植物生态学报 ›› 2019, Vol. 43 ›› Issue (10): 853-862.DOI: 10.17521/cjpe.2018.0288
所属专题: 全球变化与生态系统; 青藏高原植物生态学:群落生态学
吴红宝1,高清竹1,干珠扎布1,*(),李钰2,闫玉龙3,胡国铮1,王学霞1,严俊4,何世丞4
收稿日期:
2018-11-14
接受日期:
2019-09-05
出版日期:
2019-10-20
发布日期:
2020-02-24
通讯作者:
干珠扎布
基金资助:
WU Hong-Bao1,GAO Qing-Zhu1,Ganjurjav Hasbagan1,*(),LI Yu2,YAN Yu-Long3,HU Guo-Zheng1,WANG Xue-Xia1,YAN Jun4,HE Shi-Cheng4
Received:
2018-11-14
Accepted:
2019-09-05
Online:
2019-10-20
Published:
2020-02-24
Contact:
Ganjurjav Hasbagan
Supported by:
摘要:
气候变化和放牧活动对草地植物物种多样性和生产力具有重要影响。为探索藏北高寒草地植物物种多样性和生产力对增温、放牧及其交互作用的响应, 于2011年在藏北高原开始建立增温实验平台, 2016年起增设放牧、增温+放牧实验, 连续2年(2016-2017年)观测了植物群落特征、群落组成、生产力和物种多样性。结果表明, 增温和放牧对高寒草地植物高度和净初级生产力具有显著交互作用。在放牧条件下, 增温对植物高度无显著影响; 但在不放牧条件下, 增温却显著增加了植物高度。在放牧条件下, 增温对净初级生产力的影响存在年际差异, 2016年增温对生产力无显著影响, 2017年增温显著降低了植物净初级生产力; 但在不放牧条件下, 增温对植物净初级生产力无显著影响。增温和放牧对高寒草地植物物种丰富度、盖度、重要值及多样性均无显著交互作用。植物盖度在增温和放牧条件下显著降低, 杂类草物种比例显著增加, 但物种多样性均无显著变化。研究表明, 增温和放牧显著改变高寒草地群落结构。未来气候变化条件下, 放牧活动加剧有可能导致高寒草地生产力降低。
吴红宝, 高清竹, 干珠扎布, 李钰, 闫玉龙, 胡国铮, 王学霞, 严俊, 何世丞. 放牧和模拟增温对藏北高寒草地植物群落特征及生产力的影响. 植物生态学报, 2019, 43(10): 853-862. DOI: 10.17521/cjpe.2018.0288
WU Hong-Bao, GAO Qing-Zhu, Ganjurjav Hasbagan, LI Yu, YAN Yu-Long, HU Guo-Zheng, WANG Xue-Xia, YAN Jun, HE Shi-Cheng. Effects of grazing and simulated warming on plant community structure and productivity of alpine grassland in Northern Xizang, China. Chinese Journal of Plant Ecology, 2019, 43(10): 853-862. DOI: 10.17521/cjpe.2018.0288
图1 藏北高寒草地试验区气温和降水量(2016-2017年)。
Fig. 1 Mean diurnal air temperature and precipitation in the experiment site of alpine grassland in Northern Xizang (from 2016 to 2017).
图3 对照(CK)、增温(W)、放牧(G)及增温+放牧(WG)处理下气温、土壤温度及湿度的差异(2016年和2017年4-8月)
Fig. 3 Mean air temperature, temperature and moisture of the soil (from April to August in 2016 and 2017) in control (CK), warming (W), grazing (G) and warming + grazing (WG) plots.
因子 Factor | 高度 Height | 盖度 Coverage | 物种重要值 Species important value | 净初级生产力 Net primary productivity | 物种多样性指数 Species diversity index | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
莎草类 Sedges | 禾草类 Grasses | 杂类草 Forbs | 莎草类 Sedges | 禾草类 Grasses | 杂类草 Forbs | Species richness index | Shannon- Weiner index | Pielou index | |||
Y | 0.061 | 0.032 | 0.480 | 0.481 | 0.052 | 0.412 | 0.446 | 0.074 | 0.209 | 0.907 | 0.078 |
W | <0.001 | <0.001 | 0.001 | <0.001 | 0.055 | 0.773 | 0.174 | 0.618 | 1.000 | 0.543 | 0.331 |
G | <0.001 | <0.001 | <0.001 | 0.004 | 0.008 | 0.445 | 0.003 | 0.503 | 0.396 | 0.872 | 0.236 |
Y × W | 0.065 | 0.055 | 0.396 | 0.444 | 0.716 | 0.191 | 0.199 | 0.158 | 0.668 | 0.523 | 0.511 |
Y × G | 0.380 | 0.283 | 0.143 | 0.092 | 0.482 | 0.177 | 0.290 | 0.122 | 0.001 | 0.019 | 0.470 |
W × G | 0.003 | 0.001 | 0.001 | 0.376 | 0.882 | 0.103 | 0.066 | 0.048 | 1.000 | 0.617 | 0.347 |
Y × W × G | 0.903 | 0.103 | 0.587 | 0.926 | 0.169 | 0.201 | 0.708 | 0.145 | 0.209 | 0.332 | 0.904 |
表1 年份、增温、放牧及其交互作用对藏北高寒草地植物高度、盖度、物种重要值、净初级生产力及物种多样性影响的多因素方差分析结果(p值)
Table 1 Results (p value) of the three way ANOVA of year, warming, grazing and their interaction effects on height, coverage, species important value, net primary productivity and species diversity index of alpine grassland in Northern Xizang
因子 Factor | 高度 Height | 盖度 Coverage | 物种重要值 Species important value | 净初级生产力 Net primary productivity | 物种多样性指数 Species diversity index | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
莎草类 Sedges | 禾草类 Grasses | 杂类草 Forbs | 莎草类 Sedges | 禾草类 Grasses | 杂类草 Forbs | Species richness index | Shannon- Weiner index | Pielou index | |||
Y | 0.061 | 0.032 | 0.480 | 0.481 | 0.052 | 0.412 | 0.446 | 0.074 | 0.209 | 0.907 | 0.078 |
W | <0.001 | <0.001 | 0.001 | <0.001 | 0.055 | 0.773 | 0.174 | 0.618 | 1.000 | 0.543 | 0.331 |
G | <0.001 | <0.001 | <0.001 | 0.004 | 0.008 | 0.445 | 0.003 | 0.503 | 0.396 | 0.872 | 0.236 |
Y × W | 0.065 | 0.055 | 0.396 | 0.444 | 0.716 | 0.191 | 0.199 | 0.158 | 0.668 | 0.523 | 0.511 |
Y × G | 0.380 | 0.283 | 0.143 | 0.092 | 0.482 | 0.177 | 0.290 | 0.122 | 0.001 | 0.019 | 0.470 |
W × G | 0.003 | 0.001 | 0.001 | 0.376 | 0.882 | 0.103 | 0.066 | 0.048 | 1.000 | 0.617 | 0.347 |
Y × W × G | 0.903 | 0.103 | 0.587 | 0.926 | 0.169 | 0.201 | 0.708 | 0.145 | 0.209 | 0.332 | 0.904 |
图4 对照(CK)、增温(W)、放牧(G)及增温+放牧(WG)处理下藏北高寒草地植物高度的差异(平均值±标准误差)。不同小写字母表示同一植物类群间高度的差异显著(p < 0.05)。
Fig. 4 Mean vegetation height (mean ± SE) in the control (CK), warming (W), grazing (G) and warming + grazing (WG) plots of alpine meadow in Northern Xizang. Different lowercase letters indicate significant differences in height in group plant (p < 0.05).
植物类群 Plant group | 物种 Species | CK | W | G | WG |
---|---|---|---|---|---|
莎草类 Sedges | 高山嵩草 Kobresia pygmaea | 0.420 | 0.354 | 0.475 | 0.448 |
青藏薹草 Carex moorcroftii | 0.109 | 0.118 | - | - | |
矮生嵩草 Kobresia humilis | 0.028 | - | - | - | |
禾草类 Grasses | 紫花针茅 Stipa purpurea | - | - | 0.113 | 0.179 |
草地早熟禾 Poa pratensis | 0.197 | 0.238 | - | - | |
杂类草 Forbs | 垫状点地梅 Androsace tapete | 0.003 | 0.002 | - | - |
星状雪兔子 Saussurea stella | - | - | 0.064 | 0.033 | |
矮火绒草 Leontopodium nanum | - | - | 0.040 | - | |
蓝花棘豆 Oxytropis caerulea | 0.032 | 0.041 | 0.058 | - | |
藏豆 Stracheya tibetica | - | 0.019 | - | 0.064 | |
蒲公英 Taraxacum mongolicum | - | - | 0.014 | 0.025 | |
肉果草 Lancea tibetica | 0.052 | 0.034 | - | 0.007 | |
短穗兔耳草 Lagotis brachystachya | 0.008 | 0.030 | 0.034 | 0.024 | |
二裂委陵菜 Potentilla bifurca | 0.043 | 0.069 | 0.068 | 0.071 | |
钉柱委陵菜 Potentilla saundersiana | 0.047 | 0.061 | 0.073 | 0.075 | |
多裂委陵菜 Potentilla multifida | 0.047 | 0.034 | 0.061 | 0.074 | |
山莓草 Sibbaldia procumbens | 0.014 | - | - | - |
表2 对照、增温、放牧及增温+放牧处理下藏北高寒草地群落物种组成及其重要值(2017年)
Table 2 Species composition and their important values of alpine grassland communities under treatments of control, warming, grazing and the combination of warming and grazing in Northern Xizang in 2017
植物类群 Plant group | 物种 Species | CK | W | G | WG |
---|---|---|---|---|---|
莎草类 Sedges | 高山嵩草 Kobresia pygmaea | 0.420 | 0.354 | 0.475 | 0.448 |
青藏薹草 Carex moorcroftii | 0.109 | 0.118 | - | - | |
矮生嵩草 Kobresia humilis | 0.028 | - | - | - | |
禾草类 Grasses | 紫花针茅 Stipa purpurea | - | - | 0.113 | 0.179 |
草地早熟禾 Poa pratensis | 0.197 | 0.238 | - | - | |
杂类草 Forbs | 垫状点地梅 Androsace tapete | 0.003 | 0.002 | - | - |
星状雪兔子 Saussurea stella | - | - | 0.064 | 0.033 | |
矮火绒草 Leontopodium nanum | - | - | 0.040 | - | |
蓝花棘豆 Oxytropis caerulea | 0.032 | 0.041 | 0.058 | - | |
藏豆 Stracheya tibetica | - | 0.019 | - | 0.064 | |
蒲公英 Taraxacum mongolicum | - | - | 0.014 | 0.025 | |
肉果草 Lancea tibetica | 0.052 | 0.034 | - | 0.007 | |
短穗兔耳草 Lagotis brachystachya | 0.008 | 0.030 | 0.034 | 0.024 | |
二裂委陵菜 Potentilla bifurca | 0.043 | 0.069 | 0.068 | 0.071 | |
钉柱委陵菜 Potentilla saundersiana | 0.047 | 0.061 | 0.073 | 0.075 | |
多裂委陵菜 Potentilla multifida | 0.047 | 0.034 | 0.061 | 0.074 | |
山莓草 Sibbaldia procumbens | 0.014 | - | - | - |
图5 对照(CK)、增温(W)、放牧(G)及增温+放牧(WG)处理下藏北高寒草地物种重要值的差异。
Fig. 5 Mean species important values in control (CK), warming (W), grazing (G) and warming + grazing (WG) plots of alpine grassland in Northern Xizang.
图6 对照(CK)、增温(W)、放牧(G)及增温+放牧(WG)处理下藏北高寒草地植物盖度及净初级生产力的差异(平均值+标准误差)。不同小写字母表示不同处理间盖度和净初级生产力的差异显著(p < 0.05)。
Fig. 6 Mean vegetation coverage and net primary production (mean + SE) in control (CK), warming (W), grazing (G) and warming + grazing (WG) plots of alpine grassland in Northern Xizang. Different lowercase letters indicate significant differences in coverage and net primary production in different treatments (p < 0.05).
图7 对照(CK)、增温(W)、放牧(G)及增温+放牧(WG)处理下藏北高寒草地物种多样性的差异(平均值+标准误差)。不同小写字母表示不同处理间物种多样性的差异显著(p < 0.05)。
Fig. 7 Mean species diversity (mean + SE) in control (CK), warming (W), grazing (G) and warming + grazing (WG) plots of alpine grassland in Northern Xizang. Different lowercase letters indicate significant differences in species diversity in different treatments (p < 0.05)
图8 增温(W)、放牧(G)及增温+放牧(WG)处理下藏北高寒草地群落结构、物种多样性及生产力的差异(平均值+标准误差)。不同小写字母表示处理效应间的差异(p < 0.05); **, 代表处理效应与零之间的差异(p < 0.01)。
Fig. 8 Community structure, species diversity and productivity (mean + SE) in warming (W), grazing (G) and warming + grazing (WG) plots of alpine grassland in Northern Xizang. Different lowercase letters indicate differences in treatment effect (p < 0.05); **, indicate differences between treatment effect and zero (p < 0.01).
[1] |
.Brown JH, Valone TJ, Curtin CG (1997). Reorganization of an arid ecosystem in response to recent climate change.Proceedings of the National Academy of Sciences of the United States of America, 94, 9729-9733.
DOI URL PMID |
[2] |
.Cao XJ, Ganjurjav H, Liang Y, Gao QZ, Zhang Y, Li YE, Wan YF, Danjiu LB (2016). Temporal and spatial distribution of grassland degradation in northern Tibet based on NDVI.Acta Prataculturae Sinica, 25(3), 1-8.
DOI URL |
[曹旭娟, 干珠扎布, 梁艳, 高清竹, 张勇, 李玉娥, 万运帆, 旦久罗布 (2016). 基于NDVI的藏北地区草地退化时空分布特征分析. 草业学报, 25(3), 1-8.]
DOI URL |
|
[3] |
.Chen H, Zhu QA, Peng CH, Wu N, Wang YF, Fang XQ, Gao YH, Zhu D, Yang G, Tian JQ, Kang XM, Piao SL, Ouyang H, Xiang WH, Luo ZB, Jiang H, Song XZ, Zhang Y, Yu GR, Zhao XQ, Gong P, Yao TD, Wu JH (2013). The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau.Global Change Biology, 19, 2940-2955.
DOI URL |
[4] | .National Development and Reform Commission (2007). China’s National Climate Change Programme. Environmental Policy Collection, 1-62. |
[5] | .Duan MJ, Gao QZ, Wan YF, Li YE, Guo YQ, Danjiu LB, Luosang JC (2010). Effect of grazing on community characteristics and species diversity ofStipa purpurea alpine grassland in Northern Tibet. Acta Ecologica Sinica, 30, 3892-3900. |
[段敏杰, 高清竹, 万运帆, 李玉娥, 郭亚奇, 旦久罗布, 洛桑嘉措 (2010). 放牧对藏北紫花针茅高寒草原植物群落特征的影响. 生态学报, 30, 3892-3900.] | |
[6] |
.Fu G, Shen ZX, Zhang XZ (2018). Increased precipitation has stronger effects on plant production of an alpine meadow than does experimental warming in the Northern Tibetan Plateau. Agricultural and Forest Meteorology, 249, 11-21.
DOI URL |
[7] |
.Fu G, Sun W, Yu CQ, Zhang XZ, Shen ZX, Li YL, Yang PW, Zhou N (2015). Clipping alters the response of biomass production to experimental warming: A case study in an alpine meadow on the Tibetan Plateau, China.Journal of Mountain Science, 12, 935-942.
DOI URL |
[8] | .Fu G, Zhang XZ, Zhang YJ, Shi PL, Li YL, Zhou YT, Yang PW, Shen ZX (2013). Experimental warming does not enhance gross primary production and above-ground biomass in the alpine meadow of Tibet.Journal of Applied Remote Sensing, 7, 6451-6465. |
[9] |
.Ganjurjav H, Gao QZ, Gornish ES, Schwartz MW, Liang Y, Cao XJ, Zhang WN, Zhang Y, Li WH, Wan YF, Li YE, Danjiu LB, Guo HB, Lin ED (2016). Differential response of alpine steppe and alpine meadow to climate warming in the central Qinghai-Tibetan Plateau.Agricultural and Forest Meteorology, 223, 233-240.
DOI URL |
[10] |
.Ganjurjav H, Guo YQ, Gao QZ, Duan MJ, Wan YF, Li YE, Danjiu LB (2013). A study on optimal grazing rates in Stipa purpurea alpine grassland in Northern Tibet. Acta Prataculturae Sinica, 22(1), 130-137.
DOI URL |
[干珠扎布, 郭亚奇, 高清竹, 段敏杰, 万运帆, 李玉娥, 旦久罗布 (2013). 藏北紫花针茅高寒草原适宜放牧率研究. 草业学报, 22(1), 130-137.]
DOI URL |
|
[11] | .Gao QZ, Jiangcun WZ, Li YE, Wan YF (2006). Remote Sensing Monitoring of Grassland and Eco-functional Regionalization in Northern Xizang. Meteorological Press, Beijing. 12. |
[高清竹, 江村旺扎, 李玉娥, 万运帆 (2006). 藏北地区草地退化遥感监测与生态功能区划. 气象出版社, 北京. 12.] | |
[12] | .He T (2015). Effect of Grazing Rates on Plant Diversity and Productivity in Northwest Sichuan Alpine Meadow. Master degree dissertation, Sichuan Agricultural University, Chengdu. 29-33. |
[何婷 (2015). 放牧率对川西北高寒草地植物多样性和生产力的影响. 硕士学位论文, 四川农业大学, 成都. 29-33.] | |
[13] |
.Hopping KA, Knapp AK, Dorji T, Klein JA (2018). Warming and land use change concurrently erode ecosystem services in Tibet. Global Change Biology, 24, 5534-5548.
DOI URL PMID |
[14] | .IPCC (2013). Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge, UK. 1535. |
[15] | .Jiang YB, Fan M, Zhang YJ (2017). Effect of short-term warming on plant community features of alpine meadow in Northern Tibet.Chinese Journal of Ecology, 36, 616-622. |
[姜炎彬, 范苗, 张扬建 (2017). 短期增温对藏北高寒草甸植物群落特征的影响. 生态学杂志, 36, 616-622.] | |
[16] |
.Klein JA, Harte J, Zhao XQ (2005). Dynamic and complex microclimate responses to warming and grazing manipulations.Global Change Biology, 11, 1440-1451.
DOI URL |
[17] |
.Klein JA, Harte J, Zhao XQ (2008). Decline in medicinal and forage species with warming is mediated by plant traits on the Tibetan Plateau.Ecosystems, 11, 775-789.
DOI URL |
[18] | .Kurz I, O’Reilly CD, Tunney H (2006). Impact of cattle on soil physical properties and nutrient concentrations in overland flow from pasture in Ireland.Agriculture Ecosystems & Environment, 113, 378-390. |
[19] |
.Liu HY, Mi ZR, Lin L, Wang YH, Zhang ZH, Zhang FW, Wang H, Liu LL, Zhu B, Cao GM, Zhao XQ, Sanders NJ, Classen AT, Reich PB, He JS (2018). Shifting plant species composition in response to climate change stabilizes grassland primary production.Proceedings of the National Academy of Sciences of the United States of America, 115, 4051-4056.
DOI URL PMID |
[20] |
.Ma WJ, Zhang Q, Niu JM, Kang S, Liu PT, He X, Yang Y, Zhang YN, Wu JG (2013). Relationship of ecosystem primary productivity to species diversity and functional group diversity: Evidence from Stipa breviflora grassland in Nei Mongol. Chinese Journal of Plant Ecology, 37, 620-630.
DOI URL |
[马文静, 张庆, 牛建明, 康萨如拉, 刘朋涛, 何欣, 杨艳, 张艳楠, 邬建国 (2013). 物种多样性和功能群多样性与生态系统生产力的关系——以内蒙古短花针茅草原为例. 植物生态学报, 37, 620-630.]
DOI URL |
|
[21] |
.Marion B, Bonis A, Bouzillé JB (2010). How much does grazing- induced heterogeneity impact plant diversity in wet grasslands?Écoscience, 17, 229-239.
DOI URL |
[22] |
.McNaughton SJ (1979). Grazing as an optimization process: Grass-ungulate relationships in the Serengeti.The American Naturalist, 113, 691-703.
DOI URL |
[23] |
.Niu SL, Xing XR, Zhang Z, Xia JY, Zhou XH, Song B, Li LH, Wan SQ (2011). Water-use efficiency in response to climate change: From leaf to ecosystem in a temperate steppe.Global Change Biology, 17, 1073-1082.
DOI URL |
[24] |
.Polley HW, Derner JD, Jackson RB, Wilsey BJ, Fay PA (2014). Impacts of climate change drivers on C4 grassland productivity: Scaling driver effects through the plant community.Journal of Experimental Botany, 65, 3415-3424.
DOI URL |
[25] |
.Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001). Diversity and productivity in a long-term grassland experiment.Science, 294, 843-845.
DOI URL PMID |
[26] | .Wang SP, Duan JC, Xu GP, Wang YF, Zhang ZH, Rui YC, Luo CY, Xu B, Zhu XX, Chang XF, Cui XY, Niu HS, Zhao XQ, Wang WY (2012). Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. Ecology, 93, 2365-2376. |
[27] | .Wang SP, Li YH, Chen ZZ (1999). The optimal stocking rate on grazing system in Inner Mongolia steppe II. Based on relationship between stocking rate and aboveground net primary productivity.Acta Agrestia Sinica, 7, 192-197. |
[汪诗平, 李永宏, 陈佐忠 (1999). 内蒙古典型草原草畜系统适宜放牧率的研究II. 以牧草地上现存量和净初级生产力为管理目标. 草地学报, 7, 192-197.] | |
[28] |
.Wang XM, Chen FH, Dong ZB (2006). The relative role of climatic and human factors in desertification in semiarid China.Global Environmental Change, 16, 48-57.
DOI URL |
[29] | .Wu Q, Han GD, Wang RZ, Liu F, Qin J (2016). Effects of simulated warming on grassland plants, soil and ecosystem carbon exchange.Chinese Journal of Grassland, 38, 105-114. |
[武倩, 韩国栋, 王瑞珍, 刘芳, 秦洁 (2016). 模拟增温对草地植物、土壤和生态系统碳交换的影响. 中国草地学报, 38, 105-114.] | |
[30] |
.Wu ZT, Dijkstra P, Koch GW, Peñuelas J, Hungate BA (2011). Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation.Global Change Biology, 17, 927-942.
DOI URL |
[31] | .Xu MH, Liu M, Xue X, Zhai DT, Peng F, You QG, Liu Y (2015). Effects of warming and clipping on the growth of aboveground vegetation in an alpine meadow.Ecology and Environmental Sciences, 24, 231-236. |
[徐满厚, 刘敏, 薛娴, 翟大彤, 彭飞, 尤全刚, 刘洋 (2015). 增温、刈割对高寒草甸地上植被生长的影响. 生态环境学报, 24, 231-236.] | |
[32] |
.Yu CQ, Han FS, Fu G (2019). Effects of 7 years experimental warming on soil bacterial and fungal community structure in the Northern Tibet alpine meadow at three elevations.Science of the Total Environment, 655, 814-822.
DOI URL PMID |
[33] |
.Yu CQ, Shen ZX, Zhang XZ, Sun W, Fu G (2014). Response of soil C and N, dissolved organic C and N, and inorganic N to short-term experimental warming in an alpine meadow on the Tibetan Plateau.The Scientific World Journal, 2014, 152576. DOI: 10.1155/2014/152576.
DOI URL PMID |
[34] | .Yuan JL, Jiang XL, Huang WB, Wang G (2004). Effects of grazing intensity and grazing season on plant species diversity in alpine meadow.Acta Prataculturae Sinica, 13(3), 16-21. |
[袁建立, 江小蕾, 黄文冰, 王刚 (2004). 放牧季节及放牧强度对高寒草地植物多样性的影响. 草业学报, 13(3), 16-21.] | |
[35] |
.Zhao W, Chen SP, Lin GH (2008). Compensatory growth responses to clipping defoliation in Leymus chinensis (Poaceae) under nutrient addition and water deficiency conditions. Plant Ecology,196, 85-99.
DOI URL |
[36] | .Zheng W, Dong QM, Li SX, Li HT, Liu Y, Yang SH (2012). Impact of grazing intensities on community biodiversity and productivity of alpine grassland in Qinghai Lake region.Acta Agrestia Sinica, 20, 1033-1038. |
[郑伟, 董全民, 李世雄, 李红涛, 刘玉, 杨时海 (2012). 放牧强度对环青海湖高寒草原群落物种多样性和生产力的影响. 草地学报, 20, 1033-1038.] | |
[37] |
.Zhou XH, Wan SQ, Luo YQ (2007). Source components and interannual variability of soil CO2, efflux under experimental warming and clipping in a grassland ecosystem.Global Change Biology, 13, 761-775.
DOI URL PMID |
[1] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[3] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[4] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[5] | 茹雅倩, 薛建国, 葛萍, 李钰霖, 李东旭, 韩鹏, 杨天润, 储伟, 陈章, 张晓琳, 李昂, 黄建辉. 高频轮牧对典型草原生产生态效果的影响[J]. 植物生态学报, 2024, 48(2): 171-179. |
[6] | 索南吉, 李博文, 吕汪汪, 王文颖, 拉本, 陆徐伟, 宋扎磋, 陈程浩, 苗琪, 孙芳慧, 汪诗平. 增温增水情景下钉柱委陵菜物候序列的变化及其抗冻性[J]. 植物生态学报, 2024, 48(2): 158-170. |
[7] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[8] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[9] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[10] | 杨鑫, 任明迅. 环南海区域红树物种多样性分布格局及其形成机制[J]. 植物生态学报, 2023, 47(8): 1105-1115. |
[11] | 于笑, 纪若璇, 任天梦, 夏新莉, 尹伟伦, 刘超. 中国北方蒙古莸群落的分布、特征和分类[J]. 植物生态学报, 2023, 47(8): 1182-1192. |
[12] | 郭敏, 罗林, 梁进, 王彦杰, 赵春章. 冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J]. 植物生态学报, 2023, 47(6): 882-894. |
[13] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[14] | 朱华, 谭运洪. 中国热带雨林的群落特征、研究现状及问题[J]. 植物生态学报, 2023, 47(4): 447-468. |
[15] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19