植物生态学报 ›› 2020, Vol. 44 ›› Issue (5): 526-542.DOI: 10.17521/cjpe.2019.0144
所属专题: 全球变化与生态系统
冯兆忠1,*(), 袁相洋2, 李品2, 尚博2, 平琴2, 胡廷剑2, 刘硕2
收稿日期:
2019-06-13
接受日期:
2019-08-03
出版日期:
2020-05-20
发布日期:
2019-09-30
通讯作者:
ORCID: 冯兆忠: 0000-0002-9775-5113
基金资助:
FENG Zhao-Zhong1,*(), YUAN Xiang-Yang2, LI Pin2, SHANG Bo2, PING Qin2, HU Ting-Jian2, LIU Shuo2
Received:
2019-06-13
Accepted:
2019-08-03
Online:
2020-05-20
Published:
2019-09-30
Contact:
FENG Zhao-Zhong
Supported by:
摘要:
浓度不断升高的地表臭氧(O3)已成为全球性环境问题, 中国也不例外。目前, 高浓度O3对叶片光合气体交换、植物生长或生物量的影响已备受关注, 但有关O3对生态系统层次的研究还相对稀缺且存在较大的不确定性。该文梳理了近40年来地表O3浓度及其影响相关领域的发展趋势和研究热点, 回顾了地表O3浓度升高对植物影响的研究手段和评估方法, 综述了地表O3浓度升高对陆地生态系统影响方面取得的重要进展, 主要包括植物应对O3胁迫的响应机制、地表O3对粮食产量和作物品质、生态系统固碳能力、群落结构和地下过程的影响及地表O3污染区域风险; 此外, 针对目前研究的不足, 对未来研究进行了展望。建议利用先进的完全开放式O3熏蒸系统模拟O3浓度升高对生态系统影响的同时加强对地下生态过程的研究, 开展O3与其他环境因子的复合作用研究; 关注O3污染对粮食安全的影响; 开展联网研究, 建立统一评价体系; 探索减缓地表O3污染的生态防控措施; 以期为地表O3污染生态效应领域的发展提供助力。
冯兆忠, 袁相洋, 李品, 尚博, 平琴, 胡廷剑, 刘硕. 地表臭氧浓度升高对陆地生态系统影响的研究进展. 植物生态学报, 2020, 44(5): 526-542. DOI: 10.17521/cjpe.2019.0144
FENG Zhao-Zhong, YUAN Xiang-Yang, LI Pin, SHANG Bo, PING Qin, HU Ting-Jian, LIU Shuo. Progress in the effects of elevated ground-level ozone on terrestrial ecosystems. Chinese Journal of Plant Ecology, 2020, 44(5): 526-542. DOI: 10.17521/cjpe.2019.0144
图1 中国与世界上地表O3污染对植物及生态系统影响研究的SCI文章数量统计(从1995年开始)。
Fig. 1 Articles have been published in the SCI journals about the effects of ground-level O3 on plants or ecosystem from China and the world since 1995.
图2 地表O3浓度升高对植物及生态系统影响研究SCI文章发文的热点学科分布。
Fig. 2 Discipline hotspots distribution of SCI papers about the effects of ground-level O3 on plants or ecosystem.
序号 Number | 关键词 Keyword | 频次 Frequency | 序号 Number | 关键词 Key | 频次 Frequency |
---|---|---|---|---|---|
1 | 臭氧 Ozone | 748 | 26 | 叶绿素 Chlorophyll | 27 |
2 | 空气污染 Air pollution | 118 | 27 | 臭氧通量 Ozone flux | 27 |
3 | 光合作用 Photosynthesis | 110 | 28 | 臭氧损耗 Ozone depletion | 26 |
4 | 气孔导度 Stomatal conductance | 103 | 29 | 臭氧吸收 Ozone uptake | 26 |
5 | 对流层臭氧 Tropospheric ozone | 95 | 30 | 风险评估 Risk assessment | 26 |
6 | 氧化压力 Oxidative stress | 75 | 31 | 大豆 Soybean | 26 |
7 | 产量 Yield | 70 | 32 | 紫外线B辐射 UV-B radiation | 26 |
8 | 气候变化 Climate change | 62 | 33 | 二氧化碳 CO2 | 25 |
9 | 生长 Growth | 62 | 34 | 欧洲山毛榉 Fagus sylvatica | 25 |
10 | 小时臭氧浓度超过40 μg·kg-1的积累值 AOT40 | 56 | 35 | 干旱 Drought | 24 |
11 | 小麦 Wheat | 55 | 36 | 森林 Forests | 24 |
12 | 二氧化碳 Carbon dioxide | 54 | 37 | 开顶气室 Open top chambers | 24 |
13 | 生物量 Biomass | 50 | 38 | 抗坏血酸 Ascorbic acid | 23 |
14 | 臭氧氧化 Ozonation | 49 | 39 | 消毒/杀菌 Disinfection | 23 |
15 | 气体交换 Gas exchange | 45 | 40 | 乙烯二脲的简称 EDU | 23 |
16 | 臭氧浓度升高 Elevated ozone | 45 | 41 | 乙烯二脲 Ethylenediurea | 22 |
17 | 紫外线B辐射 UV-B | 41 | 42 | 水稻 Rice | 22 |
18 | 抗氧化物 Antioxidants | 39 | 43 | 开放式自由空气增强系统 FACE | 22 |
19 | 氮 Nitrogen | 38 | 44 | 烟草 Tobacco | 21 |
20 | 活性氧 Reactive oxygen species | 36 | 45 | 叶绿素a荧光 Chlorophyll a fluorescence | 21 |
21 | 叶绿素荧光 Chlorophyll fluorescence | 33 | 46 | 乙烯 Ethylene | 20 |
22 | 全球变化 Global change | 33 | 47 | 过氧化氢 Hydrogen peroxide | 20 |
23 | 抗坏血酸盐 Ascorbate | 30 | 48 | 生物监测 Biomonitoring | 20 |
24 | 二氧化碳浓度升高 Elevated CO2 | 30 | 49 | 膜脂过氧化 Lipid peroxidation | 19 |
25 | 临界水平 Critical levels | 29 | 50 | 地表臭氧 Surface ozone | 19 |
表1 O3浓度升高对植物及生态系统影响的SCI文章出现频次最多的50个关键词
Table 1 Top 50 most frequent keywords of SCI papers about the effects of elevated ground-level O3 on plants or ecosystem
序号 Number | 关键词 Keyword | 频次 Frequency | 序号 Number | 关键词 Key | 频次 Frequency |
---|---|---|---|---|---|
1 | 臭氧 Ozone | 748 | 26 | 叶绿素 Chlorophyll | 27 |
2 | 空气污染 Air pollution | 118 | 27 | 臭氧通量 Ozone flux | 27 |
3 | 光合作用 Photosynthesis | 110 | 28 | 臭氧损耗 Ozone depletion | 26 |
4 | 气孔导度 Stomatal conductance | 103 | 29 | 臭氧吸收 Ozone uptake | 26 |
5 | 对流层臭氧 Tropospheric ozone | 95 | 30 | 风险评估 Risk assessment | 26 |
6 | 氧化压力 Oxidative stress | 75 | 31 | 大豆 Soybean | 26 |
7 | 产量 Yield | 70 | 32 | 紫外线B辐射 UV-B radiation | 26 |
8 | 气候变化 Climate change | 62 | 33 | 二氧化碳 CO2 | 25 |
9 | 生长 Growth | 62 | 34 | 欧洲山毛榉 Fagus sylvatica | 25 |
10 | 小时臭氧浓度超过40 μg·kg-1的积累值 AOT40 | 56 | 35 | 干旱 Drought | 24 |
11 | 小麦 Wheat | 55 | 36 | 森林 Forests | 24 |
12 | 二氧化碳 Carbon dioxide | 54 | 37 | 开顶气室 Open top chambers | 24 |
13 | 生物量 Biomass | 50 | 38 | 抗坏血酸 Ascorbic acid | 23 |
14 | 臭氧氧化 Ozonation | 49 | 39 | 消毒/杀菌 Disinfection | 23 |
15 | 气体交换 Gas exchange | 45 | 40 | 乙烯二脲的简称 EDU | 23 |
16 | 臭氧浓度升高 Elevated ozone | 45 | 41 | 乙烯二脲 Ethylenediurea | 22 |
17 | 紫外线B辐射 UV-B | 41 | 42 | 水稻 Rice | 22 |
18 | 抗氧化物 Antioxidants | 39 | 43 | 开放式自由空气增强系统 FACE | 22 |
19 | 氮 Nitrogen | 38 | 44 | 烟草 Tobacco | 21 |
20 | 活性氧 Reactive oxygen species | 36 | 45 | 叶绿素a荧光 Chlorophyll a fluorescence | 21 |
21 | 叶绿素荧光 Chlorophyll fluorescence | 33 | 46 | 乙烯 Ethylene | 20 |
22 | 全球变化 Global change | 33 | 47 | 过氧化氢 Hydrogen peroxide | 20 |
23 | 抗坏血酸盐 Ascorbate | 30 | 48 | 生物监测 Biomonitoring | 20 |
24 | 二氧化碳浓度升高 Elevated CO2 | 30 | 49 | 膜脂过氧化 Lipid peroxidation | 19 |
25 | 临界水平 Critical levels | 29 | 50 | 地表臭氧 Surface ozone | 19 |
研究方法 Study method | 优点 Advantage | 缺点 Disadvantage |
---|---|---|
室内生长箱 Growth chamber | 技术简单, 操作容易, 费用低, 可控温湿度、光照 Simple technique, easy to operate, low cost. Temperature, humidity and light intensity can be controlled | 空间小, 短期实验为主, 与真实大气环境不符 Small space, suitable for short-term experiments, inconsistent with the real atmospheric environment |
开顶气室 Open top chamber | 技术简单, 操作容易, 低费用, 高精度, 多因子, 可过滤 O3并进行田间试验 Simple technique, easy to operate, low cost, high precision, suitable for multi-factor and field experimental study, reducing O3 less than ambient air | 空间小, 短期幼苗实验, 盆栽为主, 微气候效应 Small space, suitable for short-term and pot experiments such as seedling, significant microclimate effects |
自由空气中气体浓度增加系统 Free-Air Concentration Elevation | 自然环境, 多因子, 长期实验, 大田研究, 研究尺度囊括叶片、个体、群落或生态系统水平 Natural environment, suitable for multi-factor, field and long-term experimental study, scale covers leaf-, individual-, community- and ecosystem-level | 技术要求高, 费用昂贵, 普适性差 Higher technical requirement, high cost, and poor universality |
表2 地表O3浓度升高对植物及生态系统影响不同研究方法的优缺点
Table 2 Advantages and disadvantages of different study methods about the effects of elevated ground-level O3 on plants or ecosystem
研究方法 Study method | 优点 Advantage | 缺点 Disadvantage |
---|---|---|
室内生长箱 Growth chamber | 技术简单, 操作容易, 费用低, 可控温湿度、光照 Simple technique, easy to operate, low cost. Temperature, humidity and light intensity can be controlled | 空间小, 短期实验为主, 与真实大气环境不符 Small space, suitable for short-term experiments, inconsistent with the real atmospheric environment |
开顶气室 Open top chamber | 技术简单, 操作容易, 低费用, 高精度, 多因子, 可过滤 O3并进行田间试验 Simple technique, easy to operate, low cost, high precision, suitable for multi-factor and field experimental study, reducing O3 less than ambient air | 空间小, 短期幼苗实验, 盆栽为主, 微气候效应 Small space, suitable for short-term and pot experiments such as seedling, significant microclimate effects |
自由空气中气体浓度增加系统 Free-Air Concentration Elevation | 自然环境, 多因子, 长期实验, 大田研究, 研究尺度囊括叶片、个体、群落或生态系统水平 Natural environment, suitable for multi-factor, field and long-term experimental study, scale covers leaf-, individual-, community- and ecosystem-level | 技术要求高, 费用昂贵, 普适性差 Higher technical requirement, high cost, and poor universality |
评估模型 Evaluation model | 评估指标 Evaluation indicator | 优点 Advantage | 缺点 Disadvantage |
---|---|---|---|
浓度响应关系 Concentration-response relationship | 白天7 h (9:00-16:00) O3浓度平均值(M7)或白天12 h (8:00-20:00) O3浓度平均值(M12) 7 h (9:00-16:00) seasonal mean O3 concentrations (M7), 12 h (8:00-18:00) seasonal mean O3 concentrations (M12) | 计算简单, 直观易懂, 参数需求较少 Simple calculation, easy understanding, less parameters | 仅考虑O3浓度唯一因素, 机理性较差 This approach only considers O3 concentration, but no physical mechanism |
剂量响应关系 Concentration-based dose-response relationship | O3小时浓度高于或等于60 μg·kg-1的累积值(SUM06), O3小时浓度在规定时段内的加权求和值(W126), 整个生长季太阳辐射>50 W·m-2时段内O3小时浓度超过X μg·kg-1的累计值(AOTX) The sum of all hourly average concentrations > 60 μg·kg-1 (SUM06), a cumulative ozone exposure index based on sigmoidally weighted daytime O3 concentrations (W126), accumulated hourly O3 concentration over a threshold of X μg·kg-1 during daylight hours (AOTX) | 计算简单, 同时关注O3浓度和暴露时 间, 应用广泛 Simple calculation and wide application, the method concerns O3 concentration and exposure time simultaneously | 只探讨O3对植物的影响, 没有考虑其他环境因子的影响, 缺乏生物学意义 This approach only considering the factor O3 but not consider the effect of other environmental factors on plants, and thus no biological meaning is covered |
通量响应关系 Flux-based dose-responses relationship | 整个生长季单位面积上气孔O3吸收通量超过临界值Y nmol m-2·s-1的积累量(PODY) Phytotoxic O3 dose over a threshold of Y (PODY) | 同时考虑环境因子(物候、温度、光照、蒸气压和土壤水势等参数)和植物自身对O3响应的影响 Environmental factors (e.g. phenology, temperature, photosynthetically photon flux density, water vapor pressure deficit, soil water potential) and plants itself were considered | 所需参数较多, 计算过程复杂, 树种特异性限制较大 This approach required many parameters with a complex calculation procedure, but varied by species |
表3 地表O3对生态系统影响评估指标的优缺点对比
Table 3 Advantages and disadvantages of different O3 metrics about the effects of ground-level O3 on ecosystem
评估模型 Evaluation model | 评估指标 Evaluation indicator | 优点 Advantage | 缺点 Disadvantage |
---|---|---|---|
浓度响应关系 Concentration-response relationship | 白天7 h (9:00-16:00) O3浓度平均值(M7)或白天12 h (8:00-20:00) O3浓度平均值(M12) 7 h (9:00-16:00) seasonal mean O3 concentrations (M7), 12 h (8:00-18:00) seasonal mean O3 concentrations (M12) | 计算简单, 直观易懂, 参数需求较少 Simple calculation, easy understanding, less parameters | 仅考虑O3浓度唯一因素, 机理性较差 This approach only considers O3 concentration, but no physical mechanism |
剂量响应关系 Concentration-based dose-response relationship | O3小时浓度高于或等于60 μg·kg-1的累积值(SUM06), O3小时浓度在规定时段内的加权求和值(W126), 整个生长季太阳辐射>50 W·m-2时段内O3小时浓度超过X μg·kg-1的累计值(AOTX) The sum of all hourly average concentrations > 60 μg·kg-1 (SUM06), a cumulative ozone exposure index based on sigmoidally weighted daytime O3 concentrations (W126), accumulated hourly O3 concentration over a threshold of X μg·kg-1 during daylight hours (AOTX) | 计算简单, 同时关注O3浓度和暴露时 间, 应用广泛 Simple calculation and wide application, the method concerns O3 concentration and exposure time simultaneously | 只探讨O3对植物的影响, 没有考虑其他环境因子的影响, 缺乏生物学意义 This approach only considering the factor O3 but not consider the effect of other environmental factors on plants, and thus no biological meaning is covered |
通量响应关系 Flux-based dose-responses relationship | 整个生长季单位面积上气孔O3吸收通量超过临界值Y nmol m-2·s-1的积累量(PODY) Phytotoxic O3 dose over a threshold of Y (PODY) | 同时考虑环境因子(物候、温度、光照、蒸气压和土壤水势等参数)和植物自身对O3响应的影响 Environmental factors (e.g. phenology, temperature, photosynthetically photon flux density, water vapor pressure deficit, soil water potential) and plants itself were considered | 所需参数较多, 计算过程复杂, 树种特异性限制较大 This approach required many parameters with a complex calculation procedure, but varied by species |
图3 地表O3对植物叶片、根际、整株及生态系统水平的影响。-, 降低; +, 增加; ?, 不确定或目前研究较少涉及的问题。
Fig. 3 Effects of elevated O3 on plant processes at the leaf, rhizosphere, whole-plant and ecosystem scales. -, decrease or reduction; +, increase or acceleration; ?, uncertain effect or a question not addressed in current studies.
[1] | Agathokleous E, Saitanis CJ, Wang XN, Watanabe M, Koike T (2016). A review study on past 40 years of research on effects of tropospheric O3 on belowground structure, functioning, and processes of trees: a linkage with potential ecological implications. Water, Air, & Soil Pollution, 227, 33. DOI: 10.1007/s11270-015-2715-9. |
[2] |
Ainsworth EA (2017). Understanding and improving global crop response to ozone pollution. The Plant Journal, 90, 886-897.
URL PMID |
[3] | Ainsworth EA, Lemonnier P, Wedow JM (2020). The influence of rising tropospheric carbon dioxide and ozone on plant productivity. Plant Biology, 22(S1), 5-11. |
[4] |
Ainsworth EA, Yendrek CR, Sitch S (2012). The effects of tropospheric ozone on net primary productivity and implications for climate change. Annual Review of Plant Biology, 63, 637-661.
URL PMID |
[5] | Andersen CP (2003). Source-sink balance and carbon allocation below ground in plants exposed to ozone: tansley review. New Phytologist, 157, 213-228. |
[6] | Ashmore MR (2005). Assessing the future global impacts of ozone on vegetation. Plant, Cell & Environment, 28, 949-964. |
[7] | Avnery S, Mauzerall DL, Liu JF, Horowitz LW (2011). Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmospheric Environment, 45, 2284-2296. |
[8] | Bai YM, Wang CY, Liu L, Guo JP, Wen M (2002). A diagnostic experiment and study of the influence of O3 on pakchoi. Journal of Applied Meteorological Science, 13, 364-370. |
[ 白月明, 王春乙, 刘玲, 郭建平, 温民 (2002). O3浓度增加对油菜影响的诊断试验研究. 应用气象学报, 13, 364-370.] | |
[9] | Bai YM, Wang CY, Wen M (2005). Response of soybean to O3, CO2 and their combination. Journal of Applied Meteorological Science, 16, 545-549. |
[ 白月明, 王春乙, 温民 (2005). 大豆对臭氧、二氧化碳及其复合效应的响应. 应用气象学报, 16, 545-549.] | |
[10] | Barbo DN, Chappelka AH, Somers GL, Miller-Goodman MS, Stolte K (1998). Diversity of an early successional plant community as influenced by ozone. New Phytologist, 138, 653-662. |
[11] | Bergmann E, Bender J, Weigel HJ (2017). Impact of tropospheric ozone on terrestrial biodiversity: a literature analysis to identify ozone sensitive taxa. Journal of Applied Botany and Food Quality, 90, 83-105. |
[12] | Booker FR. Muntifering R, McGrath M, Burkey K, Decoteau D, Fiscus E, Manning W, Krupa S, Chappelka A, Grantz D (2009). The ozone component of global change: potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. Journal of Integrative Plant Biology, 51, 337-351. |
[13] | Broberg MC, Feng ZZ, Xin Y, Pleijel H (2015). Ozone effects on wheat grain quality—A summary. Environmental Pollution, 197, 203-213. |
[14] | Büker P, Feng ZZ, Uddling J, Briolat A, Alonso R, Braun S, Elvira S, Gerosa G, Karlsson PE, Thiec DL, Marzuoli R, Mills G, Oksanen E, Wieser G, Wilkinson M, Emberson LD (2015). New flux based dose-response relationships for ozone for European forest tree species. Environmental Pollution, 206, 163-174. |
[15] |
Cannon WN (1990). Olfactory response of eastern spruce budworm larvae to red spruce needles exposed to acid-rain and elevated levels of ozone. Journal of Chemical Ecology, 16, 3255-3261.
DOI URL PMID |
[16] | Cao JC, Zheng YF, Zhao H, Xu JX (2017). Impact of elevated ozone concentration on growth and yield of winter wheat and soybean. Asian Journal of Ecotoxicology, 12(2), 129-136. |
[ 曹嘉晨, 郑有飞, 赵辉, 徐静馨 (2017). 地表臭氧浓度升高对冬小麦和大豆生长和产量的影响. 生态毒理学报, 12(2), 129-136.] | |
[17] | Chameides WL, Kasibhatla PS, Yienger J, Levy IIH (1994). Growth of continental-scale metro-agro-plexes, regional ozone pollution and world food production. Science, 264, 74-77. |
[18] | Chappelka AH, Samuelson LJ (1998). Ambient ozone effects on forest trees of the eastern United States: a review. New Phytologist, 139, 91-108. |
[19] | Collins WJ, Sitch S, Boucher O (2010). How vegetation impacts affect climate metrics for ozone precursors. Journal of Geophysical Research, 115, D23308. DOI: 10.1029/2010JD014187. |
[20] | Cooper OR, Parrish DD, Ziemke J, Balashov NV, Cupeiro M, Galbally IE, Gilge S, Horowitz L, Jensen NR, Lamarque JF, Naik V, Oltmans SJ, Schwab J, Shindell DT, Thompson AM, Thouret V, Wang Y, Zbinden RM (2014). Global distribution and trends of tropospheric ozone: an observation- based review. Elementa Science of the Anthropocene, 2, 000029. DOI: 10.12952/journal.elementa.000029. |
[21] |
Dahlsten DL, Rowneu DL, Kickert RN (1997). Effects of oxidant air pollutants on western pine beetle (Coleoptera: Scolytidae) populations in southern California. Environmental Pollution, 96, 415-423.
URL PMID |
[22] | Dai LL, Feng ZZ, Pan XD, Xu YS, Li P, Lefohn AS, Harmens H, Kobayashi K (2019). Increase of apoplastic ascorbate induced by ozone is insufficient to remove the negative effects in tobacco, soybean and poplar. Environmental Pollution, 245, 380-388. |
[23] | Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Morishima I, Shibahara T, Inanaga S, Tanaka K (2006). Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiologia Plantarum, 127, 57-65. |
[24] | Evans PA, Ashmore MR (1992). The effects of ambient air on a seminatural grassland community. Agriculture Ecosystems and Environment, 38, 91-97. |
[25] | Felzer B, Kicklighter D, Melillo J, Wang C, Zhuang QL, Prinn RG (2004). Effects of ozone on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model. Tellus, 56B, 230-248. |
[26] | Felzer B, Reilly J, Melillo J, Kicklighter DW, Wang C, Prinn RG, Sarofim MC, Zhuang Q (2005). Future effects of ozone on carbon sequestration and climate change policy using a global biogeochemical model. Climate Change, 73, 345-373. |
[27] | Feng ZZ, Büker P, Pleijel H, Emberson L, Karlsson PE, Uddling J (2018a). A unifying explanation for variation in ozone sensitivity among woody plants. Global Change Biology, 24, 78-84. |
[28] | Feng ZZ, Hu EZ, Wang XK, Jiang LJ, Liu XJ (2015a). Ground-level O3 pollution and its impacts on food crops in China: a review. Environmental Pollution, 199, 42-48. |
[29] | Feng ZZ, Kobayashi K (2009). Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis. Atmospheric Environment, 43, 1510-1519. |
[30] | Feng ZZ, Li P, Yuan XY, Gao F, Jiang LJ, Dai LL (2018). Progress in ecological and environmental effects of ground-level O3 in China. Acta Ecologica Sinica, 38, 1530-1541. |
[ 冯兆忠, 李品, 袁相洋, 高峰, 姜立军, 代碌碌 (2018). 我国地表臭氧的生态环境效应研究进展. 生态学报, 38, 1530-1541.] | |
[31] | Feng ZZ, Liu XJ, Zhang FS (2015b). Air pollution affects food security in China: taking ozone as an example. Frontiers of Agricultural Science and Engineering, 2, 152-158. |
[32] |
Feng ZZ, Tang HY, Uddling J, Pleijel H, Kobayashi K, Zhu JG, Oue H, Guo W (2012). A stomatal ozone flux-response relationship to assess ozone-induced yield loss of winter wheat in subtropical China. Environmental Pollution, 164, 16-23.
URL PMID |
[33] |
Feng ZZ, Uddling J, Tang HY, Zhu JG, Kobayashi K (2018b). Comparison of crop yield sensitivity to ozone between open-top chamber and free-air experiments. Global Change Biology, 24, 2231-2238.
DOI URL PMID |
[34] | Fuhrer J (2009). Ozone risk for crops and pastures in present and future climates. Naturwissenschaften, 96, 173-194. |
[35] |
Fuhrer J, Shariat-Madari H, Perler R, Tschannen W, Grub A (1994). Effects of ozone on managed pasture: II. Yield, species composition, canopy structure, and forage quality. Environmental Pollution, 86, 307-314.
DOI URL PMID |
[36] | Fuhrer J, Skarby L, Ashmore M (1997). Critical levels for ozone effects on vegetation in Europe. Environmental Pollution, 97, 91-106. |
[37] | Fuhrer J, Val Martin M, Mills G, Heald CL, Harmens H, Hayes F, Sharps K, Bender J, Ashmore MR (2016). Current and future ozone risks to global terrestrial biodiversity and ecosystem processes. Ecology and Evoluton, 6, 8785-8799. |
[38] | Gao F (2018). Effects of Ozone Pollution and Drought Stress on Growth Regulatory Mechanism of Poplar Saplings. PhD dissertation, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing. 7-8. |
[ 高峰 (2018). 臭氧污染和干旱胁迫对杨树幼苗生长的影响机制研究. 博士学位论文, 中国科学院生态环境研究中心, 北京. 7-8.] | |
[39] | Gao F, Calatayud V, García-Breijo F, Reig-Arminana J, Feng ZZ (2016). Effects of elevated ozone on physiological, anatomical and ultrastructural characteristics of four common urban tree species in China. Ecological Indicators, 67, 367-379. |
[40] |
Gao F, Catalayud V, Paoletti E, Hoshik Y, Feng ZZ (2017). Water stress mitigates the negative effects of ozone on photosynthesis and biomass in poplar plants. Environmental Pollution, 230, 268-279.
URL PMID |
[41] | Gessner MO, Swan CM, Dang CK, McKie BG, Bardget RD, Wall DH, Hätenschwiler S (2010). Diversity meets decompositon. Trends in Ecology and Evoluton, 25, 372-380. |
[42] | Ghimire RP, Kasurinen A, Häikiö E, Holopainen JK, Julkunen-Tiitto R, Holopainen T, Kivimäenpää M (2018). Combined effects of elevated ozone, temperature, and nitrogen on stem phenolic concentrations of Scots pine (Pinus sylvestris) seedlings. Canadian Journal of Forest Research, 49, 246-255. |
[43] | Grantz DA, Gunn S, Vu HB (2006). O3 impacts on plant development: a meta-analysis of root/shoot allocation and growth. Plant, Cell & Environment, 29, 1193-1209. |
[44] |
Grulke NE, Heath RL (2020). Ozone effects on plants in natural ecosystems. Plant Biology, 22, 12-37.
URL PMID |
[45] | Grulke NE, Minnich RA, Paine TD, Seybold SJ, Chavez DJ, Fenn ME, Riggan PJ, Dunn A (2009). Chapter 17 Air pollution increases forest susceptibility to wildfires: a case study in the San Bernardino Mountains in southern California. Developments in Environmental Science, 8, 365-403. |
[46] | Guo JP, Wang CY, Wen M, Bai YM (2003). Study on the impacts of ozone concentration on vegetables. Chinese Journal of Eco-Agriculture, 11(2), 18-20. |
[ 郭建平, 王春乙, 温民, 白月明 (2003). 大气中臭氧浓度变化对蔬菜的影响研究. 中国生态农业学报, 11(2), 18-20.] | |
[47] | Handley T, Grulke NE (2008). Interactive effects of O3 exposure on California black oak (Quercus kelloggii Newb.) seedlings with and without N amendment. Environmental Pollution, 156, 53-60. |
[48] | Hayes F, Mills G, Ashmore M (2009). Effects of ozone on inter- and intra-species competition and photosynthesis in mesocosms of Lolium perenne and Trifolium repens. Environmental Pollution, 157, 208-214. |
[49] | Hayes F, Mills G, Jones L, Ashmore M (2010). Does a simulated upland grassland community respond to increasing background, peak or accumulated exposure of ozone? Atmospheric Environment, 44, 4155-4164. |
[50] | Heagle AS, Body DE, Heck WW (1973). An open-top field chamber to assess the impact of air pollution on plants. Journal of Environmental Quality, 2, 365-368. |
[51] | Heagle AS, Philbeck RB, Rogers HH, Letchworth MB (1979). Dispensing and monitoring ozone in open-top field chambers for plant-effects studies. Phytopathology, 69, 15-20. |
[52] | Hendrey GR, Kimball B (1994). The FACE program. Agricultural and Forest Meteorology, 70, 3-14. |
[53] |
Hewitt CN, MacKenzie AR, Di Carlo P, Di Marco CF, Dorsey JR, Evans M, Fowler D, Gallagher MW, Hopkins JR, Jones CE, Langford B, Lee JD, Lewis AC, Lim SF, McQuaid J, Misztal P, Moller SJ, Monks PS, Nemitz E, Oram DE, Owen SM, Phillips GJ, Pugh TAM, Pyle JA, Reeves CE, Ryder J, Siong J, Skiba U, Stewart DJ (2009). Nitrogen management is essential to prevent tropical oil palm plantations from causing ground-level ozone pollution. Proceedings of the National Academy of Sciences of the United States of America, 106, 18447-18451.
DOI URL PMID |
[54] | Hofstra G, Ali A, Wukasch RT, Fletcher RA (1981). The rapid inhibition of root respiration after exposure of bean (Phaseolus vulgaris L.) plants to ozone. Atmospheric Environment, 15, 483-487. |
[55] |
Hoshika Y, Watanabe M, Inada N, Koike T (2012). Ozone-induced stomatal sluggishness develops progressively in Siebold’s beech (Fagus crenata). Environmental Pollution, 166, 152-156.
DOI URL PMID |
[56] | Hu EZ, Gao F, Xin Y, Jia HX, Li KH, Hu JJ, Feng ZZ (2015). Concentration- and flux-based ozone dose-response relationships for five poplar clones grown in North China. Environmental Pollution, 207, 21-30. |
[57] | ICP Vegetation (2011). Ozone pollution: a hidden threat to food security. Programme Coordination Centre for the ICP Vegetation//Mills G, Harmens H. Programme Coordination Centre for the ICP Vegetation. NERC/Centre for Ecology and Hydrology, Bangor, UK. 116. |
[58] | ICP Vegetation (2013). Ozone pollution: impacts on ecosystem services and biodiversity. Programme Coordination Centre for the ICP Vegetation//Mills G, Wagg S, Harmens H. Programme Coordination Centre for the ICP Vegetation. NERC/Centre for Ecology and Hydrology, Bangor, UK. 104. |
[59] | Jia YL (2016). Effects of Ozone Stress on Grain Yield, Quality and Plant Lodging Resistance of Different Wheat Varieties. Masters degree dissertation, Yangzhou University, Yangzhou, Jiangsu. 21-38. |
[ 贾一磊 (2016). 臭氧胁迫对不同小麦品种产量、品质和抗倒性的影响. 硕士学位论文, 扬州大学, 江苏扬州. 21-38.] | |
[60] | Kangasjärvi J, Jaspers P, Kollist H (2005). Signalling and cell death in ozone-exposed plants. Plant, Cell & Environment, 28, 1021-1036. |
[61] | Karnosky DF, Pregitzer KS, Zak DR, Kubiske ME, Hendrey GR, Weinstein D, Nosal M, Percy KE (2005). Scaling ozone responses of forest trees to the ecosystem level in a changing climate. Plant, Cell & Environment, 28, 965-981. |
[62] | Karnosky DF, Zak DR, Pregitzer KS, Awmack CS, Bockheim JG, Dickson RE, Hendrey GR, Host GE, King JS, Kopper BJ, Kruger EL, Kubiske ME, Lindroth RL, Mattson WFJ, Mcdonald EP, Noormets A, Oksanen E, Parsons WFJ, Percy KE, Podile GK, Riemenschneider DE, Sharma P, Thakur R, Sôber A, Sôber J, Jones WS, Anttonen S, Vapaavuori E, Mankovska B, Heilman W, Isebrands JG (2003). Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2: a synthesis of molecular to ecosystem results from the Aspen FACE project. Functional Ecology, 17, 289-394. |
[63] | Kasurinen A, Peltonen PA, Holopainen JK, Vapaavuori E, Holopainen T (2007). Leaf litter under changing climate: Will increasing levels of CO2 and O3 affect decomposition and nutrient cycling processes? Dynamic Soil, Dynamic Plant, 1, 58-67. |
[64] | Kasurinen A, Riikonen J, Oksanen E, Vapaavuori V, Holopainen T (2006). Chemical composition and decomposition of silver birch leaf litter produced under elevated CO2 and O3. Plant and Soil, 282, 261-280. |
[65] |
King JS, Kubiske ME, Pregitzer KS, Hendrey GR, McDonald EP, Giardina CP, Quinn V, Karnosky D (2005). Tropospheric O3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO2. New Phytologist, 168, 623-636.
URL PMID |
[66] |
Kopper BJ, Lindroth RL (2003). Effects of elevated carbon dioxide and ozone on the phytochemistry of aspen and performance of an herbivore. Oecologia, 134, 95-103.
DOI URL PMID |
[67] | Kubiske ME, Quinn VS, Marquardt PE, Karnosky DF (2007). Effects of elevated atmospheric CO2 and/or O3 on intra- and interspecific competitive ability of aspen. Plant Biology, 9, 342-355. |
[68] | Larson JL, Zak DR, Sinsabaugh RL (2002). Extracellular enzyme activity beneath temperate trees growing under elevated carbon dioxide and ozone. Soil Science Society of America Journal, 66, 1848-1856. |
[69] | Leeds AR (1880). Lines of discovery in the history of ozone. Annals of the New York Academy of Sciences, 1, 363-391. |
[70] | Lefohn AS, Foley JK (1992). NCLAN results and their application to the standard setting process: protecting vegetation from surface ozone exposures. Journal of the Air and Waste Management Association, 42, 1046-1052. |
[71] | Lefohn AS, Malley CS, Smith L, Wells B, Hazucha M, Simon H, Naik V, Mills G, Schultz MG, Paoletti E, De Marco A, Xu XB, Zhang L, Wang T, Neufeld HS, Musselman RC, Tarasick D, Brauer M, Feng ZZ, Tang HY, Kobayashi K, Sicard P, Solberg S, Gerosa G (2018). Tropospheric ozone assessment report: global ozone metrics for climate change, human health, and crop/ecosystem research. Elementa Science of the Anthropocene, 6, 28. DOI: 10.1525/elementa.279. |
[72] | Legge AH, Grünhage L, Noal M, Jäger HJ, Krupa SV (1995). Ambient ozone and adverse crop response: an evaluation of north American and European data as they relate to exposure indices and critical levels. Journal of Applied Botany, 69, 192-205. |
[73] | Li P, Calatayud V, Gao F, Uddling J, Feng ZZ (2016). Differences in ozone sensitivity among woody species are related to leaf morphology and antioxidant levels. Tree Physiology, 36, 1105-1116. |
[74] |
Li P, Feng ZZ, Calatayud V, Yuan XY, Xu YS, Paoletti E (2017). A meta-analysis on growth, physiological, and biochemical responses of woody species to ground-level ozone highlights the role of plant functional types. Plant, Cell & Environment, 40, 2369-2380.
URL PMID |
[75] | Li P, Feng ZZ, Shang B, Yuan XY, Dai LL, Xu YS (2018). Stomatal characteristics and ozone dose-response relationships for six greening tree species. Acta Ecologica Sinica, 38, 2710-2721. |
[ 李品, 冯兆忠, 尚博, 袁相洋, 代碌碌, 徐彦森 (2018). 6种绿化树种的气孔特性与臭氧剂量的响应关系. 生态学报, 38, 2710-2721.] | |
[76] | Lie GW, Xue L (2014). Interactions of ozone stress and other environmental factors on plants. Chinese Journal of Ecology, 33, 1678-1687. |
[ 列淦文, 薛立 (2014). 臭氧与其他环境因子对植物的交互作用. 生态学杂志, 33, 1678-1687.] | |
[77] | Lin YY, Jiang F, Zhao J, Zhu G, He XJ, Ma XL, Li S, Sabel CE, Wang HK (2018). Impacts of O3 on premature mortality and crop yield loss across China. Atmospheric Environment, 194, 41-47. |
[78] |
Lindroth RL (2010). Impacts of elevated atmospheric CO2 and O3 on forests: phytochemistry, trophic interactions, and ecosystem dynamics. Journal of Chemical Ecology, 36, 2-21.
URL PMID |
[79] | Long SP, Ainsworth EA, Leakey ADB, Morgan PB (2005). Global food insecurity. Treatment of major food crops with elevated carbon dioxide or ozone under large-scale fully open-air conditions suggests recent models may have overestimated future yields. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 2011-2020. |
[80] | LRTAR Convention (2015). Draft Chapter III: Mapping Critical Levels for Vegetation, of the Manual on Methodologies and Criteria for Modelling and Mapping Critical Loads and Levels and Air Pollution Effects, Risks and Trends. http://icpmapping.org/Mapping_Manual. Cited: 2019-06-13. |
[81] | Lu X, Hong JY, Zhang L, Cooper OR, Schultz MG, Xu XB, Wang T, Gao M, Zhao YH, Zhang YH (2018). Severe surface ozone pollution in China: a global perspective. Environmental Science and Technology Letters, 5, 487-494. |
[82] | Luwe M (1996). Antioxidants in the apoplast and symplast of beech (Fagus sylvatica L.) leaves: seasonal variations and responses to changing ozone concentrations in air. Plant, Cell & Environment, 19, 321-328. |
[83] | Mandle RH (1973). A cylindrical open top chamber for the exposure of plants to air pollutants in the field. Journal of Environmental Quality, 2, 371-376. |
[84] | Matyssek R, Bytnerowicz A, Karlsson PE, Paoletti E, Sanze M, Schaub M, Wieser G (2007). Promoting the O3 flux concept for European forest trees. Environmental Pollution, 146, 587-607. |
[85] |
Matyssek R, Wieser G, Ceulemans R, Rennenberg H, Pretzsch H, Haberer K, Low M, Nunn AJ, Werner H, Wipfler P, Osswald W, Nikolova PS, Hanke DE, Kraiger H, Tausz M, Bahnweg G, Kitao M, Dieler J, Sandermann H, Herbinger K, Grebenc T, Blumenrother M, Deckmyn G, Grams TEE, Heerdt C, Leuchner M, Fabian P, Haberle KH (2010). Enhanced ozone strongly reduces carbon sink strength of adult beech (Fagus sylvatica)—Resume from the free-air fumigation study at Kranzberg forest. Environmental Pollution, 158, 2527-2532.
DOI URL PMID |
[86] | McDonald EP, Kruger EL, Riemenschneider DE, Isebrands JG (2002). Competitive status influences tree-growth responses to elevated CO2 and O3 in aggrading aspen stands. Functional Ecology, 16, 792-801. |
[87] | McLaughlin SB, Wullschleger SD, Sun G, Nosal M (2007). Interactive effects of ozone and climate on water use, soil moisture content and streamflow in a southern Appalachian forest in the USA. New Phytologist, 174, 125-136. |
[88] | Mills G, Buse A, Gimeno B, Bermejo V, Holland M, Emberson L, Pleijel H (2007). A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmospheric Environment, 41, 2630-2643. |
[89] | Mills G, Hayes F, Simpson D, Emberson L, Norris D, Harmens H, Buker P (2011). Evidence of widespread effects of ozone on crops and (semi-) natural vegetation in Europe (1990-2006) in relation to AOT40- and flux-based risk maps. Global Change Biology, 17, 592-613. |
[90] |
Mills G, Sharps K, Simpson D, Pleijel H, Broberg M, Uddling J, Jaramillo F, Davies WJ, Dentener F, van den Berg M, Agrawal M, Agrawal SB, Ainsworth EA, Buker P, Emberson L, Feng ZZ, Harmens H, Hayes F, Kobayashi K, Paoletti E, Dingenen RV (2018). Ozone pollution will compromise efforts to increase global wheat production. Global Change Biology, 24, 3560-3574.
DOI URL PMID |
[91] |
Morgan PB, Bernacchi CJ, Ort DR, Long SP (2004). An in vivo analysis of the effect of season-long open-air elevation of ozone to anticipated 2050 levels on photosynthesis in soybean. Plant Physiology, 135, 2348-2357.
DOI URL PMID |
[92] | Musselman RC, Lefohn AS, Massman WJ, Heath RL (2006). A critical review and analysis of the use of exposure- and flux-based ozone indices for predicting vegetation effects. Atmospheric Environment, 40, 1869-1888. |
[93] |
Oksanen E (2003). Responses of selected birch (Betula pendula) clones to ozone change over time. Plant, Cell & Environment, 26, 875-886.
DOI URL PMID |
[94] | Ollinger SV, Aber JD, Reich PB, Freuder RJ (2002). Interactive effects of nitrogen deposition, tropospheric ozone, elevated CO2 and land use history on the carbon dynamics of northern hardwood forests. Global Change Biology, 8, 545-562. |
[95] |
Paoletti E (2009). Ozone and urban forests in Italy. Environmental Pollution, 157, 1506-1512.
DOI URL PMID |
[96] | Paoletti E, Materassi A, Fasano G, Hoshika Y, Carriero G, Silaghi D, Badea O (2017). A new-generation 3D ozone FACE (Free Air Controlled Exposure). Science of the Total Environment, 575, 1407-1414. |
[97] | Pell EJ, Pearson NS (1984). Ozone-induced reduction in quantity and quality of two potato cultivars. Environmental Pollution, 35, 345-352. |
[98] | Pellegrini E, Campanella A, Cotrozzi L, Tonelli M, Nali C, Lorenzini G (2018). What about the detoxification mechanisms underlying ozone sensitivity in Liriodendron tulipifera? Environmental Science and Pollution Research, 25, 8148-8160. |
[99] |
Percy KE, Awmack CS, Lindroth RL, Kubiske ME, Kopper BJ, Isebrands JG, Pregitzer KS, Hendrey GR, Dickson RE, Zak DR, Oksanen E, Sober J, Harrington R, Karnosky DF (2002). Altered performance of forest pests under CO2- and O3-enriched atmospheres. Nature, 420, 403-407.
URL PMID |
[100] | Pollastrini M, Desotgiu R, Cascio C, Bussotti F, Cherubini P, Saurer M, Gerosa G, Marzuoli R (2010). Growth and physiological responses to ozone and mild drought stress of tree species with different ecological requirements. Trees, 24, 695-704. |
[101] |
Pretzsch H, Dieler J, Matyssek R, Wipfler P (2010). Tree and stand growth of mature Norway spruce and European beech under long-term ozone fumigation. Environmental Pollution, 158, 1061-1070.
DOI URL PMID |
[102] |
Reich PR (1987). Quantifying plant response to ozone: a unifying theory. Tree Physiology, 3, 63-91.
DOI URL PMID |
[103] | Ren W, Tian HQ, Tao B, Chappelka AH, Sun G, Lu CQ, Liu ML, Chen GS, Xu XF (2011). Impacts of tropospheric ozone and climate change on net primary productivity and net carbon exchange of China’s forest ecosystems. Global Ecology and Biogeography, 20, 391-406. |
[104] | Richards BL, Middleton JT, Hewitt WB (1958). Air pollution with relation to agronomic crops: V. Oxidant stipple of grape. Journal of the American Society of Agronomy, 50, 559-560. |
[105] | Rogers LH, Renzetti NA, Neiburger M (1956). Smog effects and chemical analysis of the Los Angeles atmosphere. Journal of the Air Pollution Control Association, 6, 165-170. |
[106] | Sawada H, Tsukahara K, Kohno Y, Suzuki K, Nagasawa N, Masanori T (2016). Elevated ozone deteriorates grain quality of Japonica Rice cv. Koshihikari, even if it does not cause yield reduction. Rice, 9, 1-10. |
[107] | Schloter M, Winkler JB, Aneja M, Koch N, Fleischmann F, Pritsch K, Heller W, Stich S, Grams TE, Göttlein A, Matyssek R, Munch JC (2005). Short term effects of ozone on the plant-rhizosphere-bulk soil system of young beech trees. Plant Biology, 7, 728-736. |
[108] | Schmadel-Hagebölling HE, Engel C, Schmitt V, Wild A (1998). The combined effects of CO2, ozone and drought on rubisco and nitrogen metabolism of young oak trees (Quercus petraea)—A phytotron study. Chemosphere, 36, 789-794. |
[109] | Sicard P, Agathokleous E, Araminiene V, Carrari E, Hoshika Y, de Marco A, Paoletti E (2018). Should we see urban trees as effective solutions to reduce increasing ozone levels in cities? Environmental Pollution, 243, 163-176. |
[110] |
Singh AA, Agrawal SB (2017). Tropospheric ozone pollution in India: effects on crop yield and product quality. Environmental Science and Pollution Research, 24, 4367-4382.
DOI URL PMID |
[111] |
Sitch S, Cox PM, Collins WJ, Huntingford C (2007). Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature, 448, 791-794.
DOI URL PMID |
[112] | Sun G, Mclaughlin SB, Porter JH, Uddling J, Mulholland PJ, Adams MB, Pederson N (2012). Interactive influences of ozone and climate on streamflow of forested watersheds. Global Change Biology, 18, 3395-3409. |
[113] | Tai APK, Val Martin M, Heald CL (2014). Threat to future global food security from climate change and ozone air pollution. Nature Climate Change, 4, 817-821. |
[114] | Tang HY, Liu G, Han Y, Zhu JG, Kobayashi K (2011). A system for free-air ozone concentration elevation with rice and wheat: control performance and ozone exposure regime. Atmospheric Environment, 45, 6276-6282. |
[115] |
Tausz M, Grulke NE, Wieser G (2007). Defense and avoidance of ozone under global change. Environmental Pollution, 147, 525-531.
DOI URL PMID |
[116] | Tomer R, Bhatia A, Kumar V, Kumar A, Singh R, Singh B, Singh SD (2015). Impact of elevated ozone on growth, yield and nutritional quality of two wheat species in Northern India. Aerosol and Air Quality Research, 15, 329-340. |
[117] | van Dingenen R, Dentener FJ, Raes F, Krol MC, Emberson L, Cofala J (2009). The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmospheric Environment, 43, 604-618. |
[118] | Volk M, Geissmann M, Blatter A, Contat F, Fuhrer J (2003). Design and performance of a free-air exposure system to study long-term effects of ozone on grasslands. Atmospheric Environment, 37, 1341-1350. |
[119] | Wang CY (1995). Effects of ozone on crops. Journal of Applied Meteorological Science, 6, 343-349. |
[ 王春乙 (1995). 臭氧对农作物的影响研究. 应用气象学报, 6, 343-349.] | |
[120] |
Wang N, Lyu XP, Deng XJ, Huang X, Jiang F, Ding AJ (2019). Aggravating O3 pollution due to NOx emission control in eastern China. Science of the Total Environment, 677, 732-744.
DOI URL PMID |
[121] | Wang XP, Mauzerall DL (2004). Characterizing distributions of surface ozone and its impact on grain production in China, Japan and South Korea: 1990 and 2020. Atmospheric Environment, 38, 4383-4402. |
[122] | Wang YX, Yang LX, Han Y, Zhu JG, Kobayashi K, Tang HY, Wang YL (2012). The impact of elevated tropospheric ozone on grain quality of hybrid rice: a free-air gas concentration enrichment (FACE) experiment. Field Crops Research, 129, 81-89. |
[123] |
Watanabe M, Hoshika Y, Inada N, Wang XN, Mao QZ, Koike T (2013). Photosynthetic traits of Siebold’s beech and oak saplings grown under free air ozone exposure. Environmental Pollution, 174, 50-56.
DOI URL PMID |
[124] |
Wieser G, Tegischer K, Tausz M, Häberle KH, Grams TE, Matyssek R (2002). Age effects on Norway spruce (Picea abies) susceptibility to ozone uptake: a novel approach relating stress avoidance to defense. Tree Physiology, 22, 583-590.
DOI URL PMID |
[125] | Wittig VE, Ainsworth EA, Naidu SL, Karnosky DF, Long SP (2009). Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis. Global Change Biology, 15, 396-424. |
[126] |
Xu YS, Feng ZZ, Tarvainen L, Shang B, Dai LL, Uddling J (2019). Mesophyll conductance limitation of photosynthesis in poplar under elevated ozone. Science of the Total Environment, 657, 136-145.
URL PMID |
[127] | Yamaguchi M, Watanabe M, Matsumura H, Kohno Y, Izuta T (2010). Effects of ozone on nitrogen metabolism in the leaves of Fagus crenata seedlings under different soil nitrogen loads. Trees, 24, 175-184. |
[128] | Yue X, Unger N, Harper K, Xia XG, Liao H, Zhu T, Xiao JF, Feng ZZ, Li J (2017). Ozone and haze pollution weakens net primary productivity in China. Atmospheric Chemistry and Physics, 17, 6073-6089. |
[129] | Zhang RB, Hu HJ, Zhao Z, Yang DD, Zhu XK, Guo WS, Zhu JG, Kobayashi K (2013). Effects of elevated ozone concentration on starch and starch synthesis enzymes of yangmai 16 under fully open-air field conditions. Journal of Integrative Agriculture, 12, 2157-2163. |
[130] | Zhao H, Zheng YF, Wu XY (2018). Assessment of yield and economic losses for wheat and rice due to ground level O3 exposure in the Yangtze River Delta, China. Atmospheric Environment, 191, 241-248. |
[1] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[2] | 刘聪聪, 何念鹏, 李颖, 张佳慧, 闫镤, 王若梦, 王瑞丽. 宏观生态学中的植物功能性状研究: 历史与发展趋势[J]. 植物生态学报, 2024, 48(1): 21-40. |
[3] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[4] | 何敏, 许秋月, 夏允, 杨柳明, 范跃新, 杨玉盛. 植物磷获取机制及其对全球变化的响应[J]. 植物生态学报, 2023, 47(3): 291-305. |
[5] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[6] | 葛萍, 李昂, 王银柳, 姜良超, 牛国祥, 哈斯木其尔, 王彦兵, 薛建国, 赵威, 黄建辉. 草甸草原温室气体排放对氮添加量的非线性响应[J]. 植物生态学报, 2023, 47(11): 1483-1492. |
[7] | 缪丽娟, 张宇阳, 揣小伟, 包刚, 何昱, 朱敬雯. 亚洲旱区草地NDVI对气候变化的响应及滞后效应[J]. 植物生态学报, 2023, 47(10): 1375-1385. |
[8] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[9] | 谢伟, 郝志鹏, 张莘, 陈保冬. 丛枝菌根网络介导的植物间信号交流研究进展及展望[J]. 植物生态学报, 2022, 46(5): 493-515. |
[10] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[11] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[12] | 叶子飘, 于冯, 安婷, 王复标, 康华靖. 植物气孔导度对CO2响应模型的构建[J]. 植物生态学报, 2021, 45(4): 420-428. |
[13] | 陈胜楠, 陈左司南, 张志强. 北京山区油松和元宝槭冠层气孔导度特征及其环境响应[J]. 植物生态学报, 2021, 45(12): 1329-1340. |
[14] | 魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽. 实验增温对陆地生态系统根系生物量的影响[J]. 植物生态学报, 2021, 45(11): 1203-1212. |
[15] | 宋琳, 雒文涛, 马望, 何鹏, 梁潇洒, 王正文. 极端干旱对草甸草原优势植物非结构性碳水化合物的影响[J]. 植物生态学报, 2020, 44(6): 669-676. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19