植物生态学报 ›› 2011, Vol. 35 ›› Issue (5): 523-530.DOI: 10.3724/SP.J.1258.2011.00523
陈娟1,2, 曾青1,*(), 朱建国1, 刘钢1, 曹际玲1,2, 谢祖彬1, 唐昊冶1, 小林和彦3
收稿日期:
2010-07-23
接受日期:
2011-01-21
出版日期:
2011-07-23
发布日期:
2011-06-07
通讯作者:
曾青
作者简介:
* E-mail: qzeng@issas.ac.cn
CHEN Juan1,2, ZENG Qing1,*(), ZHU Jian-Guo1, LIU Gang1, CAO Ji-Ling1,2, XIE Zu-Bin1, TANG Hao-Ye1, KAZUHIKO Kobayashi3
Received:
2010-07-23
Accepted:
2011-01-21
Online:
2011-07-23
Published:
2011-06-07
Contact:
ZENG Qing
摘要:
以小麦(Triticum aestivum)品种‘扬麦16’为试材, 利用开放式空气臭氧(O3)浓度升高平台, 研究了增施氮(N)肥对O3对小麦光合作用和产量影响的缓解作用。结果表明, O3胁迫下灌浆期小麦的净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、叶绿素a (Chl a)、叶绿素b (Chl b)、类胡萝卜素(Car)、总叶绿素含量(Chl t)和可溶性蛋白的含量显著降低, 降幅分别为28.95%、31.79%、23.17%、58.89%、68.64%、22.89%、60.31%和32.00%; 胞间CO2浓度(Ci)变化很小; 成熟期生物量和收获时产量也明显下降, 降幅分别为12.23%和12.63%; 而增施N肥可以增加小麦灌浆期的Pn、Chl a、Chl b、可溶性蛋白的含量, 进而增加小麦生物量和产量, 增幅分别为25.66%、83.05%、121.57%、30.33%、14.94%和10.67%, 而对Ci、Gs、Tr、Car含量无明显影响。O3和N肥对小麦叶片的Pn、Chl t及可溶性蛋白含量有明显的交互作用。因此, 在大气O3浓度升高条件下增施N肥对小麦O3损伤有一定的缓解作用。
陈娟, 曾青, 朱建国, 刘钢, 曹际玲, 谢祖彬, 唐昊冶, 小林和彦. 施氮肥缓解臭氧对小麦光合作用和产量的影响. 植物生态学报, 2011, 35(5): 523-530. DOI: 10.3724/SP.J.1258.2011.00523
CHEN Juan, ZENG Qing, ZHU Jian-Guo, LIU Gang, CAO Ji-Ling, XIE Zu-Bin, TANG Hao-Ye, KAZUHIKO Kobayashi. Nitrogen supply mitigates the effects of elevated [O3] on photosynthesis and yield in wheat. Chinese Journal of Plant Ecology, 2011, 35(5): 523-530. DOI: 10.3724/SP.J.1258.2011.00523
图1 O3和N交互作用对小麦叶片净光合速率、气孔导度、胞间CO2浓度和蒸腾速率的影响(平均值±标准偏差)。AHN, 对照处理高N水平; ANN, 对照处理常规N水平; FNN, O3处理常规N水平。FHN, O3处理高N水平。不同字母表示差异显著(p < 0.05)。
Fig. 1 Interactive effects of elevated O3 and nitrogen on net photosynthesis rate (Pn), stomatic conductance (Gs), intercellular CO2 concentration (Ci) and transpiration rate (Tr) of the wheat leaves (mean ± SD). ANN, ambient ozone and normal nitrogen. AHN, ambient ozone and high nitrogen; FNN, elevated ozone and normal nitrogen; FHN, elevated ozone and high nitrogen. Different letters mean significance at p < 0.05 level.
图2 O3和N交互作用对小麦叶片光合色素含量的影响(平均值±标准偏差)。AHN, 对照处理高N水平; ANN, 对照处理常规N水平; FHN, O3处理高N水平; FNN, O3处理常规N水平。不同字母表示差异显著(p < 0.05)。
Fig. 2 Interactive effects of elevated O3 and nitrogen on the photosynthetic pigment content of wheat leaves (mean ± SD). ANN, ambient ozone and normal nitrogen; AHN, ambient ozone and high nitrogen; FNN, elevated ozone and normal nitrogen; FHN, elevated ozone and high nitrogen. Different letters mean significance at p < 0.05 level.
图3 O3和N交互对小麦叶片可溶性蛋白含量的影响(平均值±标准偏差)。ANN, 对照处理常规N水平; AHN, 对照处理高N水平; FNN, O3处理常规N水平; FHN, O3处理高N水平。不同字母表示差异显著(p < 0.05)。
Fig. 3 Interactive effects of elevated O3 and nitrogen on soluble protein content in wheat leaves (mean ± SD). ANN, ambient ozone and normal nitrogen; AHN, ambient ozone and high nitrogen; FNN, elevated ozone and normal nitrogen; FHN, elevated ozone and high nitrogen. Different letters mean significance at p < 0.05 level.
处理 Treatment | 总生物量 Total biomass | 产量 Yield | |||
---|---|---|---|---|---|
抽穗期 Heading | 开花期 Blooming | 成熟期 Maturing | 收获期 Harvesting | ||
NN | A | 9 003 ± 897 | 12 195 ± 1235 | 14 657 ± 140 | 8 029 ± 396 |
F | 10 565 ± 1 023 | 11 700 ± 676 | 12 865 ± 428 | 7 014 ± 259 | |
HN | A | 9 809 ± 690 | 12 252 ± 1 310 | 14 491 ± 1 031 | 8 224 ± 548 |
F | 11 324 ± 814 | 11 831 ± 322 | 14 787 ± 447 | 7 762 ± 265 | |
N | ns | ns | ns | ns | |
O3 | ns | ns | ns | * | |
N × O3 | ns | ns | ns | ns |
表1 O3和N肥交互作用对小麦产量和不同生育期生物量(kg·hm-2)的影响(平均值±标准偏差)
Table 1 Interactive effects of elevated O3 and nitrogen on the yield and biomass of different growth period (kg·hm-2) of wheat (mean ± SD)
处理 Treatment | 总生物量 Total biomass | 产量 Yield | |||
---|---|---|---|---|---|
抽穗期 Heading | 开花期 Blooming | 成熟期 Maturing | 收获期 Harvesting | ||
NN | A | 9 003 ± 897 | 12 195 ± 1235 | 14 657 ± 140 | 8 029 ± 396 |
F | 10 565 ± 1 023 | 11 700 ± 676 | 12 865 ± 428 | 7 014 ± 259 | |
HN | A | 9 809 ± 690 | 12 252 ± 1 310 | 14 491 ± 1 031 | 8 224 ± 548 |
F | 11 324 ± 814 | 11 831 ± 322 | 14 787 ± 447 | 7 762 ± 265 | |
N | ns | ns | ns | ns | |
O3 | ns | ns | ns | * | |
N × O3 | ns | ns | ns | ns |
[1] | Andrews JT, Lorimer GH (1987). Rubisco: structure, mechanisms, and prospects for improvement. In: Stumpf PK, Conn EF eds. The Biochemistry of Plants: A Comprehensive Treatise, Photosynthesis. Academic Press, San Diego. 10, 131-218. |
[2] |
Ashmore MR (2005). Assessing the future global impacts of ozone on vegetation. Plant, Cell & Environment, 28, 949-964.
DOI URL |
[3] | Cao JL (曹际玲), Wang L (王亮), Zeng Q (曾青), Liang J (梁晶), Tang HY (唐昊冶), Xie ZB (谢祖彬), Liu G (刘钢), Zhu JG (朱建国), Kobayashi K (2009). Characteristics of photosynthesis in wheat cultivars with different sensitivity to ozone under O3-free air control enrichment conditions. Acta Agronomica Sinica (作物学报), 35, 1500-1507. (in Chinese with English abstract) |
[4] |
Chen Z, Wang XK, Feng ZZ, Zheng FX, Duan XN, Yang WR (2008). Effects of elevated ozone on growth and yield of field-grown rice in Yangtze River Delta. Journal of Environmental Sciences, 20, 320-325.
DOI URL |
[5] | Feng ZZ, Pang J, Kobayashi K, Zhu JG (2011). Differential responses in two varieties of winter wheat to elevated ozone concentration under fully open-air field conditions. Global Change Biology, 17, 580-591. |
[6] | Häikiö E, Freiwald V, Silfver T, Beuker E, Holopainen T, Oksanen E (2007). Impacts of elevated ozone and nitrogen on growth and photosynthesis of European aspen (Populus tremula) and hybrid aspen (P. tremula × Populus tremuloides) clones. Canadian Journal of Forest Research, 37, 2326-2336. |
[7] |
Handley T, Grulke NE (2008). Interactive effects of O3 exposure on California black oak (Quercus kelloggii Newb.) seedlings with and without N amendment. Environmental Pollution, 156, 53-60.
DOI URL PMID |
[8] | Kobayashi K, Okada M (1995). Effects of ozone on the light use of rice (Oryza sativa L.). Plants Agriculture, Ecosystems and Environment, 53, 1-12. |
[9] | Long SP, Naidu SL (2002). Effects of oxidants at the biochemical, cell and physiological levels, with particular reference to ozone. In: Bell JNB, Treshow M eds. Air Pollution and Plants 2nd edn. John Wiley and Sons Ltd., West Sussex. 69-88. |
[10] |
Makino A, Mae T, Ohira K (1983). Photosynthesis and ribulose-1, 5-bisphosphate carboxylase in rice leaves. Plant Physiology, 73, 1002-1007.
URL PMID |
[11] | Makino A, Mae T, Ohira K (1986). Colorimetric measurement of protein stained with Coomassie Brilliant Blue R on sodium dodecyl sulfate-polyacrylamide gel electrophoresis by eluting with formamide. Agricultural and Biology Chemistry, 50, 1911-1912. |
[12] | Maurer S, Matyssek R, Günthardt-Goerg MS, Landolt W, Einig W (1997). Nutrition and the ozone sensitivity of birch (Betula pendula). I. Responses at the leaf level. Trees, 12, 1-10. |
[13] |
Morgan PB, Mies TA, Bollero GA, Nelson RL, Long SP (2006). Season-long elevation of ozone concentration to projected 2050 levels under fully open-air conditions substantially decreases the growth and production of soybean. New Phytologist, 170, 333-343.
URL PMID |
[14] | Nakaji T, Izuta T (2001). Effects of ozone and/or excess soil nitrogen on growth, needle gas exchange rates and rubisco contents of Pinus densiflora seedlings. Water, Air, and Soil Pollution, 130, 971-976. |
[15] | Nakaji T, Kobayashi T, Kuroha M, Omori K, Matsumoto Y, Yonekura T, Watanabe K, Utriainen J, Izuta T (2004). Growth and nitrogen availability of red pine seedlings under high nitrogen load and elevated ozone. Water, Air, and Soil Pollution, 4, 277-287. |
[16] | Pang J, Kobayashi K, Zhu JG (2009). Yield and photosynthetic characteristics of flag leaves in Chinese rice (Oryza sativa L.) varieties subjected to free-air release of ozone. Agriculture, Ecosystems and Environment, 132, 203-211. |
[17] |
Singh P, Agrawal M, Agrawal SB (2009). Evaluation of physiological, growth and yield responses of a tropical oil crop (Brassica campestris L. var. kranti) under ambient ozone pollution at varying NPK levels. Environmental Pollution, 157, 871-880.
DOI URL PMID |
[18] |
Sitch S, Cox PM, Collins WJ, Huntingford C (2007). Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature, 448, 791-795.
DOI URL PMID |
[19] |
Utriainen J, Holopainen T (2001a). Influence of nitrogen and phosphorus availability and ozone stress on Norway spruce seedlings. Tree Physiology, 21, 447-456.
DOI URL PMID |
[20] |
Utriainen J, Holopainen T (2001b). Nitrogen availability modifies the ozone responses of Scots pine seedlings exposed in an open-field system. Tree Physiology, 21, 1205-1213.
URL PMID |
[21] |
Vilhena JC, Barnes J (2001). Does nitrogen supply affect the response of wheat (Triticum aestivum cv. Hanno) to the combination of elevated CO2 and O3? Journal of Experimental Botany, 52, 1901-1911.
URL PMID |
[22] | Wang L (王亮), Zeng Q (曾青), Feng ZZ (冯兆忠), Zhu JG (朱建国), Tang HY (唐昊冶), Chen X (陈曦), Xie ZB (谢祖彬), Liu G (刘钢), Kobayashi K (2009). Photosynthetic damage induced by elevated O3 in two varieties of winter wheat with free air controlled enrichment approach. Environmental Science (环境科学), 30, 527-534. (in Chinese with English abstract) |
[23] | Watanabe M, Yamaguchi M, Matsumura H, Kohno Y, Izuta T (2008). Effects of ozone on the growth and photosynthesis of Castanopsis sieboldii seedlings growth under different nitrogen loads. Journal of Agricultural Meteorology, 64, 143-155. |
[24] | Yamaguchi M, Watanabe M, Matsuo N, Naba J, Funada R, Fukami M, Matsumura H, Kohno Y, Izuta T (2007). Effects of nitrogen supply on the sensitivity to O3 of growth and photosynthesis of Japanese beech (Fagus crenata) seedlings. Water Air Soil Pollution, 7, 131-136. |
[25] | Yao FF (姚芳芳), Wang XK (王效科), Feng ZZ (冯兆忠), Zheng FX (郑飞翔), Feng ZW (冯宗炜), Ouyang ZY (欧阳志云) (2007). Influence of ozone and ethylenediurea (EDU) on physiological characters and foliar symptom of spinach (Spinacia oleracea L.) in open-top chambers. Ecology and Environment (生态环境), 16, 1399-1405. (in Chinese with English abstract) |
[26] | Zheng QW (郑启伟), Wang XK (王效科), Feng ZZ (冯兆忠), Feng ZW (冯宗炜), Ouyang ZY (欧阳志云) (2007). Combined impact of ozone and simulated acid rain on gas exchange, growth and yield of field-grown winter wheat. Acta Scientiae Circumstantiae (环境科学学报), 27, 1542-1548. (in Chinese with English abstract) |
[27] | Zheng QW (郑启伟), Wang XK (王效科), Xie JQ (谢居清), Feng ZZ (冯兆忠), Feng ZW (冯宗炜), Ni XW (倪雄伟), Ouyang ZY (欧阳志云) (2006). Effects of exogenous ascorbate acid on membrane protective system of in situ rice leaves under O3 stress. Acta Ecologica Sinica (生态学报), 26, 1131-1137. (in Chinese with English abstract) |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[3] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[4] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[5] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[6] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[7] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[8] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[9] | 蒋海港, 曾云鸿, 唐华欣, 刘伟, 李杰林, 何国华, 秦海燕, 王丽超, 姚银安. 三种藓类植物固碳耗水节律调节作用[J]. 植物生态学报, 2023, 47(7): 988-997. |
[10] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[11] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[12] | 刘建新, 刘瑞瑞, 刘秀丽, 贾海燕, 卜婷, 李娜. 外源硫化氢对盐碱胁迫下裸燕麦光合碳代谢的调控[J]. 植物生态学报, 2023, 47(3): 374-388. |
[13] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[14] | 刘海燕, 臧纱纱, 张春霞, 左进城, 阮祚禧, 吴红艳. 磷饥饿下硅藻光系统II光化学反应及其对高光强的响应[J]. 植物生态学报, 2023, 47(12): 1718-1727. |
[15] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19