 | 26.05 | 10.77 | 64.99 | 0.41 | 0.28 | 0.77 |
SW (μm) | 320 | 18.69 | 3.79 | 43.77 | 0.35 | 0.33 | 0.16 |
SL/SW | 320 | 1.46 | 0.55 | 3.04 | 0.02 | 0.20 | 1.08 |
SA (μm2) | 320 | 412.56 | 34.19 | 2 234.30 | 13.61 | 0.59 | 2.10 |
SPI | 318 | 0.10 | 0.01 | 0.34 | 0.003 | 0.54 | 1.13 |
表2 青藏高原东缘常见阔叶木本植物叶片性状的描述性统计结果
Table 2 Descriptive statistical results of leaf traits of common broad-leaved woody plants on the eastern Qinghai-Xizang Plateau
性状 Traits | 物种数量 N | 平均值 Mean | 最小值 Min | 最大值 Max | 标准误差 SE | 变异系数 CV | 偏度 Skewness |
---|---|---|---|---|---|---|---|
LL (cm) | 329 | 7.54 | 0.80 | 40.68 | 0.26 | 0.63 | 2.24 |
LW (cm) | 329 | 4.79 | 0.36 | 27.18 | 0.21 | 0.81 | 1.85 |
LL/LW | 329 | 2.02 | 0.26 | 12.97 | 0.07 | 0.62 | 3.24 |
LA (cm2) | 330 | 32.77 | 0.36 | 1 312.49 | 4.68 | 2.59 | 11.43 |
LT (mm) | 314 | 0.18 | 0.05 | 0.44 | 0.003 | 0.28 | 1.25 |
LWC | 280 | 0.60 | 0.33 | 0.85 | 0.01 | 0.14 | -0.28 |
PL (cm) | 310 | 2.13 | 0.19 | 18.89 | 0.13 | 1.08 | 2.64 |
SLA (cm2·g-1) | 320 | 173.49 | 46.47 | 392.15 | 3.29 | 0.34 | 0.93 |
LA/PL (cm2·cm-1) | 310 | 15.05 | 1.61 | 109.17 | 0.75 | 0.87 | 3.17 |
SD (No·mm-2) | 318 | 279.93 | 32.55 | 896.50 | 7.43 | 0.47 | 1.35 |
SL (μm) | 320 | 26.05 | 10.77 | 64.99 | 0.41 | 0.28 | 0.77 |
SW (μm) | 320 | 18.69 | 3.79 | 43.77 | 0.35 | 0.33 | 0.16 |
SL/SW | 320 | 1.46 | 0.55 | 3.04 | 0.02 | 0.20 | 1.08 |
SA (μm2) | 320 | 412.56 | 34.19 | 2 234.30 | 13.61 | 0.59 | 2.10 |
SPI | 318 | 0.10 | 0.01 | 0.34 | 0.003 | 0.54 | 1.13 |
性状 Traits | 海拔 Altitude | PC1 | PC2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N(+) | N(-) | χ2 | p | N(+) | N(-) | χ2 | p | N(+) | N(-) | χ2 | p | |
LL | 20 | 50 | 12.86 | <0.01 | 40 | 30 | 1.43 | 0.23 | 36 | 34 | 0.06 | 0.81 |
LW | 22 | 47 | 9.06 | <0.01 | 39 | 29 | 1.47 | 0.23 | 38 | 31 | 0.71 | 0.40 |
LL/LW | 28 | 41 | 2.45 | 0.12 | 38 | 31 | 0.71 | 0.40 | 31 | 38 | 0.71 | 0.40 |
LA | 19 | 51 | 14.63 | <0.01 | 39 | 31 | 0.91 | 0.34 | 41 | 29 | 2.06 | 0.15 |
LT | 36 | 25 | 1.98 | 0.16 | 33 | 26 | 0.83 | 0.36 | 25 | 36 | 1.98 | 0.16 |
PL | 22 | 37 | 3.81 | 0.05 | 34 | 27 | 0.80 | 0.37 | 27 | 32 | 0.42 | 0.52 |
LWC | 21 | 25 | 0.35 | 0.56 | 26 | 20 | 0.78 | 0.38 | 20 | 26 | 0.78 | 0.38 |
SLA | 36 | 30 | 0.55 | 0.46 | 35 | 31 | 0.24 | 0.62 | 30 | 36 | 0.55 | 0.46 |
LA/PL | 23 | 38 | 3.69 | 0.06 | 30 | 31 | 0.02 | 0.90 | 39 | 22 | 4.74 | 0.03 |
SD | 27 | 35 | 1.03 | 0.31 | 27 | 35 | 1.03 | 0.31 | 34 | 28 | 0.58 | 0.45 |
SL | 40 | 24 | 4.00 | 0.04 | 33 | 31 | 0.06 | 0.80 | 30 | 34 | 0.25 | 0.61 |
SW | 40 | 24 | 4.00 | 0.04 | 33 | 31 | 0.06 | 0.80 | 35 | 29 | 0.56 | 0.45 |
SL/SW | 33 | 31 | 0.06 | 0.80 | 34 | 30 | 0.25 | 0.62 | 36 | 28 | 1.00 | 0.32 |
SA | 36 | 28 | 1.00 | 0.32 | 32 | 32 | 0.00 | 1.00 | 31 | 33 | 0.06 | 0.80 |
SPI | 31 | 33 | 0.06 | 0.80 | 30 | 34 | 0.25 | 0.62 | 38 | 26 | 2.25 | 0.13 |
表3 青藏高原东缘常见阔叶木本植物种内叶片性状与环境因子相关性的卡方检验结果
Table 3 Chi-square test results of the within-species correlation between leaf traits of common broad-leaved woody plants and environmental factors on the eastern Qinghai-Xizang Plateau
性状 Traits | 海拔 Altitude | PC1 | PC2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N(+) | N(-) | χ2 | p | N(+) | N(-) | χ2 | p | N(+) | N(-) | χ2 | p | |
LL | 20 | 50 | 12.86 | <0.01 | 40 | 30 | 1.43 | 0.23 | 36 | 34 | 0.06 | 0.81 |
LW | 22 | 47 | 9.06 | <0.01 | 39 | 29 | 1.47 | 0.23 | 38 | 31 | 0.71 | 0.40 |
LL/LW | 28 | 41 | 2.45 | 0.12 | 38 | 31 | 0.71 | 0.40 | 31 | 38 | 0.71 | 0.40 |
LA | 19 | 51 | 14.63 | <0.01 | 39 | 31 | 0.91 | 0.34 | 41 | 29 | 2.06 | 0.15 |
LT | 36 | 25 | 1.98 | 0.16 | 33 | 26 | 0.83 | 0.36 | 25 | 36 | 1.98 | 0.16 |
PL | 22 | 37 | 3.81 | 0.05 | 34 | 27 | 0.80 | 0.37 | 27 | 32 | 0.42 | 0.52 |
LWC | 21 | 25 | 0.35 | 0.56 | 26 | 20 | 0.78 | 0.38 | 20 | 26 | 0.78 | 0.38 |
SLA | 36 | 30 | 0.55 | 0.46 | 35 | 31 | 0.24 | 0.62 | 30 | 36 | 0.55 | 0.46 |
LA/PL | 23 | 38 | 3.69 | 0.06 | 30 | 31 | 0.02 | 0.90 | 39 | 22 | 4.74 | 0.03 |
SD | 27 | 35 | 1.03 | 0.31 | 27 | 35 | 1.03 | 0.31 | 34 | 28 | 0.58 | 0.45 |
SL | 40 | 24 | 4.00 | 0.04 | 33 | 31 | 0.06 | 0.80 | 30 | 34 | 0.25 | 0.61 |
SW | 40 | 24 | 4.00 | 0.04 | 33 | 31 | 0.06 | 0.80 | 35 | 29 | 0.56 | 0.45 |
SL/SW | 33 | 31 | 0.06 | 0.80 | 34 | 30 | 0.25 | 0.62 | 36 | 28 | 1.00 | 0.32 |
SA | 36 | 28 | 1.00 | 0.32 | 32 | 32 | 0.00 | 1.00 | 31 | 33 | 0.06 | 0.80 |
SPI | 31 | 33 | 0.06 | 0.80 | 30 | 34 | 0.25 | 0.62 | 38 | 26 | 2.25 | 0.13 |
图2 青藏高原东缘常见阔叶木本植物叶片性状的海拔变异模式。性状同表2。
Fig. 2 Leaf trait patterns of common broad-leaved woody plants along altitude on the eastern Qinghai-Xizang Plateau. See Table 2 for the abbreviations of traits.
性状 Traits | 海拔(控制PC1) Altitude (control PC1) | 海拔(控制PC2) Altitude (control PC2) | 海拔(控制PC1和PC2) Altitude (control PC1and PC2) |
---|---|---|---|
LL | -0.472** | -0.382** | -3.00** |
LW | -0.467** | -0.323** | -0.289** |
LL/LW | 0.168** | 0.043 | 0.086 |
LA | -0.491** | -0.366** | -0.297** |
LT | 0.014 | 0.069 | 0.118* |
PL | -0.305** | -0.205** | -0.161** |
LWC | -0.074 | 0.068 | 0.082 |
SLA | -0.071 | -0.115 | -0.127* |
LA/PL | -0.404** | -0.334** | -0.269** |
SD | 0.015 | 0.021 | -0.010 |
SL | -0.151** | -0.095 | -0.049 |
SW | -0.146** | -0.073 | -0.029 |
SL/SW | 0.055 | 0.000 | -0.012 |
SA | -0.153** | -0.086 | -0.042 |
SPI | -0.140* | -0.064 | -0.041 |
表4 控制PC1和PC2影响后的海拔与叶片性状的偏相关系数
Table 4 Partial correlation coefficients represent the contributions of altitude to each leaf trait after controlling for the effects of PC1 and PC2
性状 Traits | 海拔(控制PC1) Altitude (control PC1) | 海拔(控制PC2) Altitude (control PC2) | 海拔(控制PC1和PC2) Altitude (control PC1and PC2) |
---|---|---|---|
LL | -0.472** | -0.382** | -3.00** |
LW | -0.467** | -0.323** | -0.289** |
LL/LW | 0.168** | 0.043 | 0.086 |
LA | -0.491** | -0.366** | -0.297** |
LT | 0.014 | 0.069 | 0.118* |
PL | -0.305** | -0.205** | -0.161** |
LWC | -0.074 | 0.068 | 0.082 |
SLA | -0.071 | -0.115 | -0.127* |
LA/PL | -0.404** | -0.334** | -0.269** |
SD | 0.015 | 0.021 | -0.010 |
SL | -0.151** | -0.095 | -0.049 |
SW | -0.146** | -0.073 | -0.029 |
SL/SW | 0.055 | 0.000 | -0.012 |
SA | -0.153** | -0.086 | -0.042 |
SPI | -0.140* | -0.064 | -0.041 |
图3 气候因子(第一主成分PC1)对青藏高原东缘常见阔叶木本植物叶片性状的影响。性状同表2。
Fig. 3 Effect of climatic factors (first principal component PC1) on leaf traits of common broad-leaved woody plants on the eastern Qinghai-Xizang Plateau. See Table 2 for the abbreviations of traits.
图4 气候因子(第二主成分PC2)对青藏高原东缘常见阔叶木本植物叶片性状的影响。性状同表2。
Fig. 4 Effect of climatic factors (second principal component PC2) on leaf traits of common broad-leaved woody plants on the eastern Qinghai-Xizang Plateau. See Table 2 for the abbreviations of traits.
线性模型 Linear regression model | AIC | R2 | p |
---|---|---|---|
LL = -0.16 + 0.13MTCO + 0.03MGSS - 0.14MGST + 0.20PDR | -983.45 | 0.29 | <0.001 |
LW = -0.65 + 0.13MTCO + 0.30PDR + 0.03MGSS - 0.12MGST | -788.19 | 0.23 | <0.001 |
LL/LW = 0.96 + 0.006PWE - 0.22PDR - 0.0006MAP + 0.03MGSS | -1 008.31 | 0.04 | <0.01 |
LA = -0.91 + 0.26MTCO + 0.52MGSS + 0.47PDR - 0.26MGST | -507.75 | 0.30 | <0.001 |
LT = 0.49 - 0.02PWE - 0.22MGST + 0.11MTCO + 0.03MGSS + 0.39PDR - 0.01 MGSP + 0.002MAP | -1 333.81 | 0.08 | <0.001 |
PL = -0.94 + 0.05MTCO + 0.01MGSS + 0.16PDR | -587.23 | 0.11 | <0.001 |
LWC = 0.37 + 0.01MGST + 0.0002MAP | -1 382.27 | 0.04 | <0.01 |
SLA = 0.05 + 0.02MGSP - 0.17MTCO + 0.34MGST - 0.05MGSS + 0.02PWE - 0.56PDR -0.002MAP | -1 237.94 | 0.08 | <0.001 |
LA/PL = -0.16 + 0.133MTCO + 0.03MGSS - 0.14MGST + 0.22PDR | -766.38 | 0.19 | <0.001 |
SL = 1.10 + 0.01MTCO + 0.002MGSS + 0.05PDR | -1 355.05 | 0.06 | <0.001 |
SW = 1.42 + 0.01MTCO | -1 154.49 | 0.05 | <0.001 |
SL/SW = 0.005 + 0.002MGSS + 0.01PDR - 0.002PWE - 0.005MGST | -1 553.84 | 0.03 | <0.05 |
SA = 2.83 + 0.02MTCO | -819.19 | 0.05 | <0.001 |
SPI = 3.19 + 0.02MTCO | -813.97 | 0.04 | <0.001 |
表5 青藏高原东缘常见阔叶木本植物叶片性状与气候因子的多元线性回归模型
Table 5 Multiple regression model of leaf traits of common broad-leaved woody plants varying with climatic factors on the eastern Qinghai-Xizang Plateau
线性模型 Linear regression model | AIC | R2 | p |
---|---|---|---|
LL = -0.16 + 0.13MTCO + 0.03MGSS - 0.14MGST + 0.20PDR | -983.45 | 0.29 | <0.001 |
LW = -0.65 + 0.13MTCO + 0.30PDR + 0.03MGSS - 0.12MGST | -788.19 | 0.23 | <0.001 |
LL/LW = 0.96 + 0.006PWE - 0.22PDR - 0.0006MAP + 0.03MGSS | -1 008.31 | 0.04 | <0.01 |
LA = -0.91 + 0.26MTCO + 0.52MGSS + 0.47PDR - 0.26MGST | -507.75 | 0.30 | <0.001 |
LT = 0.49 - 0.02PWE - 0.22MGST + 0.11MTCO + 0.03MGSS + 0.39PDR - 0.01 MGSP + 0.002MAP | -1 333.81 | 0.08 | <0.001 |
PL = -0.94 + 0.05MTCO + 0.01MGSS + 0.16PDR | -587.23 | 0.11 | <0.001 |
LWC = 0.37 + 0.01MGST + 0.0002MAP | -1 382.27 | 0.04 | <0.01 |
SLA = 0.05 + 0.02MGSP - 0.17MTCO + 0.34MGST - 0.05MGSS + 0.02PWE - 0.56PDR -0.002MAP | -1 237.94 | 0.08 | <0.001 |
LA/PL = -0.16 + 0.133MTCO + 0.03MGSS - 0.14MGST + 0.22PDR | -766.38 | 0.19 | <0.001 |
SL = 1.10 + 0.01MTCO + 0.002MGSS + 0.05PDR | -1 355.05 | 0.06 | <0.001 |
SW = 1.42 + 0.01MTCO | -1 154.49 | 0.05 | <0.001 |
SL/SW = 0.005 + 0.002MGSS + 0.01PDR - 0.002PWE - 0.005MGST | -1 553.84 | 0.03 | <0.05 |
SA = 2.83 + 0.02MTCO | -819.19 | 0.05 | <0.001 |
SPI = 3.19 + 0.02MTCO | -813.97 | 0.04 | <0.001 |
[1] |
. Ackerly DD, Cornwell WK (2007). A trait-based approach to community assembly: Partitioning of species trait values into within- and among-community components. Ecology Letters, 10, 135-145.
DOI URL PMID |
[2] |
. Al Haj Khaled R, Duru M, Theau JP, Plantureux S, Cruz P (2005). Variation in leaf traits through seasons and N-availability levels and its consequences for ranking grassland species. Journal of Vegetation Science, 16, 391-398.
DOI URL |
[3] |
. Albert CH, de Bello F, Boulangeat I, Pellet G, Lavorel S, Thuiller W (2012). On the importance of intraspecific variability for the quantification of functional diversity. Oikos, 121, 116-126.
DOI URL |
[4] |
. Barros FV, Goulart MF, Sá Telles SB, Lovato MB, Valladares F, de Lemos-Filho JP (2011). Phenotypic plasticity to light of two congeneric trees from contrasting habitats: Brazilian Atlantic Forest versus cerrado (savanna). Plant Biology, 14, 208-215.
DOI URL PMID |
[5] |
. Cornelissen JHC, Sibma F, van Logtestijn RSP, Broekman RA, Thompson K (2011). Leaf pH as a plant trait: Species- driven rather than soil-driven variation. Functional Ecology, 25, 449-455.
DOI URL |
[6] |
. Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin Prentice I, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Joseph Wright S, Sheremet’ev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD (2016). The global spectrum of plant form and function. Nature, 529, 167-171.
DOI URL PMID |
[7] |
. Duan YF, Wang YN, Li X (2008). A simplified method for observing stomata by shaving off mesophyll cells to obtain epidermis from leaf and its application. Acta Agriculturae Boreali-Sinica, 23, 73-76.
DOI URL |
[ 段云峰, 王幼宁, 李霞 (2008). 一种获得叶片表皮观察气孔的简易方法及其应用. 华北农学报, 23, 73-76.]
DOI URL |
|
[8] |
. Funk JL, Cornwell WK (2013). Leaf traits within communities: Context may affect the mapping of traits to function. Ecology, 94, 1893-1897.
DOI URL |
[9] |
. Givnish TJ, Burkhardt EL, Happel RE, Weintraub JD (1984). Carnivory in the bromeliad Brocchinia reducta, with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient-poor habitats. The American Naturalist,124, 479-497.
DOI URL PMID |
[10] | . Gratani L, Crescente MF, D’Amato V, Ricotta C, Frattaroli AR, Puglielli G (2014). Leaf traits variation in Sesleria nitida growing at different altitudes in the Central Apennines. Photosynthetica, 52, 386-396. |
[11] | . Han W, Liu C, Fan YW, Zhao N, Ye SY, Yin WL, Wang XP (2014). Responses of leaf morphological traits for broadleaved woody plants along the altitudinal gradient of Changbai Mountain, northeastern China. Journal of Beijing Forestry University, 36, 47-53. |
[ 韩威, 刘超, 樊艳文, 赵娜, 叶思阳, 尹伟伦, 王襄平 (2014). 长白山阔叶木本植物叶片形态性状沿海拔梯度的响应特征. 北京林业大学学报, 36, 47-53.] | |
[12] |
. He JS, Wang ZH, Wang XP, Schmid B, Zuo WY, Zhou M, Zheng CY, Wang MF, Fang JY (2006). A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist, 170, 835-848.
DOI URL PMID |
[13] |
. Hölscher D, Schmitt S, Kupfer K (2002). Growth and leaf traits of four broad-leaved tree species along a hillside gradient. Forstwissenschaftliches Centralblatt, 121, 229-239.
DOI URL |
[14] | . Hu MY, Zhang L, Luo TX, Shen W (2012). Variations in leaf functional traits of Stipa purpurea along a rainfall gradient in Xizang, China. Chinese Journal of Plant Ecology, 36, 136-143. |
[ 胡梦瑶, 张林, 罗天祥, 沈维 (2012). 西藏紫花针茅叶功能性状沿降水梯度的变化. 植物生态学报, 36, 136-143.] | |
[15] | . Hu YS, Yao XY, Liu YH (2015). Specific leaf area and its influencing factors of forests at different succession stages in Changbai Mountains. Acta Ecologica Sinica, 35, 1480-1487. |
[ 胡耀升, 么旭阳, 刘艳红 (2015). 长白山森林不同演替阶段比叶面积及其影响因子. 生态学报, 35, 1480-1487.] | |
[16] |
. Hultine KR, Marshall JD (2000). Altitude trends in conifer leaf morphology and stable carbon isotope composition. Oecologia, 123, 32-40.
DOI URL |
[17] | . Li DS, Shi ZM, Feng QH, Liu F (2013). Response of leaf morphometric traits of Quercus species to climate in the temperate zone of the North-South Transect of Eastern China. Chinese Journal of Plant Ecology, 37, 793-802. |
[ 李东胜, 史作民, 冯秋红, 刘峰 (2013). 中国东部南北样带暖温带区栎属树种叶片形态性状对气候条件的响应. 植物生态学报, 37, 793-802.] | |
[18] |
. Li XL, Liu ZY, Hou XY, Wu XH, Wang Z, Hu J, Wu ZN (2015). Plant functional traits and their trade-offs in response to grazing: A review. Chinese Bulletin of Botany, 50, 159-170.
DOI URL |
[ 李西良, 刘志英, 侯向阳, 吴新宏, 王珍, 胡静, 武自念 (2015). 放牧对草原植物功能性状及其权衡关系的调控. 植物学报, 50, 159-170.]
DOI URL |
|
[19] |
. Li YH, Lu Q, Wu B, Zhu YJ, Liu DJ, Zhang JX, Jin ZH (2012). A review of leaf morphology plasticity linked to plant response and adaptation characteristics in arid ecosystems. Chinese Journal of Plant Ecology, 36, 88-98.
DOI URL |
[ 李永华, 卢琦, 吴波, 朱雅娟, 刘殿君, 张金鑫, 靳占虎 (2012). 干旱区叶片形态特征与植物响应和适应的关系. 植物生态学报, 36, 88-98.]
DOI URL |
|
[20] | . Li ZJ, Tian Q, Song LL (2018). Variation and correlation of leaf traits in woody plants in the north-facing slope of Motianling, Gansu, China. Journal of Desert Research, 38, 149-156. |
[ 李宗杰, 田青, 宋玲玲 (2018). 甘肃省摩天岭北坡木本植物叶性状变异及关联. 中国沙漠, 38, 149-156.] | |
[21] |
. Liu CC, Li Y, Xu L, Chen Z, He NP (2019). Variation in leaf morphological, stomatal, and anatomical traits and their relationships in temperate and subtropical forests. Scientific Reports, 9, 5803. DOI: 10.1038/s41598-019-42335-2.
DOI URL PMID |
[22] |
. McDonald PG, Fonseca CR, Overton JM, Westoby M (2003). Leaf-size divergence along rainfall and soil-nutrient gradients: Is the method of size reduction common among clades? Functional Ecology, 17, 50-57.
DOI URL |
[23] |
. Niinemets Ü (2001). Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 82, 453-469.
DOI URL |
[24] |
. Niinemets Ü, Afas NA, Cescatti A, Pellis A, Ceulemans R (2004). Petiole length and biomass investment in support modify light interception efficiency in dense poplar plantations. Tree Physiology, 24, 141-154.
DOI URL PMID |
[25] |
. Ordoñez JC, van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009). A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 18, 137-149.
DOI URL |
[26] |
. Plourde BT, Boukili VK, Chazdon RL (2015). Radial changes in wood specific gravity of tropical trees: Inter- and intraspecific variation during secondary succession. Functional Ecology, 29, 111-120.
DOI URL |
[27] |
. Reich PB, Walters MB, Ellsworth DS (1997). From tropics to tundra: Global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America, 94, 13730-13734.
DOI URL PMID |
[28] |
. Royer DL, Miller IM, Peppe DJ, Hickey LJ (2010). Leaf economic traits from fossils support a weedy habit for early angiosperms. American Journal of Botany, 97, 438-445.
DOI URL PMID |
[29] |
. Rozendaal DMA, Hurtado VH, Poorter L (2006). Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature. Functional Ecology, 20, 207-216.
DOI URL |
[30] |
. Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011). Decline of leaf hydraulic conductance with dehydration: Relationship to leaf size and venation architecture. Plant Physiology, 156, 832-843.
DOI URL |
[31] |
. Siefert A, Violle C, Chalmandrier L, Albert CH, Taudiere A, Fajardo A, Aarssen LW, Baraloto C, Carlucci MB, Cianciaruso MV, de L Dantas V, de Bello F, Duarte LDS, Fonseca CR, Freschet GT, Gaucherand S, Gross N, Hikosaka K, Jackson B, Jung V, Kamiyama C, Katabuchi M, Kembel SW, Kichenin E, Kraft NJB, Lagerström A, Bagousse-Pinguet YL, Li YZ, Mason N, Messier J, Nakashizuka T, Overton JM, Peltzer DA, Pérez-Ramos IM, Pillar VD, Prentice HC, Richardson S, Sasaki T, Schamp BS, Schöb C, Shipley B, Sundqvist M, Sykes MT, Vandewalle M, Wardle DA (2015) . A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 18, 1406-1419.
DOI URL PMID |
[32] |
. Song LL, Fan JW, Harris W, Wu SH, Zhong HP, Zhou YC, Wang N, Zhu XD (2012). Adaptive characteristics of grassland community structure and leaf traits along an altitudinal gradient on a subtropical mountain in Chongqing, China. Plant Ecology, 213, 89-101.
DOI URL |
[33] |
. Song LL, Fan JW, Wu SH (2011). Research advances on changes of leaf traits along an altitude gradient. Progress in Geography, 30, 1431-1439.
DOI URL |
[ 宋璐璐, 樊江文, 吴绍洪 (2011). 植物叶片性状沿海拔梯度变化研究进展. 地理科学进展, 30, 1431-1439.]
DOI URL |
|
[34] |
. Violle C, Garnier E, Lecoeur J, Roumet C, Podeur C, Blanchard A, Navas ML (2009). Competition, traits and resource depletion in plant communities. Oecologia, 160, 747-755.
DOI URL |
[35] |
. Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892.
DOI URL |
[36] | . Wang CS, Wang SP (2015). A review of research on responses of leaf traits to climate change. Chinese Journal of Plant Ecology, 39, 206-216. |
[ 王常顺, 汪诗平 (2015). 植物叶片性状对气候变化的响应研究进展. 植物生态学报, 39, 206-216.] | |
[37] |
. Wang CY, Zhou JW, Xiao HG, Liu J, Wang L (2017). Variations in leaf functional traits among plant species grouped by growth and leaf types in Zhenjiang, China. Journal of Forestry Research, 28, 241-248.
DOI URL |
[38] |
. Wang RL, Yu GR, He NP, Wang QF, Zhao N, Xu ZW (2015). Latitudinal patterns and influencing factors of leaf functional traits in Chinese forest ecosystems. Acta Geographica Sinica, 70, 1735-1746.
DOI URL |
[ 王瑞丽, 于贵瑞, 何念鹏, 王秋凤, 赵宁, 徐志伟 (2015). 中国森林叶片功能属性的纬度格局及其影响因素. 地理学报, 70, 1735-1746.]
DOI URL |
|
[39] |
. Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: Some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159.
DOI URL |
[40] |
. Wigley BJ, Slingsby JA, Díaz S, Bond WJ, Fritz H, Coetsee C (2016). Leaf traits of African woody savanna species across climate and soil fertility gradients: Evidence for conservative versus acquisitive resource-use strategies. Journal of Ecology, 104, 1357-1369.
DOI URL |
[41] |
. Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Díaz S, Gallagher RV, Jacobs BF, Kooyman R, Law EA, Leishman MR, Niinemets Ü, Reich PB, Sack L, Villar R, Wang H, Wilf P (2017). Global climatic drivers of leaf size. Science, 357, 917-921.
DOI URL PMID |
[42] | . Xiao HG, Wang CY, Liu J, Wang L, Du DL (2015). Insights into the differences in leaf functional traits of heterophyllous Syringa oblata under different light intensities. Journal of Forestry Research, 26, 613-621. |
[43] | . Xu HJ, Yang TB, Zeng B (2012). Variation of stomatal length and stomatal density in leaves of Rhododendons with elevation. Arid Zone Research, 29, 1054-1058. |
[ 徐浩杰, 杨太保, 曾彪 (2012). 杜鹃叶片气孔长度和密度对海拔变化的响应. 干旱区研究, 29, 1054-1058.] | |
[44] |
. Xue ZJ, An SS, Cheng M, Wang WZ (2014). Plant functional traits and soil microbial biomass in different vegetation zones on the Loess Plateau. Journal of Plant Interactions, 9, 889-900.
DOI URL |
[45] | . Zhang L, Luo TX, Liu XS, Wang Y (2012). Altitudinal variation in leaf construction cost and energy content of Bergenia purpurascens. Acta Oecologica,43, 72-79. |
[1] | 盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483-495. |
[2] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[3] | 李安艳, 黄先飞, 田源斌, 董继兴, 郑菲菲, 夏品华. 贵州草海草-藻型稳态转换过程中叶绿素a的变化及其影响因子[J]. 植物生态学报, 2023, 47(8): 1171-1181. |
[4] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[5] | 冯珊珊, 黄春晖, 唐梦云, 蒋维昕, 白天道. 细叶云南松针叶形态和显微性状地理变异及其环境解释[J]. 植物生态学报, 2023, 47(8): 1116-1130. |
[6] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[7] | 杨丽琳, 邢万秋, 王卫光, 曹明珠. 新安江源区杉木树干液流速率变化及其对环境因子的响应[J]. 植物生态学报, 2023, 47(4): 571-583. |
[8] | 张尧, 陈岚, 王洁莹, 李益, 王俊, 郭垚鑫, 任成杰, 白红英, 孙昊田, 赵发珠. 太白山不同海拔森林根际土壤微生物碳利用效率差异性及其影响因素[J]. 植物生态学报, 2023, 47(2): 275-288. |
[9] | 何茜, 冯秋红, 张佩佩, 杨涵, 邓少军, 孙小平, 尹华军. 基于叶片和土壤酶化学计量的川西亚高山岷江冷杉林养分限制海拔变化规律[J]. 植物生态学报, 2023, 47(12): 1646-1657. |
[10] | 张潇, 武娟娟, 贾国栋, 雷自然, 张龙齐, 刘锐, 吕相融, 代远萌. 降水控制对侧柏液流变化特征及其水分来源的影响[J]. 植物生态学报, 2023, 47(11): 1585-1599. |
[11] | 赵镇贤, 陈银萍, 王立龙, 王彤彤, 李玉强. 河西走廊荒漠区不同功能类群植物叶片建成成本的比较[J]. 植物生态学报, 2023, 47(11): 1551-1560. |
[12] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[13] | 郑宁, 李素英, 王鑫厅, 吕世海, 赵鹏程, 臧琛, 许玉珑, 何静, 秦文昊, 高恒睿. 基于环境因子对叶绿素影响的典型草原植物生活型优势研究[J]. 植物生态学报, 2022, 46(8): 951-960. |
[14] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
[15] | 王子龙, 胡斌, 包维楷, 李芳兰, 胡慧, 韦丹丹, 杨婷惠, 黎小娟. 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素[J]. 植物生态学报, 2022, 46(5): 539-551. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19