植物生态学报 ›› 2019, Vol. 43 ›› Issue (4): 296-304.DOI: 10.17521/cjpe.2019.0032
所属专题: 全球变化与生态系统
周慧敏1,2,李品2,3,冯兆忠3,4,*(),张殷波5,*()
收稿日期:
2019-02-11
修回日期:
2019-04-17
出版日期:
2019-04-20
发布日期:
2019-08-29
通讯作者:
冯兆忠,张殷波
基金资助:
ZHOU Hui-Min1,2,LI Pin2,3,FENG Zhao-Zhong3,4,*(),ZHANG Yin-Bo5,*()
Received:
2019-02-11
Revised:
2019-04-17
Online:
2019-04-20
Published:
2019-08-29
Contact:
FENG Zhao-Zhong,ZHANG Yin-Bo
Supported by:
摘要:
人类活动加剧和全球变化导致植物在生长季同时受到高浓度地表臭氧(O3)和干旱的双重胁迫。为了探究两者对植物非结构性碳水化合物(TNC)积累和分配的影响, 该实验采用开顶式气室研究了2种O3浓度(CF, 过滤空气; NF40, NF (未过滤空气) + 40 nmol·mol -1 O3)和2个水分处理(对照, 充分灌溉; 干旱, 非充分灌溉)及其交互作用对杨树基因型‘546’ (Populus deltoides cv. ‘55/56’ × P. deltoides cv. ‘Imperial’)叶片和细根中TNC及其组分(葡萄糖、果糖、蔗糖、多糖、总可溶性糖和淀粉)含量的影响。结果表明: O3浓度升高显著降低杨树叶片中淀粉和TNC的含量, 增加葡萄糖、果糖和总可溶性糖含量, 但对细根中淀粉和总可溶性糖含量的影响不显著。干旱胁迫显著增加细根中果糖和多糖含量, 降低蔗糖含量, 但对叶片中淀粉和总可溶性糖含量的影响不显著。充分灌溉下O3浓度升高显著增加了杨树叶片多糖和总可溶性糖含量, 而干旱下O3浓度升高显著增加了TNC含量的根叶比。该研究结果发现O3主要影响叶片中TNC及各组分的含量, 而干旱主要影响细根中TNC及各组分的含量。从杨树叶片TNC的响应来看, 适度的水分限制有助于减缓O3的负面伤害。
周慧敏, 李品, 冯兆忠, 张殷波. 地表臭氧浓度升高与干旱交互作用对杨树非结构性碳水化合物积累和叶根分配的短期影响. 植物生态学报, 2019, 43(4): 296-304. DOI: 10.17521/cjpe.2019.0032
ZHOU Hui-Min, LI Pin, FENG Zhao-Zhong, ZHANG Yin-Bo. Short-term effects of combined elevated ozone and limited irrigation on accumulation and allocation of non-structural carbohydrates in leaves and roots of poplar sapling. Chinese Journal of Plant Ecology, 2019, 43(4): 296-304. DOI: 10.17521/cjpe.2019.0032
臭氧 O3 | 干旱 Drought | 臭氧×干旱 O3 × Drought | ||
---|---|---|---|---|
叶片 Leaf | 葡萄糖 Glucose | 0.047 | 0.239 | 0.685 |
果糖 Fructose | 0.004 | 0.563 | 0.394 | |
蔗糖 Sucrose | 0.217 | 0.384 | 0.995 | |
多糖 Polysaccharide | 0.128 | 0.227 | 0.039 | |
总可溶性糖 Total soluble sugar | 0.003 | 0.449 | 0.009 | |
淀粉 Starch | 0.002 | 0.130 | 0.885 | |
TNC | 0.027 | 0.257 | 0.231 | |
细根 Root | 葡萄糖 Glucose | 0.546 | 0.282 | 0.980 |
果糖 Fructose | 0.768 | <0.001 | 0.459 | |
蔗糖 Sucrose | 0.970 | 0.002 | 0.455 | |
多糖 Polysaccharide | 0.575 | 0.025 | 0.245 | |
总可溶性糖 Total soluble sugar | 0.494 | 0.168 | 0.157 | |
淀粉 Starch | 0.291 | 0.946 | 0.661 | |
TNC | 0.294 | 0.244 | 0.177 | |
细根/叶片 Fine root/ Leaf | 总可溶性糖 Total soluble sugar | 0.193 | 0.427 | 0.013 |
淀粉 Starch | 0.005 | 0.237 | 0.372 | |
TNC | 0.005 | 0.03 | 0.022 |
表1 O3和干旱对杨树叶片和细根中非结构性碳水化合物(TNC)组分的方差分析结果
Table 1 Analysis of variance analysis of non-structural carbohydrates (TNC) components in leaves and fine roots of poplar by O3 and drought
臭氧 O3 | 干旱 Drought | 臭氧×干旱 O3 × Drought | ||
---|---|---|---|---|
叶片 Leaf | 葡萄糖 Glucose | 0.047 | 0.239 | 0.685 |
果糖 Fructose | 0.004 | 0.563 | 0.394 | |
蔗糖 Sucrose | 0.217 | 0.384 | 0.995 | |
多糖 Polysaccharide | 0.128 | 0.227 | 0.039 | |
总可溶性糖 Total soluble sugar | 0.003 | 0.449 | 0.009 | |
淀粉 Starch | 0.002 | 0.130 | 0.885 | |
TNC | 0.027 | 0.257 | 0.231 | |
细根 Root | 葡萄糖 Glucose | 0.546 | 0.282 | 0.980 |
果糖 Fructose | 0.768 | <0.001 | 0.459 | |
蔗糖 Sucrose | 0.970 | 0.002 | 0.455 | |
多糖 Polysaccharide | 0.575 | 0.025 | 0.245 | |
总可溶性糖 Total soluble sugar | 0.494 | 0.168 | 0.157 | |
淀粉 Starch | 0.291 | 0.946 | 0.661 | |
TNC | 0.294 | 0.244 | 0.177 | |
细根/叶片 Fine root/ Leaf | 总可溶性糖 Total soluble sugar | 0.193 | 0.427 | 0.013 |
淀粉 Starch | 0.005 | 0.237 | 0.372 | |
TNC | 0.005 | 0.03 | 0.022 |
图1 臭氧浓度升高和干旱处理对杨树叶片(A)和细根(B)中非结构性碳水化合物(TNC)含量的影响(平均值±标准误差)。图中相同小写字母表示差异不显著(p > 0.05)。CF, 过滤空气; NF40, 未过滤空气+ 40 nmol·mol-1 O3。
Fig. 1 Effects of elevated ozone and drought on the total non-structural carbohydrates (TNC) content in leaves (A) and fine roots (B) of poplar saplings (mean ± SE). The same lowercase letter in the figures stands for non-significant difference between treatments (p > 0.05). CF, charcoal-filtered air; NF40, non-filtered air + 40 nmol·mol-1 O3.
图2 臭氧浓度升高和干旱处理对叶片中葡萄糖、果糖、蔗糖、多糖、总可溶性糖和淀粉含量的影响(平均值±标准误差)。图中不同小写字母表示差异显著(p < 0.05)。CF, 过滤空气; NF40, 未过滤空气+ 40 nmol·mol-1 O3。
Fig. 2 Effects of ozone and drought on glucose, fructose, sucrose, polysaccharide, total soluble sugar and starch in leaves of poplar saplings (mean ± SE). Different lowercase letters in the figures stand for the significant difference between treatments (p < 0.05). CF, charcoal-filtered air; NF40, non-filtered air + 40 nmol·mol-1 O3.
图3 臭氧浓度升高和干旱处理对细根中蔗糖、果糖、葡萄糖、多糖、总可溶性糖和淀粉含量的影响(平均值±标准误差)。图中不同小写字母表示差异显著(p < 0.05)。CF, 过滤空气; NF40, 未过滤空气+ 40 nmol·mol-1 O3。
Fig. 3 Effect of elevated ozone and drought on the glucose, fructose, sucrose, polysaccharide, total soluble sugar and starch in fine roots (mean ± SE). Different letters in the figures stand for the significant difference between treatments (p < 0.05). CF, charcoal- filtered air; NF40, non-filtered air + 40 nmol·mol-1 O3.
图4 臭氧浓度升高和干旱处理对杨树叶片和细根总可溶性糖、淀粉和TNC含量的比值的影响(平均值±标准误差)。图中不同小写字母差异显著(p < 0.05)。CF, 过滤空气; NF40, 未过滤空气+ 40 nmol·mol-1 O3。
Fig. 4 Effects of elevated ozone and drought on the ratio of fine roots to leaves in total soluble sugar, starch and total non-structural carbohydrates of poplar saplings (mean ± SE). Different letters in the figures stand for the significant difference between treatments (p < 0.05). CF, charcoal-filtered air; NF40, non-filtered air + 40 nmol·mol-1 O3.
[1] | Adams HD, Germino MJ, Breshears DD, Gafford GB, Guardiola M, Zou CB, Huxman TE ( 2013). Nonstructural leaf carbohydrate dynamics of Pinus edulis during drought- induced tree mortality reveal role for carbon metabolism in mortality mechanism. New Phytologist, 197, 1142-1151. |
[2] | Ainsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LD (2012). The effects of tropospheric ozone on net primary productivity and implications for climate change. Annual Review of Plant Biology, 63, 637-661. |
[3] | Andersen CP, Rygiewicz PT ( 1995). Allocation of carbon and mychorrhizal Pinus ponderosa seedlings exposed to ozone. New Phytologist, 131, 471-478. |
[4] | Braun S, Zugmaier U, Thomas V, Fluckiger W (2004). Carbohydrate concentrations in different plant parts of young beech and spruce along a gradient of ozone pollution. Atmospheric Environment, 38, 2399-2407. |
[5] | Bullock SH ( 1992). Seasonal differences in non-structural carbohydrates in two dioecious monsoon-climate trees. Biotropica, 24, 140-145. |
[6] | Chen Z, Shang H, Cao J, Yu H ( 2015). Effects of ambient ozone concentrations on contents of nonstructural carbohydrates in Phoebe bournei and Pinus massoniana seedlings in subtropical China. Water, Air, & Soil Pollution, 226, 310. |
[7] | Cooper OR, Parrish DD, Ziemke J, Balashov NV, Cupeiro M, Galbally IE, Gilge S, Horowitz L, Jensen NR, Lamarque JF, Naik V, Oltmans SJ, Schwab J, Shindell DT, Thompson AM, Thouret V, Wang Y, Zbinden RM ( 2014). Global distribution and trends of tropospheric ozone: An observation- based review. Elementa: Science of the Anthropocene, 2, 000029. DOI: 10.12952/journal.elementa.000029. |
[8] | Dong YH, Liu BB, Zhang X, Liu XN, Ai XZ, Li QM ( 2015). Responses of non-structural carbohydrate metabolism of cucumber seedlings to drought stress and doubled CO2 concentration. Chinese Journal of Applied Ecology, 26, 53-60. |
[ 董彦红, 刘彬彬, 张旭, 刘学娜, 艾希珍, 李清明 ( 2015). 黄瓜幼苗非结构性碳水化合物代谢对干旱胁迫与CO2倍增的响应. 应用生态学报, 26, 53-60.] | |
[9] | Du Y, Han Y, Wang CK ( 2014). The influence of drought on non-structural carbohydrates in the needles and twigs of Larix gmelinii. Acta Ecologica Sinica, 34, 6090-6100. |
[ 杜尧, 韩轶, 王传宽 ( 2014). 干旱对兴安落叶松枝叶非结构性碳水化合物的影响. 生态学报, 34, 6090-6100.] | |
[10] | Farrar J, Pollock C, Gallagher J ( 2000). Sucrose and the integration of metabolism in vascular plants. Plant Science, 154, 1-11. |
[11] | Feng ZZ, Li P, Yuan XY, Gao F, Jiang LJ, Dai LL ( 2018). Progress in ecological and environmental effects of ground- level O3 in China. Acta Ecologica Sinica, 38, 1530-1541. |
[ 冯兆忠, 李品, 袁相洋, 高峰, 姜立军, 代碌碌 ( 2018). 我国地表臭氧的生态环境效应研究进展. 生态学报, 38, 1530-1541.] | |
[12] | Galvez DA, Landhäusser SM, Tyree MT ( 2011). Root carbon reserve dynamics in aspen seedlings: Does simulated drought induce reserve limitation? Tree Physiology, 31, 250-257. |
[13] | Gao F, Catalayud V, Paoletti E, Hoshika Y, Feng ZZ ( 2017). Water stress mitigates the negative effects of ozone on photosynthesis and biomass in poplar plants. Environmental Pollution, 230, 268-279. |
[14] | Gao F, Li P, Feng ZZ ( 2017). Interactive effects of ozone and drought stress on plants: A review. Chinese Journal of Plant Ecology, 41, 252-268. |
[ 高峰, 李品, 冯兆忠 ( 2017). 臭氧与干旱对植物复合影响的研究进展. 植物生态学报, 41, 252-268.] | |
[15] | Gelang J, Selldén G, Younis S, Pleijel H ( 2011). Effects of ozone on biomass, non-structural carbohydrates and nitrogen in spring wheat with artificially manipulated source/ sink ratio. Environmental and Experimental Botany, 46, 155-169. |
[16] | Hu EZ, Gao F, Xin Y, Jia HX, Li KH, Hu JJ, Feng ZZ ( 2015). Concentration- and flux-based ozone dose-response relationships for five poplar clones grown in North China. Environmental Pollution, 207, 21-30. |
[17] | Iannucci A, Russo M, Arena L, Di FN, Martiniello P (2002). Water deficit effects on osmotic adjustment and solute accumulation in leaves of annual clovers. European Journal of Agronomy, 16, 111-122. |
[18] | Li N, Sun T, Mao ZJ ( 2014). Effects of long-term high- temperature stress on the biomass and non-structure carbohydrates of Pinus sylvestris var. mongolica seedlings. Bulletin of Botanical Research, 34, 212-218. |
[ 李娜, 孙涛, 毛子军 ( 2014). 长期极端高温胁迫对樟子松幼苗生物量及非结构性碳水化合物的影响. 植物研究, 34, 212-218.] | |
[19] | Li NN, He NP, Yu GR ( 2016). Evaluation of leaf non-structural carbohydrate contents in typical forest ecosystems in northeast China. Acta Ecologica Sinica, 36, 430-438. |
[ 李娜妮, 何念鹏, 于贵瑞 ( 2016). 中国东北典型森林生态系统植物叶片的非结构性碳水化合物研究. 生态学报, 36, 430-438.] | |
[20] | Li P, de Marco A, Feng ZZ, Anav A, Zhou DJ, Paoletti E ( 2018). Nationwide ground-level ozone measurements in China suggest serious risks to forests. Environmental Pollution, 237, 803-813. |
[21] | Li P, Zhou HM, Xu YS, Shang B, Feng ZZ ( 2019). Effects of elevated ozone on biomass allocation and non-structural carbohydrates in poplar are strongly related with water and nitrogen availability. Science of the Total Environment, 665, 929-936. |
[22] | Matyssek R, Wieser G, Ceulemans R, Rennenberg H, Pretzsch H, Haberer K, Loew M, Nunn AJ, Werner H, Wipfler P, Osswaldg W, Nikolova P, Hanke DE, Kraigher H, Tausz M, Bahnweg G, Kitao M, Dieler J, Sandermann H, Herbinger K, Grebenc T, Blumenroether M, Deckmyn G, Grams TEE, Heerdt C, Leuchner M, Fabian P, Haeberle KH ( 2010). Enhanced ozone strongly reduces carbon sink strength of adult beech (Fagus sylvatica)—Resume from the free-air fumigation study at Kranzberg forest. Environmental Pollution, 158, 2527-2532. |
[23] | Newell EA, Mulkey SS, Wright SJ ( 2002). Seasonal patterns of carbohydrate storage in four tropical tree species. Oecologia, 131, 333-342. |
[24] | Pego JV, Weisbeek PJ, Smeekens SC ( 1999). Mannose inhibits Arabidopsis germination via a hexokinase-mediated step. Plant Physiology, 119, 1017-1024. |
[25] | Poorter L, Kitajima K ( 2007). Carbohydrate storage and light requirements of tropical moist and dry forest tree species. Ecology, 88, 1000-1011. |
[26] | Quentin AG, Pinkard EA, Ryan MG, Tissue DT, Baggett LS, Admas HD, Maillard P, Marchand J ( 2015). Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiology, 35, 1146. |
[27] | Quick WP, Chaves MM, Wendler R, David M, Rodrigues ML, Passaharinho JA, Pereira JS, Adcock MD, Leegood RC, Stitt M ( 1992). The effect of water stress on photosynthetic carbon metabolism in four species grown under field conditions. Plant, Cell & Environment, 15, 25-35. |
[28] | Rolland F, Baena-Gonzalez E, Sheen J ( 2006). Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annual Review of Plant Biology, 57, 675-709. |
[29] | Shang B, Feng ZZ, Li P, Yuan XY, Xu YS, Calatayud V ( 2017). Ozone exposure- and flux-based response relationships with photosynthesis, leaf morphology and biomass in two poplar clones. Science of the Total Environment, 603-604, 185-195. |
[30] | Shang B, Yuan XY, Li P, Xu YS, Feng ZZ ( 2019). Effects of elevated ozone and water deficit on poplar saplings: Changes in carbon and nitrogen stocks and their allocation to different organs. Forest Ecology and Management, 441, 89-98. |
[31] | Su B, Zhou M, Xu H, Zhang X, Li Y, Su H, Xiang B ( 2017). Photosynthesis and biochemical responses to elevated O3 in Plantago major and Sonchus oleraceus growing in a lowland habitat of northern China. Journal of Environmental Sciences, 53, 113-121. |
[32] | Tian JC (2006). Grain Quality Testing Theory and Methods. Science Press, Beijing. 71-182. |
[ 田纪春 (2006). 谷物品质测试理论与方法. 科学出版社, 北京. 71-182.] | |
[33] | Tissue DT, Wright SJ (1995). Effect of seasonal water availability on phenology and the annual shoot carbohydrate cycle of tropical forest shrubs. Functional Ecology, 9, 518-527. |
[34] | Topa MA, Vanderklein DW, Corbin A ( 2001). Effects of elevated ozone and low light on diurnal and seasonal carbon gain in sugar maple. Plant, Cell & Environment, 24, 663-677. |
[35] | Wang X, Luo WT, Yu Q, Yan CF, Xu ZW, Li MH, Jiang Y (2014). Effects of nutrient addition on nitrogen, phosphorus and non-structural carbohydrates concentrations in leaves of dominant plant species in a semiarid steppe. Chinese Journal of Ecology, 33, 1795-1802. |
[ 王雪, 雒文涛, 庾强, 闫彩凤, 徐柱文, 李迈和, 姜勇 (2014). 半干旱典型草原养分添加对优势物种叶片氮磷及非结构性碳水化合物含量的影响. 生态学杂志, 33, 1795-1802.] | |
[36] | Wu M, Zhang WH, Zhou JY, Ma C, Han WJ ( 2014). Effects of drought stress on growth, physiological and biochemical parameters in fine roots of Quercus variabilis Bl. seedlings. Acta Ecologica Sinica, 34, 4223-4233. |
[ 吴敏, 张文辉, 周建云, 马闯, 韩文娟 ( 2014). 干旱胁迫对栓皮栎幼苗细根的生长与生理生化指标的影响. 生态学报, 34, 4223-4233.] | |
[37] | Xiao L, Liu GB, Li P, Xue S ( 2017). Responses of photosynthesis and non-structural carbohydrates of Bothriochloa ischaemum to doubled CO2 concentration and drought stress. Journal of Plant Nutrition and Fertilizer, 23, 389-397. |
[ 肖列, 刘国彬, 李鹏, 薛萐 ( 2017). 白羊草光合特性及非结构性碳水化合物含量对CO2浓度倍增和干旱胁迫的响应. 植物营养与肥料学报, 23, 389-397.] | |
[38] | Yu LM, Wang CK, Wang XC (2011). Allocation of nonstructural carbohydrates for three temperate tree species in Northeast China. Chinese Journal of Plant Ecology, 35, 1245-1255. |
[ 于丽敏, 王传宽, 王兴昌 ( 2011). 三种温带树种非结构性碳水化合物的分配. 植物生态学报, 35, 1245-1255.] | |
[39] | Zhao L, Yang HB, Wang DL, Zhang N, Wang XH ( 2011). Seedlings photosynthesis traits and non-structural carbohydrate storage of common species in Tiantong National Forest Park, Zhejiang Province. Journal of East China Normal University (Natural Science), 7(4), 35-44. |
[ 赵镭, 杨海波, 王达力, 张娜, 王希华 ( 2011). 浙江天童常见种幼苗的光合特性及非结构性碳水化合物储存. 华东师范大学学报(自然科学版), 7(4), 35-44.] | |
[40] | Zhang T, Cao Y, Chen YM, Liu GB ( 2016). Effects of drought stress on non-structural carbohydrates of Robinia pseudoacacia saplings at the end of the growing season. Journal of Soil and Water Conservation, 30, 297-304. |
[ 张婷, 曹扬, 陈云明, 刘国彬 ( 2016). 生长季末期干旱胁迫对刺槐幼苗非结构性碳水化合物的影响. 水土保持学报, 30, 297-304.] | |
[41] | Zhang YJ, Xie ZK, Wang YJ, Su PX, An LP, Gao H ( 2011). Effect of water stress on leaf photosynthesis, chlorophyll content, and growth of oriental lily. Russian Journal of Plant Physiology, 58, 844-850. |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[4] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[5] | 杨尚锦, 范云翔, 章毓文, 韩巧玲, 赵玥, 段劼, 邸楠, 席本野. 树木夜间液流组分划分方法对比——以毛白杨为例[J]. 植物生态学报, 2024, 48(4): 496-507. |
[6] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[7] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[8] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[9] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[10] | 吴瀚, 白洁, 李均力, 古丽•加帕尔, 包安明. 新疆地区植被覆盖度时空变化及其影响因素分析[J]. 植物生态学报, 2024, 48(1): 41-55. |
[11] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[12] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[13] | 韩聪, 母艳梅, 查天山, 秦树高, 刘鹏, 田赟, 贾昕. 2012-2016年宁夏盐池毛乌素沙地黑沙蒿灌丛生态系统通量观测数据集[J]. 植物生态学报, 2023, 47(9): 1322-1332. |
[14] | 施梦娇, 李斌, 伊力塔, 刘美华. 美洲黑杨幼苗生长和生理生态指标对干旱-复水响应的性别差异[J]. 植物生态学报, 2023, 47(8): 1159-1170. |
[15] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19