植物生态学报 ›› 2020, Vol. 44 ›› Issue (4): 340-349.DOI: 10.17521/cjpe.2019.0223
所属专题: 全球变化与生态系统; 生态学研究的方法和技术
收稿日期:
2019-08-21
接受日期:
2019-10-23
出版日期:
2020-04-20
发布日期:
2020-03-26
通讯作者:
冯兆忠
基金资助:
FENG Zhao-Zhong1,*(),XU Yan-Sen2,SHANG Bo1
Received:
2019-08-21
Accepted:
2019-10-23
Online:
2020-04-20
Published:
2020-03-26
Contact:
FENG Zhao-Zhong
Supported by:
摘要:
化石燃料的燃烧和城市化进程的加快导致大气中二氧化碳(CO2)和臭氧(O3)浓度日益升高, 大气气体浓度的变化会对植物个体和陆地生态系统结构与功能产生影响。CO2浓度升高增加了陆地生态系统碳汇能力, 而O3导致作物减产和生态系统固碳损失。自由空气中气体浓度增加(FACE)系统是最接近自然的一种模拟大气气体浓度增加对生态系统影响的研究平台, 已广泛应用于各种生态系统, 为理解陆地生态系统生态过程对全球变化的响应及评估未来情景的生态风险提供了重要科学依据。该文从FACE技术特点出发, 介绍了国内外建成的大型CO2/O3-FACE系统, 分析了FACE系统的不同布气方式在不同生态系统研究过程中的优点与缺点, 概述了全球FACE运行的现状和取得的主要成果, 并指出了FACE系统存在的主要问题和前沿研究方向。
冯兆忠, 徐彦森, 尚博. FACE实验技术和方法回顾及其在全球变化研究中的应用. 植物生态学报, 2020, 44(4): 340-349. DOI: 10.17521/cjpe.2019.0223
FENG Zhao-Zhong, XU Yan-Sen, SHANG Bo. Free-Air Concentration Enrichment (FACE) techniques, experimental approach and its application in the field of global change ecology: a review. Chinese Journal of Plant Ecology, 2020, 44(4): 340-349. DOI: 10.17521/cjpe.2019.0223
图1 冠层顶部放气图。图片来源于https://soyface.illinois.edu/gallery。
Fig. 1 Schematic diagram of venting theory at the top of canopy. Photo by https://soyface.illinois.edu/gallery.
图2 样地周围垂直放气图。图片来源于https://www.westernsydney.edu.au/hie/EucFACE。
Fig. 2 Schematic diagram of vertical deflation around the field. Photo of the EucFACE facility courtesy of the Hawkesbury institute of the environment (https://www.westernsydney.edu.au/ hie/EucFACE). EucFACE is funded by Western Sydney University in conjunction with the commonwealth of Australia.
名称 Name | 生态系统 Ecosystem | 控制因子 Factor | 地点 Location | 开始运行时间 Start time | 运行状态 Status | 文献 Reference |
---|---|---|---|---|---|---|
Maricopa FACE | C3和C4作物 C3 and C4 crop | CO2 | 美国亚利桑那州 Arizona, USA | 1989 | 停止运行 Stop | |
Rice FACE | 水稻 Oryza sativa | CO2 | 日本雫石町 Shizukuishi, Japan | 1998 | 停止运行 Stop | |
Tsukuba FACE | 水稻 Oryza sativa | CO2 | 日本筑波 Tsukuba, Japan | 2010 | 停止运行 Stop | |
Rapolano Mid FACE | 葡萄和茄子 Vitis vinifera and Solanum melongena | CO2 | 意大利基安蒂 Chianti, Italy | 1995 | 停止运行 Stop | |
Soy FACE | 大豆和玉米 Glycine max and Zea mays | CO2, O3 | 美国伊利诺伊州 Illinois, USA | 2001 | 停止运行 Stop | |
Iso FACE | 山毛榉和云杉混交林 A mixed Fagus longipetiolata and Picea abies forest | CO2 | 德国克兰斯伯格森林 Kranzberg Forest, Germany | 2007 | 正在运行 Running | |
Duke Forest FACE | 火炬松 Pinus taeda | CO2 | 美国北卡罗来纳州 North Carolina, USA | 1996 | 停止运行 Stop | |
Euc FACE | 桉树 Eucalyptus | CO2 | 澳大利亚悉尼 Sydney, Australia | 2012 | 正在运行 Running | |
Oak Ridge | 枫香 Liquidambar | CO2 | 美国田纳西州 Tennessee, USA | 1998 | 停止运行 Stop | |
POPFACE | 杨树 Populus tremula | CO2 | 意大利维泰博省 Viterbo Province, Italy | 1999 | 停止运行 Stop | |
Swiss alpine treeline | 挪威云杉 Pinus sylvestris | CO2 | 瑞士巴塞尔 Basel, Switzerland | 2000 | 停止运行 Stop | |
Aspen FACE | 山杨 Populus davidiana | CO2, O3 | 美国威斯康辛州 Wisconsin, USA | 2001 | 停止运行 Stop | |
Kranzberg Ozone Fumigation Experiment (KROFEX) | 成熟云杉和山毛榉 Grown-up P. abies and F. longipetiolata | O3 | 德国弗赖辛 Freising, Germany | 2000 | 停止运行 Stop | |
Sapporo Forest | 山毛榉和橡树幼苗 F. longipetiolata and Quercus albus saplings | O3 | 日本北海道 Hokkaido, Japan | 2011 | 停止运行 Stop | |
BioCON | 自然草地 Natural grassland | CO2 | 美国明尼苏达州 Minnesota, USA | 1997 | 正在运行 Running | |
Swiss Eschikon FACE | 牧草 Pasture | CO2 | 瑞士 Switzerland | 1993 | 停止运行 Stop | |
Pasture FACE | 牧草 Pasture | CO2 | 新西兰布尔斯 Bourse, New Zealand | 1997 | 停止运行 Stop | |
Swiss calcareous FACE | 草地 Grassland | CO2 | 瑞士 Switzerland | 停止运行 Stop | ||
Irish seminatural FACE | 半自然草地 Semi-natural Grassland | CO2 | 爱尔兰 Ireland | 停止运行 Stop | ||
Nevada Desert | 沙漠 Desert | CO2 | 美国内华达州 Nevada, USA | 1997 | 停止运行 Stop | |
3D ozone FACE | 盆栽 Plot | O3 | 意大利佛罗伦萨 Florence, Italy | 2015 | 正在运行 Running |
表1 国外自由空气中气体浓度增加(FACE)系统概况
Table 1 Summary of Free-Air Concentration Enrichment (FACE) facilities owned by abroad countries
名称 Name | 生态系统 Ecosystem | 控制因子 Factor | 地点 Location | 开始运行时间 Start time | 运行状态 Status | 文献 Reference |
---|---|---|---|---|---|---|
Maricopa FACE | C3和C4作物 C3 and C4 crop | CO2 | 美国亚利桑那州 Arizona, USA | 1989 | 停止运行 Stop | |
Rice FACE | 水稻 Oryza sativa | CO2 | 日本雫石町 Shizukuishi, Japan | 1998 | 停止运行 Stop | |
Tsukuba FACE | 水稻 Oryza sativa | CO2 | 日本筑波 Tsukuba, Japan | 2010 | 停止运行 Stop | |
Rapolano Mid FACE | 葡萄和茄子 Vitis vinifera and Solanum melongena | CO2 | 意大利基安蒂 Chianti, Italy | 1995 | 停止运行 Stop | |
Soy FACE | 大豆和玉米 Glycine max and Zea mays | CO2, O3 | 美国伊利诺伊州 Illinois, USA | 2001 | 停止运行 Stop | |
Iso FACE | 山毛榉和云杉混交林 A mixed Fagus longipetiolata and Picea abies forest | CO2 | 德国克兰斯伯格森林 Kranzberg Forest, Germany | 2007 | 正在运行 Running | |
Duke Forest FACE | 火炬松 Pinus taeda | CO2 | 美国北卡罗来纳州 North Carolina, USA | 1996 | 停止运行 Stop | |
Euc FACE | 桉树 Eucalyptus | CO2 | 澳大利亚悉尼 Sydney, Australia | 2012 | 正在运行 Running | |
Oak Ridge | 枫香 Liquidambar | CO2 | 美国田纳西州 Tennessee, USA | 1998 | 停止运行 Stop | |
POPFACE | 杨树 Populus tremula | CO2 | 意大利维泰博省 Viterbo Province, Italy | 1999 | 停止运行 Stop | |
Swiss alpine treeline | 挪威云杉 Pinus sylvestris | CO2 | 瑞士巴塞尔 Basel, Switzerland | 2000 | 停止运行 Stop | |
Aspen FACE | 山杨 Populus davidiana | CO2, O3 | 美国威斯康辛州 Wisconsin, USA | 2001 | 停止运行 Stop | |
Kranzberg Ozone Fumigation Experiment (KROFEX) | 成熟云杉和山毛榉 Grown-up P. abies and F. longipetiolata | O3 | 德国弗赖辛 Freising, Germany | 2000 | 停止运行 Stop | |
Sapporo Forest | 山毛榉和橡树幼苗 F. longipetiolata and Quercus albus saplings | O3 | 日本北海道 Hokkaido, Japan | 2011 | 停止运行 Stop | |
BioCON | 自然草地 Natural grassland | CO2 | 美国明尼苏达州 Minnesota, USA | 1997 | 正在运行 Running | |
Swiss Eschikon FACE | 牧草 Pasture | CO2 | 瑞士 Switzerland | 1993 | 停止运行 Stop | |
Pasture FACE | 牧草 Pasture | CO2 | 新西兰布尔斯 Bourse, New Zealand | 1997 | 停止运行 Stop | |
Swiss calcareous FACE | 草地 Grassland | CO2 | 瑞士 Switzerland | 停止运行 Stop | ||
Irish seminatural FACE | 半自然草地 Semi-natural Grassland | CO2 | 爱尔兰 Ireland | 停止运行 Stop | ||
Nevada Desert | 沙漠 Desert | CO2 | 美国内华达州 Nevada, USA | 1997 | 停止运行 Stop | |
3D ozone FACE | 盆栽 Plot | O3 | 意大利佛罗伦萨 Florence, Italy | 2015 | 正在运行 Running |
名称 Name | 研究对象 Object | 控制因子 Factor | 研究机构 Research institution | 地点 Location | 开始运行时间 Start time | 运行状态 Status | 文献 Reference |
---|---|---|---|---|---|---|---|
China FACE | 水稻和小麦 Oryza sativa and Triticum aestivum | CO2, O3 | 中国科学院南京土壤研究所 Institute of Soil Science, Chinese Academy of Sciences | 江苏江都 Jiangdu, Jiangsu | 2001 | 停止运行 Stop | |
O3-FACE | 杨树 Populus deltoides | O3 | 中国科学院生态环境研究中心 Research Center for Eco-environmental Science, Chinese Academy of Sciences | 北京延庆 Yanqing, Beijing | 2017 | 正在运行 Running | |
CO2-FACE | 水稻 O. sativa | CO2, 温度 CO2, temperature | 南京农业大学 Nanjing Agricultural University | 江苏常熟 Changshu, Jiangsu | 正在运行 Running |
表2 中国自由空气中气体浓度增加(FACE)系统平台概况
Table 2 Summary of Chinese Free-Air Concentration Enrichment facilities
名称 Name | 研究对象 Object | 控制因子 Factor | 研究机构 Research institution | 地点 Location | 开始运行时间 Start time | 运行状态 Status | 文献 Reference |
---|---|---|---|---|---|---|---|
China FACE | 水稻和小麦 Oryza sativa and Triticum aestivum | CO2, O3 | 中国科学院南京土壤研究所 Institute of Soil Science, Chinese Academy of Sciences | 江苏江都 Jiangdu, Jiangsu | 2001 | 停止运行 Stop | |
O3-FACE | 杨树 Populus deltoides | O3 | 中国科学院生态环境研究中心 Research Center for Eco-environmental Science, Chinese Academy of Sciences | 北京延庆 Yanqing, Beijing | 2017 | 正在运行 Running | |
CO2-FACE | 水稻 O. sativa | CO2, 温度 CO2, temperature | 南京农业大学 Nanjing Agricultural University | 江苏常熟 Changshu, Jiangsu | 正在运行 Running |
[1] |
Ainsworth EA, Long SP (2005). What have we learned from 15 years of Free-Air CO2 Enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165, 351-372.
DOI URL PMID |
[2] |
Ainsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LD (2012). The effects of tropospheric ozone on net primary productivity and implications for climate change. Annual Review of Plant Biology, 63, 637-661.
DOI URL |
[3] |
Cheng L, Booker FL, Tu C, Burkey KO, Zhou LS, Shew HD, Rufty TW, Hu SJ (2012). Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science, 337, 1084-1087.
DOI URL PMID |
[4] |
Choquette NE, Ogut F, Wertin TM, Montes CM, Sorgini CA, Morse AM, Brown PJ, Leakey ADB, McIntyre LM, Ainsworth EA (2019). Uncovering hidden genetic variation in photosynthesis of field-grown maize under ozone pollution. Global Change Biology, 25, 4327-4338.
URL PMID |
[5] | Cooper OR, Parrish DD, Ziemke J, Balashov NV, Cupeiro M, Galbally IE, Gilge S, Horowitz L, Jensen N, Lamarque JF, Naik V, Oltmans SJ, Schwab J, Shindell DT, Thompson AM, Thouret V, Wang Y, Zbinden RM (2014). Global distribution and trends of tropospheric ozone: an observation-based review. Elementa: Science of the Anthropocene, 2, 000029. DOI: 10.12952/journal.elementa.000029. |
[6] |
Damour G, Simonneau T, Cochard H, Urban L (2010). An overview of models of stomatal conductance at the leaf level. Plant, Cell & Environment, 33, 1419-1438.
URL PMID |
[7] | Dickson RE, Lewin KF, Isebrands JG, Coleman MD, Heilman WE, Riemenschneider DE, Sober J, Host GE, Zak DR, Hendrey GR, Pregitzer KS, Karnosky DF (2000). Forest Atmosphere Carbon Transfer Storage (FACTS II) the Aspen Free-air CO2 and O3 Enrichment (FACE) Project: an Overview. USDA Forest Service, North Central Research Station. https://www.nrs.fs.fed.us/pubs/gtr/gtr_nc214.pdf. DOI: 10.2737/nc-gtr-214. |
[8] |
Edwards GE, Furbank RT, Hatch MD, Osmond CB (2001). What does it take to be C4? Lessons from the evolution of C4 photosynthesis. Plant Physiology, 125, 46-49.
DOI URL |
[9] |
Feng ZZ, Uddling J, Tang HY, Zhu JG, Kobayashi K (2018). Comparison of crop yield sensitivity to ozone between open-top chamber and free-air experiments. Global Change Biology, 24, 2231-2238.
URL PMID |
[10] |
Gao F, Catalayud V, Paoletti E, Hoshika Y, Feng ZZ (2017). Water stress mitigates the negative effects of ozone on photosynthesis and biomass in poplar plants. Environmental Pollution, 230, 268-279.
URL PMID |
[11] | Grams TEE, Werner H, Kuptz D, Ritter W, Fleischmann F, Andersen CP, Matyssek R (2011). A free-air system for long-term stable carbon isotope labeling of adult forest trees. Trees, 25, 187-198. |
[12] | Greenwood P, Greenhalgh A, Baker C, Unsworth M (1982). A computer-controlled system for exposing field crops to gaseous air pollutants. Atmospheric Environment, 16, 2261-2266. |
[13] |
Han Y, Liu G, Zhu JG, Okada M, Yoshimoto M (2002). Rice-wheat rotational FACE platform II. Data processing software package. Chinese Journal of Applied Ecology, 13, 1259-1263.
URL PMID |
[ 韩勇, 刘钢, 朱建国, 冈田益己, 吉本真由美 (2002). 稻麦轮作FACE系统平台II. 系统控制和数据分析软件. 应用生态学报, 13, 1259-1263.]
URL PMID |
|
[14] | Hendrey GR, Ellsworth DS, Lewin KF, Nagy J (1999). A free-air enrichment system for exposing tall forest vegetation to elevated atmospheric CO2. Global Change Biology, 5, 293-309. |
[15] | Hendrey GR, Lewin KF, Nagy J (1993). Control of carbon dioxide in unconfined field plots//Hendrey GR. Design and Execution of Experiments on CO2 Enrichment Ecosystems Research Report 6. Commission of the European Communities. Ecosystem Research Report Series 6, Brussels. 309-329. |
[16] | IPCC (2013). Summary for policymakers//IPCC. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York. |
[17] | IPCC (2017). Synthesis report//IPCC. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva. |
[18] | Jordan DNN, Zitzer SF, Hendrey GR, Lewin KF, Nagy J, Nowak RS, Smith SD, Coleman JS, Seemann JR (1999). Biotic, abiotic and performance aspects of the Nevada Desert Free-Air CO2 Enrichment (FACE) Facility. Global Change Biology, 5, 659-668. |
[19] | Karnosky DF, Zak DR, Pregitzer KS, Awmack CS, Bockheim JG, Dickson RE, Hendrey GR, Host GE, King JS, Kopper BJ, Kruger EL, Kubiske ME, Lindroth RL, Mattson WJ, Mcdonald EP, Noormets A, Oksanen E, Parsons WFJ, Percy KE, Podila GK, Riemenschneider DE, Sharma P, Thakur R, Sober A, Sober J, Jones WS, Anttonen S, Vapaavuori E, Mankovska B, Heilman W, Isebrands JG (2003). Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2: a synthesis of molecular to ecosystem results from the Aspen FACE project. Functional Ecology, 17, 289-304. |
[20] | Körner C (2003). Nutrients and sink activity drive plant CO2 responses—Caution with literature-based analysis. New Phytologist, 159, 537-538. |
[21] | Leavitt SW, Paul EA, Galadima A, Nakayama FS, Danzer SR, Johnson H, Kimball BA (1995). Carbon isotopes and carbon turnover in cotton and wheat FACE experiments. Plant and Soil, 187, 147-155. |
[22] | Lewin KF, Hendrey GR, Nagy J, LaMorte RL (1994). Design and application of a free-air carbon dioxide enrichment facility. Agricultural and Forest Meteorology, 70, 15-29. |
[23] |
Liu G, Han Y, Zhu JG, Okada M, Nakamura H, Yoshimoto M (2002). Rice-wheat rotational FACE platform I. System structure and control. Chinese Journal of Applied Ecology, 13, 1253-1258.
URL PMID |
[ 刘钢, 韩勇, 朱建国, 冈田益己, 中村浩史, 吉本真由美 (2002). 稻麦轮作FACE系统平台I. 系统结构与控制. 应用生态学报, 13, 1253-1258.]
URL PMID |
|
[24] |
Long SP (2006). Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science, 312, 1918-1921.
DOI URL PMID |
[25] | Long SP, Ainsworth EA, Leakey ADB, Morgan PB (2005). Global food insecurity. Treatment of major food crops with elevated carbon dioxide or ozone under large-scale fully open-air conditions suggests recent models may have overestimated future yields. Philosophical Transactions of the Royal Society B, 360, 2011-2020. |
[26] |
Long SP, Ainsworth EA, Rogers A, Ort DR (2004). Rising atmospheric carbon dioxide: plants face the future. Annual Review of Plant Biology, 55, 591-628.
URL PMID |
[27] | Miglietta F, Lanini M, Bindi M, Magliulo V (1997). Free air CO2 enrichment of potato (Solanum tuberosum L.): design and performance of the CO2-fumigation system. Global Change Biology, 3, 417-427. |
[28] | Miglietta F, Peressotti A, Vaccari FP, Zaldei A, deAngelis P, Scarascia-Mugnozza G (2001). Free-air CO2 enrichment (FACE) of a poplar plantation: the POPFACE fumigation system. New Phytologist, 150, 465-476. |
[29] | Mooi IJ, van der Zalm AJA (1985). Research on the effects of higher than ambient concentrations of SO2 and NO2 on vegetation under semi-natural conditions: the developing and testing of a field fumigation system; process description. First Interim Report to the Commission of the European Communities, EEC Contract ENV-677-NL. January- December 1983. Research Institute for Plant Protection, Wageningen, Netherlands. |
[30] | Norby RJ, Todd DE, Fults J, Johnson DW (2001). Allometric determination of tree growth in a CO2-enriched sweetgum stand. New Phytologist, 150, 477-487. |
[31] | Norby RJ, Zak DR (2011). Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annual Review of Ecology, Evolution, and Systematics, 42, 181-203. |
[32] | Nowak RS, Ellsworth DS, Smith SD (2004). Functional responses of plants to elevated atmospheric CO2-—Do photosynthetic and productivity data from FACE experiments support early predictions? New Phytologist, 162, 253-280. |
[33] |
Nussbaum S, Fuhrer J (2000). Difference in ozone uptake in grassland species between open-top chambers and ambient air. Environmental Pollution, 109, 463-471.
URL PMID |
[34] | Okada M, Lieffering M, Nakamura H, Yoshimoto M, Kim HY, Kobayashi K (2001). Free-Air CO2 Enrichment (FACE) using pure CO2 injection: system description. New Phytologist, 150, 251-260. |
[35] |
Paoletti E, Materassi A, Fasano G, Hoshika Y, Carriero G, Silaghi D, Badea O (2017). A new-generation 3D ozone FACE (Free Air Controlled Exposure). Science of the Total Environment, 575, 1407-1414.
URL PMID |
[36] | Peng B, Lai SK, Li PL, Wang YX, Zhu JG, Yang LX, Wang YL (2014). Interactive effects of ozone concentration and planting density on growth, development and yield formation of yangdao 6——A FACE study. Chinese Journal of Rice Science, 28, 401-410. |
[ 彭斌, 赖上坤, 李潘林, 王云霞, 朱建国, 杨连新, 王余龙 (2014). 臭氧与栽插密度互作对扬稻6号生长发育和产量形成的影响——FACE研究. 中国水稻科学, 28, 401-410.] | |
[37] | Piikki K, de Temmerman L, Högy P, Pleijel H (2008). The open-top chamber impact on vapour pressure deficit and its consequences for stomatal ozone uptake. Atmospheric Environment, 42, 6513-6522. |
[38] |
Pretzsch H, Dieler J, Matyssek R, Wipfler P (2010). Tree and stand growth of mature Norway spruce and European beech under long-term ozone fumigation. Environmental Pollution, 158, 1061-1070.
URL PMID |
[39] |
Reich PB, Knops J, Tilman D, Craine J, Ellsworth D, Tjoelker M, Lee T, Wedin D, Naeem S, Bahauddin D, Hendrey G, Jose S, Wrage K, Goth J, Bengston W (2001). Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature, 410, 809-810.
DOI URL PMID |
[40] |
Shang B, Feng ZZ, Li P, Yuan XY, Xu YS, Calatayud V (2017). Ozone exposure-and flux-based response relationships with photosynthesis, leaf morphology and biomass in two poplar clones. Science of the Total Environment, 603, 185-195.
URL PMID |
[41] | Tang HY, Liu G, Han Y, Zhu JG (2010). Ozone concentration enrichment system under fully free-air condition in agricultural field (O3-FACE). Soils, 42, 833-841. |
[ 唐昊冶, 刘钢, 韩勇, 朱建国 (2010). 农田开放体系中调控臭氧浓度装置平台(O3-FACE)研究. 土壤, 42, 833-841.] | |
[42] | Tang HY, Liu G, Han Y, Zhu JG, Kobayashi K (2011). A system for free-air ozone concentration elevation with rice and wheat: control performance and ozone exposure regime. Atmospheric Environment, 45, 6276-6282. |
[43] |
Tian D, Du EZ, Jiang L, Ma SH, Zeng WJ, Zou AL, Feng CY, Xu LC, Xing AJ, Wang W, Zheng CY, Ji CJ, Shen HH, Fang JY (2018). Responses of forest ecosystems to increasing N deposition in China: a critical review. Environmental Pollution, 243, 75-86.
DOI URL PMID |
[44] |
Tissue DT, Thomas RB, Strain BR (1996). Growth and photosynthesis of loblolly pine (Pinus taeda) after exposure to elevated CO2 for 19 months in the field. Tree Physiology, 16, 49-59.
URL PMID |
[45] | Vingarzan R (2004). A review of surface ozone background levels and trends. Atmospheric Environment, 38, 3431-3442. |
[46] |
Watanabe M, Hoshika Y, Inada N, Wang XN, Mao QZ, Koike T (2013). Photosynthetic traits of Siebold’s beech and oak saplings grown under free air ozone exposure in northern Japan. Environmental Pollution, 174, 50-56.
URL PMID |
[47] |
Werner H, Fabian P (2002). Free-air fumigation of mature trees. Environmental Science and Pollution Research, 9, 117-121.
URL PMID |
[48] | Whitehead D, Hogan KP, Rogers GND, Byers JN, Hunt JE, McSeveny TM, Hollinger DY, Dungan RJ, Earl WB, Bourke MP (1995). Performance of large open-top chambers for long-term field investigations of tree response to elevated carbon dioxide concentration. Journal of Biogeography, 22, 307-313. |
[49] | Yang LX, Wang YX, Zhu JG, Wang YL (2009). What have we learned from 10 years of Free Air CO2 Enrichment (FACE) experiments on rice CO2 and grain yield. Acta Ecologica Sinica, 29, 1486-1497. |
[ 杨连新, 王云霞, 朱建国, 王余龙 (2009). 十年水稻FACE研究的产量响应. 生态学报, 29, 1486-1497.] | |
[50] |
Yendrek CR, Erice G, Montes CM, Tomaz T, Sorgini CA, Brown PJ, McIntyre LM, Leakey ADB, Ainsworth EA (2017). Elevated ozone reduces photosynthetic carbon gain by accelerating leaf senescence of inbred and hybrid maize in a genotype-specific manner. Plant, Cell & Environment, 40, 3088-3100.
URL PMID |
[51] |
Zanetti S, Hartwig UA, Luscher A, Hebeisen T, Frehner M, Fischer BU, Hendrey GR, Blum H, Nosberger J (1996). Stimulation of symbiotic N2 fixation in Trifolium repens L. under elevated atmospheric pCO2 in a grassland ecosystem. Plant Physiology, 112, 575-583.
URL PMID |
[52] |
Zhu CW, Kobayashi K, Loladze I, Zhu JG, Jiang Q, Xu X, Liu G, Seneweera S, Ebi KL, Drewnowski A, Fukagawa NK, Ziska LH (2018). Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Science Advances, 4, eaaq1012. DOI: 10.1126/sciadv.aaq1012.
URL PMID |
[1] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[2] | 马艳泽, 杨熙来, 徐彦森, 冯兆忠. 四种常见树木叶片光合模型关键参数对臭氧浓度升高的响应[J]. 植物生态学报, 2022, 46(3): 321-329. |
[3] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[4] | 魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽. 实验增温对陆地生态系统根系生物量的影响[J]. 植物生态学报, 2021, 45(11): 1203-1212. |
[5] | 李景, 王欣, 王振华, 王斌, 王成章, 邓美凤, 刘玲莉. 臭氧和气溶胶复合污染对杨树叶片光合作用的影响[J]. 植物生态学报, 2020, 44(8): 854-863. |
[6] | 冯兆忠, 袁相洋, 李品, 尚博, 平琴, 胡廷剑, 刘硕. 地表臭氧浓度升高对陆地生态系统影响的研究进展[J]. 植物生态学报, 2020, 44(5): 526-542. |
[7] | 冯兆忠, 李品, 张国友, 李征珍, 平琴, 彭金龙, 刘硕. 二氧化碳浓度升高对陆地生态系统的影响: 问题与展望[J]. 植物生态学报, 2020, 44(5): 461-474. |
[8] | 葛体达, 王东东, 祝贞科, 魏亮, 魏晓梦, 吴金水. 碳同位素示踪技术及其在陆地生态系统碳循环研究中的应用与展望[J]. 植物生态学报, 2020, 44(4): 360-372. |
[9] | 朱彪, 陈迎. 陆地生态系统野外增温控制实验的技术与方法[J]. 植物生态学报, 2020, 44(4): 330-339. |
[10] | 黄玫, 王娜, 王昭生, 巩贺. 磷影响陆地生态系统碳循环过程及模型表达方法[J]. 植物生态学报, 2019, 43(6): 471-479. |
[11] | 周慧敏, 李品, 冯兆忠, 张殷波. 地表臭氧浓度升高与干旱交互作用对杨树非结构性碳水化合物积累和叶根分配的短期影响[J]. 植物生态学报, 2019, 43(4): 296-304. |
[12] | 高峰, 李品, 冯兆忠. 臭氧与干旱对植物复合影响的研究进展[J]. 植物生态学报, 2017, 41(2): 252-268. |
[13] | 李明泽, 王斌, 范文义, 赵丹丹. 东北林区净初级生产力及大兴安岭地区林火干扰影响的模拟研究[J]. 植物生态学报, 2015, 39(4): 322-332. |
[14] | 朱治林,孙晓敏,赵风华,温学发,唐新斋,袁国富. 鲁西北平原冬小麦田臭氧浓度变化特征及对产量的潜在影响和机理分析[J]. 植物生态学报, 2012, 36(4): 313-323. |
[15] | 陈娟, 曾青, 朱建国, 刘钢, 曹际玲, 谢祖彬, 唐昊冶, 小林和彦. 施氮肥缓解臭氧对小麦光合作用和产量的影响[J]. 植物生态学报, 2011, 35(5): 523-530. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19