植物生态学报 ›› 2015, Vol. 39 ›› Issue (4): 322-332.DOI: 10.17521/cjpe.2015.0031
所属专题: 遥感生态学
收稿日期:
2014-06-09
接受日期:
2015-02-15
出版日期:
2015-04-01
发布日期:
2015-04-21
通讯作者:
范文义
作者简介:
# 共同第一作者
基金资助:
LI Ming-Ze, WANG Bin, FAN Wen-Yi*(), ZHAO Dan-Dan
Received:
2014-06-09
Accepted:
2015-02-15
Online:
2015-04-01
Published:
2015-04-21
Contact:
Wen-Yi FAN
About author:
# Co-first authors
摘要:
森林净初级生产力(NPP)是衡量陆地碳源/汇的重要参数, 准确地估算森林生态系统的NPP, 同时通过引入干扰因子以期更加完整地描述生态学过程及其响应是目前森林生态系统碳循环研究的重点。因此, 该研究基于北方生态系统生产力(BEPS)模型, 结合遥感数据和气象数据等模拟2003年东北林区NPP; 将BEPS模型模拟的结果作为整合陆地生态系统碳收支(InTEC)模型的参考年数据, 模拟东北林区1901-2008年的NPP, 并在InTEC模型中加入林火干扰数据, 模拟大兴安岭地区1966-2008年的森林NPP。结果显示: 在1901年, 东北林区NPP平均值仅为278.8 g C·m-2·a-1, 到了1950年, NPP平均值增加到338.5 g C·m-2·a-1, 2008年NPP平均值进一步增加到378.4 g C·m-2·a-1。其中长白山地区的NPP平均值始终最高, 大兴安岭次之, 小兴安岭始终最低。到了2008年, 大、小兴安岭和长白山地区的NPP平均值都有较大涨幅, 其中涨幅最高的是长白山地区, 达到200-300 g C·m-2·a-1; 东北三省中, 黑龙江和吉林的NPP平均值和总量都比较高, 辽宁相对较低, 但相比于1901年的涨幅最高, 达到70%; 重大火灾(100-1000 hm2)对NPP的影响不是很大, 而特大火灾(>1000 hm2)的影响比较大, 使NPP下降幅度达到10%左右, 其他火灾年份, NPP增长迅速并保持在较高水平; 对火灾面积在100000 hm2以上的4个年份的NPP进行分析, 发现NPP平均值都大幅度下降, 其中1987年下降幅度最大, 为11%以上。
李明泽, 王斌, 范文义, 赵丹丹. 东北林区净初级生产力及大兴安岭地区林火干扰影响的模拟研究. 植物生态学报, 2015, 39(4): 322-332. DOI: 10.17521/cjpe.2015.0031
LI Ming-Ze,WANG Bin,FAN Wen-Yi,ZHAO Dan-Dan. Simulation of forest net primary production and the effects of fire disturbance in Northeast China. Chinese Journal of Plant Ecology, 2015, 39(4): 322-332. DOI: 10.17521/cjpe.2015.0031
符号 Symbol | 单位 Unit | 含义 Description | 针叶 Conifers | 阔叶 Boreal | 针阔混交 Deciduous species | 唯一值 Unique value | 获取方法 Acquisition Method |
---|---|---|---|---|---|---|---|
Ω | μmol·m-2·s-1 | 叶片聚集度指数 Foliage clumping | 0.5 | 0.7 | 0.9 | - | 实测 Measure |
Vm,25 | μmol·m-2·s-1 | 25 ℃时最大羧化速率 Maximum carboxylation rate at 25 ℃ | 25 | 50 | 50 | - | 迭代 Iteration |
Mleaf | kg C·m-2 | 叶片含碳量 Leaf carbon content | - | - | - | 0.1 | 实测 Measure |
Mstem | kg C·m-2 | 干中含碳量 Stem carbon content | - | - | - | 5.00 | 实测 Measure |
Mroot | kg C·m-2 | 根中含碳量 Root carbon content | - | - | - | 1.5 | 实测 Measure |
表1 北方生态系统生产力(BEPS)模型参数
Table 1 Boreal Ecosystem Productivity Simulator (BEPS) model parameters
符号 Symbol | 单位 Unit | 含义 Description | 针叶 Conifers | 阔叶 Boreal | 针阔混交 Deciduous species | 唯一值 Unique value | 获取方法 Acquisition Method |
---|---|---|---|---|---|---|---|
Ω | μmol·m-2·s-1 | 叶片聚集度指数 Foliage clumping | 0.5 | 0.7 | 0.9 | - | 实测 Measure |
Vm,25 | μmol·m-2·s-1 | 25 ℃时最大羧化速率 Maximum carboxylation rate at 25 ℃ | 25 | 50 | 50 | - | 迭代 Iteration |
Mleaf | kg C·m-2 | 叶片含碳量 Leaf carbon content | - | - | - | 0.1 | 实测 Measure |
Mstem | kg C·m-2 | 干中含碳量 Stem carbon content | - | - | - | 5.00 | 实测 Measure |
Mroot | kg C·m-2 | 根中含碳量 Root carbon content | - | - | - | 1.5 | 实测 Measure |
符号 Symbol | 单位 Unit | 含义 Description | 针叶 Conifers | 阔叶 Boreal | 针阔混交 Deciduous species | 唯一值 Unique value | 获取方法 Acquisition Method |
---|---|---|---|---|---|---|---|
SLA | m2·m-2 | 比叶面积参数 Parameter of specific leaf area | 70.0 | 31.5 | 53.3 | - | 迭代 Iteration |
Vcmax | μmol·m-2·s-1 | 最大羧化速率 Maximum carboxylation rate | 33 | 60 | 40 | - | 迭代 Iteration |
QNfix | - | 氮固化速率对温度的敏感度 Sensitivity of N fixation rate on temperature | - | - | - | 2.3 | 迭代 Iteration |
ajm | - | 电子传输对温度的敏感度 Sensitivity of electron transport on temperature | - | - | - | 1.8 | 实测 Measure |
avm | - | 酶活性对温度的敏感度 Sensitivity of rubisco activity on temperature | - | - | - | 2.4 | 实测 Measure |
Nl | g N·m-2 | 真实叶片氮含量 Actual leaf nitrogen content | - | - | - | 1.2 | 实测 Measure |
表2 整合陆地生态系统碳收支(InTEC)模型参数
Table 2 Integrated Terrestrial Ecosystem C-budget (InTEC ) model parameters
符号 Symbol | 单位 Unit | 含义 Description | 针叶 Conifers | 阔叶 Boreal | 针阔混交 Deciduous species | 唯一值 Unique value | 获取方法 Acquisition Method |
---|---|---|---|---|---|---|---|
SLA | m2·m-2 | 比叶面积参数 Parameter of specific leaf area | 70.0 | 31.5 | 53.3 | - | 迭代 Iteration |
Vcmax | μmol·m-2·s-1 | 最大羧化速率 Maximum carboxylation rate | 33 | 60 | 40 | - | 迭代 Iteration |
QNfix | - | 氮固化速率对温度的敏感度 Sensitivity of N fixation rate on temperature | - | - | - | 2.3 | 迭代 Iteration |
ajm | - | 电子传输对温度的敏感度 Sensitivity of electron transport on temperature | - | - | - | 1.8 | 实测 Measure |
avm | - | 酶活性对温度的敏感度 Sensitivity of rubisco activity on temperature | - | - | - | 2.4 | 实测 Measure |
Nl | g N·m-2 | 真实叶片氮含量 Actual leaf nitrogen content | - | - | - | 1.2 | 实测 Measure |
图2 东北森林覆盖类型图。A, 白桦和黑杨; B, 白桦; C, 针叶混交林; D, 针阔混交林; E, 阔叶混交林; F, 紫椴; G, 黑杨; H, 红松和蒙古栎; I, 红松和紫椴; J, 蒙古栎; K, 落叶松; L, 蒙古栎和白桦; M, 山杨; N, 落叶松和白桦; O, 落叶松和蒙古栎; P, 樟子松; Q, 白桦和山杨。
Fig. 2 Northeast forest cover type map. A, Betula platyphylla and Populus nigra; B, Betula platyphylla; C, Coniferous forest; D, Mixed forest; E, Broadleaved forest; F, Tilia amurensis; G, Populus nigra; H, Pinus koraiensis and Quercus mongolica; I, Pinus koraiensis and Tilia amurensis; J, Quercus mongolica; K, Larix gmelinii; L, Quercus mongolica and Betula platyphylla; M, Populus davidiana; N, Larix gmelinii and Betula platyphylla; O, Larix gmelinii and Quercus mongolica; P, Pinus sylvestris; Q, Betula platyphylla and Populus davidiana.
图4 北方生态系统生产力(BEPS)模型模拟的2003年净初级生产力(NPP)空间分布图。
Fig. 4 Spatial distribution of net primary production (NPP) in 2003 simulated by Boreal Ecosystem Productivity Simulator (BEPS).
森林类型 Forest types | NPP平均值 Average value of NPP (g C·m-2·a-1) | NPP总量 Total NPP (g C·a-1) |
---|---|---|
针叶林 Coniferous forest | 413.1 | 1.8 × 1013 |
阔叶林 Broadleaved forest | 382.8 | 3.3 × 1013 |
针阔混交林 Mixed forest | 380.7 | 1.7 × 1013 |
表3 2003年关于不同森林类型的净初级生产力(NPP)统计
Table 3 Net primary production (NPP) and total NPP for different forest types in 2003
森林类型 Forest types | NPP平均值 Average value of NPP (g C·m-2·a-1) | NPP总量 Total NPP (g C·a-1) |
---|---|---|
针叶林 Coniferous forest | 413.1 | 1.8 × 1013 |
阔叶林 Broadleaved forest | 382.8 | 3.3 × 1013 |
针阔混交林 Mixed forest | 380.7 | 1.7 × 1013 |
图5 整合陆地生态系统碳收支(InTEC)模型模拟的1901-2008年净初级生产力(NPP)平均值。
Fig. 5 Average value of net primary production (NPP) simulated by Integrated Terrestrial Ecosystem C-budget (InTEC) model from 1901 to 2008.
图6 东北林区净初级生产力(NPP)空间分布图。A, 1901年。B, 1950年。C, 2008年。
Fig. 6 Spatial distribution of net primary production (NPP) in Northeastern China. A, 1901. B, 1950. C, 2008.
图8 北方生态系统生产力模型估算的净初级生产力与固定样地计算的NPP相关性。
Fig. 8 Correlation between net primary production (NPP) calculated by plot measurement and NPP simulated by Boreal Ecosystem Productivity Simulator (BEPS) model and calculated by plots.
图9 北方生态系统生产力模型估算的净初级生产力与中分辨率成像光谱仪(MODIS)的NPP产品相关性。
Fig. 9 Relationship between net primary production (NPP) from Moderate Resolution Imaging Spectroradiometer (MODIS) and NPP simulated by Boreal Ecosystem Productivity Simulator (BEPS) model.
图10 整合陆地生态系统碳收支模型估算的净初级生产力(NPP)与北方生态系统生产力模型估算的NPP相关性。
Fig. 10 Comparison of net primary production (NPP) estimated by Integrated Terrestrial Ecosystem C-budget (InTEC) model and NPP simulated by Boreal Ecosystem Productivity Simulator (BEPS) model.
图11 整合陆地生态系统碳收支模型估算的净初级生产力(NPP)与固定样地计算的NPP相关性。
Fig. 11 Comparison of net primary production (NPP) estimated by Integrated Terrestrial Ecosystem C-budget (InTEC ) model with NPP calculated by plots.
[1] | Chen JM, Liu J, Cihlar J, Goulden MJ (1999). Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications.Ecological Modelling, 124, 99-119. |
[2] | Chen J, Chen WJ, Liu J, Cihlar J, Gray S (2000a). Annual carbon balance of Canada’s forests during 1859-1996.Global Biogeochemical Cycles, 14, 839-849. |
[3] | Chen MZ, Deng F, Chen MZ (2006). Locally adjusted cubic- spline capping for reconstructing seasonal trajectories of a satellite-derived surface parameter.IEEE Transactions on Geoscience and Remote Sensing, 44, 2230-2237. |
[4] | Chen WJ, Chen J, Liu J, Cihlar J (2000b). Approaches for reducing uncertainties in regional forest carbon balance.Global Biogeochemical Cycles, 14, 827-838. |
[5] | Deng F, Chen JM, Plummer S, Chen MZ, Pisek J (2006). Algorithm for global leaf area index retrieval using satellite imagery.IEEE Transactions on Geoscience and Remote Sensing, 44, 2219-2229. |
[6] | Feng XF, Liu GH, Chen SP, Zhou WZ (2004). Study on process model of net primary productivity of terrestrial ecosystems.Journal of Natural Resources, 19, 369-378.(in Chinese with English abstract) |
[冯险峰, 刘高焕, 陈述彭, 周文佐 (2004). 陆地生态系统净第一性生产力过程模型研究综述. 自然资源学报, 19, 369-378.] | |
[7] | Higuchi K, Shashkov A, Chan D, Chan D, Saigusa N, Murayama S, Yamamoto S, Kondo H, Chen J, Liu J, Chen B (2005). Simulations of seasonal and inter-annual variability of gross primary productivity at Takayama with BEPS ecosystem model.Agricultural and Forest Meteorology, 134, 143-150. |
[8] | Huang L, Shao QQ, Liu JY (2012). Forest carbon sequestration and carbon sink/source in Jiangxi Province.Acta Ecologica Sinica, 32, 3010-3020.(in Chinese with English abstract) |
[黄麟, 邵全琴, 刘纪远 (2012). 江西省森林碳蓄积过程及碳源/汇的时空格局. 生态学报, 32, 3010-3020.] | |
[9] | Ju WM, Chen JM, Harvey D, Wang S (2007). Future carbon balance of China’s forests under climate change and increasing CO2.Journal of Environment Management, 85, 538-562. |
[10] | Lieth H, Whittaker RH (1975). Primary Productivity of the Biosphere. Springer-Verlag, New York. |
[11] | Liu J, Chen JM, Cihlar J, Chen WJ (1999). Net primary productivity distribution in the boreas region from a process model using satellite and surface data.Journal of Geophysical Research, 104, 27735-27754. |
[12] | Mao XG (2011). Study on the Model of Northeast Forest Carbon Cycle at Daily Step and the Integrated Application of Remote Sensing. PhD dissertation, Northeast Forestry University, Harbin.(in Chinese) |
[毛学刚 (2011). 东北森林碳循环日步长模型与遥感综合应用研究. 博士学位论文, 东北林业大学, 哈尔滨.] | |
[13] | Michaletz ST, Cheng DL, Kerkhoff AJ, Enquist BJ (2014). Convergence of terrestrial plant production across global climate gradients.Nature, doi: 10.1038/nature13470. |
[14] | Panasonic WJ, Yang CF, Chen J, Wang QX, Kameyama Z, Tamura M (2004). Accurate estimation of net primary productivity of terrestrial ecosystem at a regional scale.Acta Geographica Sinica, 59, 80-87.(in Chinese with English abstract) |
[松下文经, 杨翠芬, 陈晋, 王勤学, 龟山哲, 田村正行 (2004). 广域空间尺度上植被净初级生产力的精确推算. 地理学报, 59, 80-87.] | |
[15] | Ruimy A, Saugier B, Dedieu G (1994). Methodology for the estimation of terrestrial net primary production from remotely sensed data.Journal of Geophysical Research, 99, 5263-5283. |
[16] | Running SW, Coughlan JC (1988). A general model of forest ecosystem processes for regional applications: 1. Hydrologic balance, canopy gas exchange and primary production processes.Ecological Modelling, 42, 125-154. |
[17] | Sun L, Zhang Y, Guo QX, Hu HQ (2009). Carbon emission and dynamic of NPP post forest fires in 1987 in Daxing’an Mountains.Scientia Silvae Sinicae, 45(12), 100-104.(in Chinese with English abstract) |
[孙龙, 张瑶, 国庆喜, 胡海清 (2009). 1987年大兴安岭林火碳释放及火后NPP恢复. 林业科学, 45(12), 100-104.] | |
[18] | Wang PJ, Xie DX, Zhang JH, Zhu QJ (2008). Sensitivity analysis for primary factors of the forest net primary productivity in Changbaishan Natural Reserve based on process model.Geographical Research, 27, 323-330.(in Chinese with English abstract) |
[王培娟, 谢东辉, 张佳华, 朱启疆 (2008). 长白山森林植被NPP主要影响因子的敏感性分析. 地理研究, 27, 323-330.] | |
[19] | Wang SQ, Chen JM, Ju WM, Feng XF, Chen MZ, Chen P, Yu G (2007). Carbon sinks and sources in China’s forests during 1901-2001.Journal of Environment Management, 85, 524-537. |
[20] | Wei SJ (2013). Quantitative Evaluation Methods of Carbon Emissions from Forest Fires in Heilongjiang Province, China. PhD dissertation, Northeast Forestry University, Harbin.(in Chinese with English abstract) |
[魏书精 (2013). 黑龙江省森林火灾碳排放定量评价方法研究. 博士学位论文, 东北林业大学, 哈尔滨.] | |
[21] | Yu Y (2013). Based on InTEC Model to Research the Time and Space Distribution of Carbon Source/Sink of Northeastern Forest. PhD dissertation, Northeast Forestry University, Harbin.(in Chinese with English abstract) |
[于颖 (2013). 基于InTEC模型东北森林碳源/汇时空分布研究. 博士学位论文, 东北林业大学, 哈尔滨.] | |
[22] | Yu Y, Fan WY, Yang XG (2014). Estimation of Forest NPP in Xiaoxing’an Mountains in 1901-2008.Scientia Silvae Sinicae, 50(10), 16-23.(in Chinese with English abstract) |
[于颖, 范文义, 杨曦光 (2014). 1901-2008年小兴安岭森林NPP估算. 林业科学, 50(10), 16-23.] | |
[23] | Zhang FM, Chen JM, Pan YD, Birdsey RA, Shen SH, Ju WM, He LM (2012). Attributing carbon changes in conterminous U.S. forests to disturbance and non-disturbance factors from 1901 to 2010.Journal of Geographical Research, 117, doi: 10.1029/2011JG001930. |
[24] | Zhou L, Wang SQ, Chen JM, Feng XF, Ju WM, Wu WX (2009). The spatial-temporal characteristics of evapotranspiration of China’s terrestrial ecosystems during 1991- 2000.Resources Science, 31, 962-972.(in Chinese with English abstract) |
[周蕾, 王绍强, 陈镜明, 冯险峰, 居为民, 伍卫星 (2009). 1991年至2000年中国陆地生态系统蒸散时空分布特征. 资源科学, 31, 962-972.] |
[1] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[2] | 臧永新 马剑英 周晓兵 陶冶 尹本丰 沙亚古丽·及格尔 张元明. 极端干旱和降水对沙垄不同坡位、坡向短命植物地上生产力的影响[J]. 植物生态学报, 2022, 46(12): 1537-1550. |
[3] | 汲玉河, 周广胜, 王树东, 王丽霞, 周梦子. 2000-2019年秦岭地区植被生态质量演变特征及 驱动力分析[J]. 植物生态学报, 2021, 45(6): 617-625. |
[4] | 王奕丹, 李亮, 刘琪璟, 马泽清. 亚热带6个典型树种吸收细根寿命与形态属性格局[J]. 植物生态学报, 2021, 45(4): 383-393. |
[5] | 韩广轩, 李隽永, 屈文笛. 氮输入对滨海盐沼湿地碳循环关键过程的影响及机制[J]. 植物生态学报, 2021, 45(4): 321-333. |
[6] | 吕亚香, 戚智彦, 刘伟, 孙佳美, 潘庆民. 早春和夏季氮磷添加对内蒙古典型草原退化群落碳交换的影响[J]. 植物生态学报, 2021, 45(4): 334-344. |
[7] | 胡宗达, 刘世荣, 罗明霞, 胡璟, 刘兴良, 李亚非, 余昊, 欧定华. 川西亚高山不同演替阶段天然次生林土壤碳氮含量及酶活性特征[J]. 植物生态学报, 2020, 44(9): 973-985. |
[8] | 嘎玛达尔基, 杨泽, 谭星儒, 王珊珊, 李伟晶, 游翠海, 王彦兵, 张兵伟, 任婷婷, 陈世苹. 凋落物输入变化和氮添加对半干旱草原群落生产力及功能群组成的影响[J]. 植物生态学报, 2020, 44(8): 791-806. |
[9] | 郑甲佳, 黄松宇, 贾昕, 田赟, 牟钰, 刘鹏, 查天山. 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J]. 植物生态学报, 2020, 44(6): 687-698. |
[10] | 邢鹏, 李彪, 韩一萱, 顾秋锦, 万洪秀. 淡水生态系统对全球变化的响应: 研究进展与展望[J]. 植物生态学报, 2020, 44(5): 565-574. |
[11] | 夏建阳, 鲁芮伶, 朱辰, 崔二乾, 杜莹, 黄昆, 孙宝玉. 陆地生态系统过程对气候变暖的响应与适应[J]. 植物生态学报, 2020, 44(5): 494-514. |
[12] | 张扬建, 朱军涛, 沈若楠, 王荔. 放牧对草地生态系统影响的研究进展[J]. 植物生态学报, 2020, 44(5): 553-564. |
[13] | 周贵尧, 周灵燕, 邵钧炯, 周旭辉. 极端干旱对陆地生态系统的影响: 进展与展望[J]. 植物生态学报, 2020, 44(5): 515-525. |
[14] | 葛体达, 王东东, 祝贞科, 魏亮, 魏晓梦, 吴金水. 碳同位素示踪技术及其在陆地生态系统碳循环研究中的应用与展望[J]. 植物生态学报, 2020, 44(4): 360-372. |
[15] | 冯晓娟, 王依云, 刘婷, 贾娟, 戴国华, 马田, 刘宗广. 生物标志物及其在生态系统研究中的应用[J]. 植物生态学报, 2020, 44(4): 384-394. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19