植物生态学报 ›› 2020, Vol. 44 ›› Issue (7): 742-751.DOI: 10.17521/cjpe.2019.0308
所属专题: 全球变化与生态系统; 生态遥感及应用; 青藏高原植物生态学:遥感生态学
收稿日期:
2019-11-14
接受日期:
2020-03-23
出版日期:
2020-07-20
发布日期:
2020-06-08
通讯作者:
*朱文泉,zhuwq75@bnu.edu.cn
基金资助:
LI Xue-Ying, ZHU Wen-Quan*(), LI Pei-Xian, XIE Zhi-Ying, ZHAO Cen-Liang
Received:
2019-11-14
Accepted:
2020-03-23
Online:
2020-07-20
Published:
2020-06-08
Contact:
ZHU Wen-Quan,zhuwq75@bnu.edu.cn
Supported by:
摘要:
气候变暖背景下的植物物候变化广受关注, 然而常用的植物物候变化预测模型未充分考虑植物对环境的适应性, 给预测结果带来了较大的不确定性。该文基于2002-2011年青藏高原10个站点的地面物候观测资料以及年平均气温数据, 对空间换时间模型预测车前(Plantago asiatica)和蒲公英(Taraxacum mongolicum)各主要物候事件(展叶始期、开花始期和黄枯普遍期)变化的可行性及其在升温背景下的变化规律进行了分析。首先利用不同海拔高度的气温和物候事件分别与地理因子(经度、纬度和海拔)建立多元线性回归模型, 然后在此基础上剔除经度和纬度的影响, 单独考察海拔变化所引起的气温与植物物候变化, 最后以海拔高度作为桥梁来考察物候变化与温度变化的关系。结果表明, 采用各站点对应的海拔高度来模拟年平均气温空间差异的R2均大于0.89, 表明海拔梯度可以用来反映时间尺度下的年际温度变化; 车前和蒲公英各物候事件发生日期拟合值均与海拔高度变化关系显著, R2均大于0.70, 表明海拔变化是影响它们各物候事件变化的主要地理因子; 在物候事件发生日期拟合值和年平均气温拟合值的回归方程中, R2均大于0.93, 说明基于不同海拔高度模拟得到的年平均气温变化可以对时间尺度上车前和蒲公英的物候事件变化进行预测。空间换时间预测表明, 温度每升高1 ℃, 车前展叶始期和开花始期分别提前5.1和5.4 d, 而黄枯普遍期推迟4.8 d; 蒲公英展叶始期和开花始期分别提前6.5和7.8 d, 而黄枯普遍期推迟6.7 d。
李雪莹, 朱文泉, 李培先, 谢志英, 赵涔良. 气候变暖背景下青藏高原草本植物物候变化空间换时间预测. 植物生态学报, 2020, 44(7): 742-751. DOI: 10.17521/cjpe.2019.0308
LI Xue-Ying, ZHU Wen-Quan, LI Pei-Xian, XIE Zhi-Ying, ZHAO Cen-Liang. Predicting phenology shifts of herbaceous plants on the Qinghai-Xizang Plateau under climate warming with the space-for-time method. Chinese Journal of Plant Ecology, 2020, 44(7): 742-751. DOI: 10.17521/cjpe.2019.0308
站点 Site | 经度 Longitude (E) | 纬度 Latitude (N) | 海拔 Altitude (m) | 车前观测数据时间跨度 Time span of observed data for P. asiatica | 蒲公英观测数据时间跨度 Time span of observed data for T. mongolicum |
---|---|---|---|---|---|
门源 Menyuan | 101.62° | 37.38° | 2 850 | 1987-2011 | 2001-2011 |
海北牧试 Haibeimushi | 100.85° | 36.95° | 3 140 | 1997-2011 | 1997-2011 |
共和 Gonghe | 100.62° | 36.27° | 2 840 | 1991-2011 | 1991-2011 |
兴海 Xinghai | 99.98° | 35.58° | 3 320 | 2000-2011 | 2000-2011 |
曲麻莱 Qumarlêb | 95.78° | 34.13° | 4 180 | 1997-2011 | 1997-2011 |
甘德 Gadê | 99.90° | 33.97° | 4 050 | 1990-2011 | 1990-2011 |
若尔盖 Zoigê | 102.97° | 33.58° | 3 440 | 1983-2011 | 1983-2011 |
稻城 Daocheng | 100.30° | 29.05° | 3 730 | 2002-2011 | 2002-2011 |
日喀则 Xigazê | 88.88° | 29.25° | 3 840 | 2000-2011 | 2000-2011 |
泽当 Zêtang | 91.77° | 29.25° | 3 550 | 2000-2011 | 2000-2011 |
表1 青藏高原车前和蒲公英物候站点信息
Table 1 Records from phenological sites of Plantago asiatica and Taraxacum mongolicum across the Qinghai-Xizang Plateau
站点 Site | 经度 Longitude (E) | 纬度 Latitude (N) | 海拔 Altitude (m) | 车前观测数据时间跨度 Time span of observed data for P. asiatica | 蒲公英观测数据时间跨度 Time span of observed data for T. mongolicum |
---|---|---|---|---|---|
门源 Menyuan | 101.62° | 37.38° | 2 850 | 1987-2011 | 2001-2011 |
海北牧试 Haibeimushi | 100.85° | 36.95° | 3 140 | 1997-2011 | 1997-2011 |
共和 Gonghe | 100.62° | 36.27° | 2 840 | 1991-2011 | 1991-2011 |
兴海 Xinghai | 99.98° | 35.58° | 3 320 | 2000-2011 | 2000-2011 |
曲麻莱 Qumarlêb | 95.78° | 34.13° | 4 180 | 1997-2011 | 1997-2011 |
甘德 Gadê | 99.90° | 33.97° | 4 050 | 1990-2011 | 1990-2011 |
若尔盖 Zoigê | 102.97° | 33.58° | 3 440 | 1983-2011 | 1983-2011 |
稻城 Daocheng | 100.30° | 29.05° | 3 730 | 2002-2011 | 2002-2011 |
日喀则 Xigazê | 88.88° | 29.25° | 3 840 | 2000-2011 | 2000-2011 |
泽当 Zêtang | 91.77° | 29.25° | 3 550 | 2000-2011 | 2000-2011 |
年份 Year | R2 | a (℃·°-1) | b (℃·°-1) | c (℃·m-1) | d |
---|---|---|---|---|---|
2002 | 0.90* | -0.3 | -1.1* | -0.006 7* | 88.4 |
2003 | 0.90* | -0.2 | -1.1* | -0.006 3* | 83.8 |
2004 | 0.91* | -0.3 | -1.1* | -0.006 3* | 88.9 |
2005 | 0.91* | -0.3 | -1.1* | -0.006 6* | 91.3 |
2006 | 0.90* | -0.3 | -1.1* | -0.006 4* | 89.8 |
2007 | 0.91* | -0.3 | -1.1* | -0.006 7* | 95.8 |
2008 | 0.90* | -0.3 | -1.1* | -0.006 7* | 91.6 |
2009 | 0.90* | -0.3 | -1.2* | -0.006 4* | 92.8 |
2010 | 0.91* | -0.3 | -1.1* | -0.006 7* | 93.6 |
2011 | 0.89* | -0.3 | -1.1 | -0.006 3* | 87.1 |
表2 青藏高原年平均气温与海拔逐年回归分析建模结果
Table 2 Regression modeling results between mean annual air temperature and altitude across the Qinghai-Xizang Plateau
年份 Year | R2 | a (℃·°-1) | b (℃·°-1) | c (℃·m-1) | d |
---|---|---|---|---|---|
2002 | 0.90* | -0.3 | -1.1* | -0.006 7* | 88.4 |
2003 | 0.90* | -0.2 | -1.1* | -0.006 3* | 83.8 |
2004 | 0.91* | -0.3 | -1.1* | -0.006 3* | 88.9 |
2005 | 0.91* | -0.3 | -1.1* | -0.006 6* | 91.3 |
2006 | 0.90* | -0.3 | -1.1* | -0.006 4* | 89.8 |
2007 | 0.91* | -0.3 | -1.1* | -0.006 7* | 95.8 |
2008 | 0.90* | -0.3 | -1.1* | -0.006 7* | 91.6 |
2009 | 0.90* | -0.3 | -1.2* | -0.006 4* | 92.8 |
2010 | 0.91* | -0.3 | -1.1* | -0.006 7* | 93.6 |
2011 | 0.89* | -0.3 | -1.1 | -0.006 3* | 87.1 |
图2 青藏高原年平均气温拟合值与海拔回归分析结果。
Fig. 2 Regression results between fitted values of mean annual air temperature and altitudes across the Qinghai-Xizang Plateau.
年份 Year | 车前展叶始期 FLD of P. asiatica | 蒲公英展叶始期 FLD of T. mongolicum | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | a (d·°-1) | b (d·°-1) | c (d·m-1) | d | R2 | a (d·°-1) | b (d·°-1) | c (d·m-1) | d | ||||||||
2002 | 0.95* | 1.1 | 6.3* | 0.033 8* | -342.3 | 0.95* | 1.2 | 6.2* | 0.043 8* | -382.8 | |||||||
2003 | 0.98* | 0.7 | 6.8* | 0.036 2* | -318.3 | 1.00* | 0.9* | 6.3* | 0.045 2* | -362.8 | |||||||
2004 | 0.95* | 1.0 | 6.9* | 0.036 7* | -355.0 | 0.92* | 1.3 | 6.1* | 0.041 2* | -383.3 | |||||||
2005 | 0.90* | 1.0 | 5.9* | 0.032 9* | -320.1 | 0.92* | 1.7 | 6.1* | 0.043 2* | -428.5 | |||||||
2006 | 0.96* | 1.5* | 6.7* | 0.037 3* | -404.9 | 0.92* | 2.0* | 6.6* | 0.044 2* | -470.6 | |||||||
2007 | 0.91* | 1.6 | 5.9* | 0.040 0* | -398.6 | 0.93* | 1.9* | 5.7* | 0.047 8* | -448.9 | |||||||
2008 | 0.85* | 1.5 | 5.0* | 0.032 7* | -327.8 | 0.99* | 1.4* | 5.7* | 0.045 0* | -380.9 | |||||||
2009 | 0.93* | 1.6* | 5.0* | 0.032 9* | -340.4 | 0.91* | 2.0* | 4.3* | 0.039 4* | -385.8 | |||||||
2010 | 0.83* | 0.6 | 4.5* | 0.030 5* | -212.2 | 0.85* | 0.9 | 4.3* | 0.041 5* | -274.2 | |||||||
2011 | 0.67 | 0.7 | 4.5* | 0.025 1 | -199.5 | 0.70* | 0.9 | 4.3 | 0.037 3* | -254.7 | |||||||
年份 Year | 车前开花始期 FFD of P. asiatica | 蒲公英开花始期 FFD of T. mongolicum | |||||||||||||||
R2 | a (d·°-1) | b (d·°-1) | c (d·m-1) | d | R2 | a (d·°-1) | b (d·°-1) | c (d·m-1) | d | ||||||||
2002 | 0.76* | -0.1 | 3.9* | 0.023 2* | -45.1 | 0.88* | 0.5 | 6.9* | 0.047 9* | -306.5 | |||||||
2003 | 0.96* | 0.9 | 5.3* | 0.032 2* | -226.1 | 0.89* | 0.9 | 6.5* | 0.048 8* | -334.9 | |||||||
2004 | 0.95* | 0.8 | 5.1* | 0.029 8* | -198.4 | 0.88* | 2.0 | 6.5* | -0.059 6* | -480.5 | |||||||
2005 | 0.92* | 1.4* | 3.9* | 0.030 8* | -215.4 | 0.91* | 1.7 | 6.2* | 0.051 7* | -418.4 | |||||||
2006 | 0.95* | 1.5* | 4.7* | 0.030 2* | -248.2 | 0.89* | 2.3 | 5.7* | 0.046 7* | -439.9 | |||||||
2007 | 0.96* | 2.8* | 2.8* | 0.034 7* | -330.0 | 0.91* | 2.1* | 5.5* | 0.054 8* | -440.4 | |||||||
2008 | 0.93* | 2.2* | 6.7* | 0.054 7* | -475.7 | 0.98* | 3.0* | 4.9* | 0.058 8* | -523.0 | |||||||
2009 | 0.83* | 1.9 | 5.5* | 0.044 6* | -367.8 | 0.94* | 2.9* | 3.7* | 0.057 5* | -470.9 | |||||||
2010 | 0.73* | 2.7 | 4.0 | 0.040 2* | -378.8 | 0.89* | 1.6 | 4.8* | 0.040 2* | -313.3 | |||||||
2011 | 0.77* | 2.0 | 4.8* | 0.037 5* | -328.6 | 0.83* | 1.2 | 6.5* | 0.049 6* | -360.7 | |||||||
年份 Year | 车前黄枯普遍期 LCD of P. asiatica | 蒲公英黄枯普遍期 LCD of T. mongolicum | |||||||||||||||
R2 | a (d·°-1) | b (d·°-1) | c (d·m-1) | d | R2 | a (d·°-1) | b (d·°-1) | c (d·m-1) | d | ||||||||
2002 | 0.82* | -2.7* | -4.0* | -0.035 8* | 803.2 | 0.80* | -2.3 | -4.7* | -0.048 1* | 825.3 | |||||||
2003 | 0.55 | -1.7 | -2.9 | -0.028 4 | 646.4 | 0.74* | -3.2 | -2.9 | -0.041 7* | 847.7 | |||||||
2004 | 0.79* | -1.3 | -3.1* | -0.020 5* | 593.3 | 0.71* | -2.7 | -3.2 | -0.035 3* | 781.8 | |||||||
2005 | 0.87* | -1.2 | -4.4* | -0.031 6* | 666.8 | 0.86* | -1.9* | -4.4* | -0.042 9* | 769.7 | |||||||
2006 | 0.84* | -1.0 | -3.8* | -0.026 6* | 596.2 | 0.91* | -2.0* | -3.9* | -0.043 6* | 762.4 | |||||||
2007 | 0.90* | -1.9* | -4.1* | -0.034 8* | 729.8 | 0.89* | -2.4* | -4.4* | -0.048 7* | 836.1 | |||||||
2008 | 0.79* | -2.5* | -1.8 | -0.029 5* | 693.2 | 0.78* | -3.0* | -1.7 | -0.039 6* | 775.7 | |||||||
2009 | 0.96* | -2.7* | -3.1* | -0.031 2* | 763.4 | 0.90* | -2.6* | -4.2* | -0.044 4* | 831.6 | |||||||
2010 | 0.91* | -3.6* | -2.6 | -0.040 3* | 874.7 | 0.93* | -3.8* | -3.0* | -0.048 3* | 935.5 | |||||||
2011 | 0.91* | -2.5* | -4.0* | -0.038 6* | 801.5 | 0.95* | -3.4* | -5.2* | -0.047 4* | 961.1 |
表3 青藏高原车前和蒲公英各物候事件和地理因子回归分析建模结果
Table 3 Regression modeling results between each phenological event of Plantago asiatica and Taraxacum mongolicum and geographic factors across the Qinghai-Xizang Plateau
年份 Year | 车前展叶始期 FLD of P. asiatica | 蒲公英展叶始期 FLD of T. mongolicum | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | a (d·°-1) | b (d·°-1) | c (d·m-1) | d | R2 | a (d·°-1) | b (d·°-1) | c (d·m-1) | d | ||||||||
2002 | 0.95* | 1.1 | 6.3* | 0.033 8* | -342.3 | 0.95* | 1.2 | 6.2* | 0.043 8* | -382.8 | |||||||
2003 | 0.98* | 0.7 | 6.8* | 0.036 2* | -318.3 | 1.00* | 0.9* | 6.3* | 0.045 2* | -362.8 | |||||||
2004 | 0.95* | 1.0 | 6.9* | 0.036 7* | -355.0 | 0.92* | 1.3 | 6.1* | 0.041 2* | -383.3 | |||||||
2005 | 0.90* | 1.0 | 5.9* | 0.032 9* | -320.1 | 0.92* | 1.7 | 6.1* | 0.043 2* | -428.5 | |||||||
2006 | 0.96* | 1.5* | 6.7* | 0.037 3* | -404.9 | 0.92* | 2.0* | 6.6* | 0.044 2* | -470.6 | |||||||
2007 | 0.91* | 1.6 | 5.9* | 0.040 0* | -398.6 | 0.93* | 1.9* | 5.7* | 0.047 8* | -448.9 | |||||||
2008 | 0.85* | 1.5 | 5.0* | 0.032 7* | -327.8 | 0.99* | 1.4* | 5.7* | 0.045 0* | -380.9 | |||||||
2009 | 0.93* | 1.6* | 5.0* | 0.032 9* | -340.4 | 0.91* | 2.0* | 4.3* | 0.039 4* | -385.8 | |||||||
2010 | 0.83* | 0.6 | 4.5* | 0.030 5* | -212.2 | 0.85* | 0.9 | 4.3* | 0.041 5* | -274.2 | |||||||
2011 | 0.67 | 0.7 | 4.5* | 0.025 1 | -199.5 | 0.70* | 0.9 | 4.3 | 0.037 3* | -254.7 | |||||||
年份 Year | 车前开花始期 FFD of P. asiatica | 蒲公英开花始期 FFD of T. mongolicum | |||||||||||||||
R2 | a (d·°-1) | b (d·°-1) | c (d·m-1) | d | R2 | a (d·°-1) | b (d·°-1) | c (d·m-1) | d | ||||||||
2002 | 0.76* | -0.1 | 3.9* | 0.023 2* | -45.1 | 0.88* | 0.5 | 6.9* | 0.047 9* | -306.5 | |||||||
2003 | 0.96* | 0.9 | 5.3* | 0.032 2* | -226.1 | 0.89* | 0.9 | 6.5* | 0.048 8* | -334.9 | |||||||
2004 | 0.95* | 0.8 | 5.1* | 0.029 8* | -198.4 | 0.88* | 2.0 | 6.5* | -0.059 6* | -480.5 | |||||||
2005 | 0.92* | 1.4* | 3.9* | 0.030 8* | -215.4 | 0.91* | 1.7 | 6.2* | 0.051 7* | -418.4 | |||||||
2006 | 0.95* | 1.5* | 4.7* | 0.030 2* | -248.2 | 0.89* | 2.3 | 5.7* | 0.046 7* | -439.9 | |||||||
2007 | 0.96* | 2.8* | 2.8* | 0.034 7* | -330.0 | 0.91* | 2.1* | 5.5* | 0.054 8* | -440.4 | |||||||
2008 | 0.93* | 2.2* | 6.7* | 0.054 7* | -475.7 | 0.98* | 3.0* | 4.9* | 0.058 8* | -523.0 | |||||||
2009 | 0.83* | 1.9 | 5.5* | 0.044 6* | -367.8 | 0.94* | 2.9* | 3.7* | 0.057 5* | -470.9 | |||||||
2010 | 0.73* | 2.7 | 4.0 | 0.040 2* | -378.8 | 0.89* | 1.6 | 4.8* | 0.040 2* | -313.3 | |||||||
2011 | 0.77* | 2.0 | 4.8* | 0.037 5* | -328.6 | 0.83* | 1.2 | 6.5* | 0.049 6* | -360.7 | |||||||
年份 Year | 车前黄枯普遍期 LCD of P. asiatica | 蒲公英黄枯普遍期 LCD of T. mongolicum | |||||||||||||||
R2 | a (d·°-1) | b (d·°-1) | c (d·m-1) | d | R2 | a (d·°-1) | b (d·°-1) | c (d·m-1) | d | ||||||||
2002 | 0.82* | -2.7* | -4.0* | -0.035 8* | 803.2 | 0.80* | -2.3 | -4.7* | -0.048 1* | 825.3 | |||||||
2003 | 0.55 | -1.7 | -2.9 | -0.028 4 | 646.4 | 0.74* | -3.2 | -2.9 | -0.041 7* | 847.7 | |||||||
2004 | 0.79* | -1.3 | -3.1* | -0.020 5* | 593.3 | 0.71* | -2.7 | -3.2 | -0.035 3* | 781.8 | |||||||
2005 | 0.87* | -1.2 | -4.4* | -0.031 6* | 666.8 | 0.86* | -1.9* | -4.4* | -0.042 9* | 769.7 | |||||||
2006 | 0.84* | -1.0 | -3.8* | -0.026 6* | 596.2 | 0.91* | -2.0* | -3.9* | -0.043 6* | 762.4 | |||||||
2007 | 0.90* | -1.9* | -4.1* | -0.034 8* | 729.8 | 0.89* | -2.4* | -4.4* | -0.048 7* | 836.1 | |||||||
2008 | 0.79* | -2.5* | -1.8 | -0.029 5* | 693.2 | 0.78* | -3.0* | -1.7 | -0.039 6* | 775.7 | |||||||
2009 | 0.96* | -2.7* | -3.1* | -0.031 2* | 763.4 | 0.90* | -2.6* | -4.2* | -0.044 4* | 831.6 | |||||||
2010 | 0.91* | -3.6* | -2.6 | -0.040 3* | 874.7 | 0.93* | -3.8* | -3.0* | -0.048 3* | 935.5 | |||||||
2011 | 0.91* | -2.5* | -4.0* | -0.038 6* | 801.5 | 0.95* | -3.4* | -5.2* | -0.047 4* | 961.1 |
图3 青藏高原车前(A-C)和蒲公英(D-F)展叶始期、开花始期和黄枯普遍期拟合值与海拔的回归结果。
Fig. 3 Regression results between fitted values of the first leaf date (FLD), first flowering date (FFD) and the common leaf coloring date (LCD) of Plantago asiatica (A-C) and Taraxacum mongolicum (D-F) and altitudes across the Qinghai-Xizang Plateau.
物候事件 Phenological event | 车前均方根误差 RMSE value of P. asiatica (d) | 蒲公英均方根误差 RMSE value of T. mongolicum (d) |
---|---|---|
展叶始期 FLD | 5.7 | 6.8 |
开花始期 FFD | 6.7 | 7.0 |
黄枯普遍期 LCD | 5.4 | 7.0 |
表4 青藏高原车前和蒲公英所有站点及年份各物候事件拟合值与观测值的均方根误差
Table 4 Root Mean Square Error (RMSE) values of each phenological event in all sites and years of Plantago asiatica and Taraxacum mongolicum across the Qinghai-Xizang Plateau
物候事件 Phenological event | 车前均方根误差 RMSE value of P. asiatica (d) | 蒲公英均方根误差 RMSE value of T. mongolicum (d) |
---|---|---|
展叶始期 FLD | 5.7 | 6.8 |
开花始期 FFD | 6.7 | 7.0 |
黄枯普遍期 LCD | 5.4 | 7.0 |
图4 青藏高原车前(A-C)和蒲公英(D-F)展叶始期、开花始期和黄枯普遍期拟合值与年平均气温拟合值的回归结果。
Fig. 4 Regression results between fitted values of the first leaf date (FLD), first flowering date (FFD) and the common leaf coloring date (LCD) of Plantago asiatica (A-C) and Taraxacum mongolicum (D-F) and fitted values of mean annual air temperature across the Qinghai-Xizang Plateau.
[1] | Ahas R, Aasa A, Menzel A, Fedotova VG, Scheifinger H (2002). Changes in European spring phenology. International Journal of Climatology, 22, 1727-1738. |
[2] | Beniston M (2003). Climatic change in mountain regions: a review of possible impacts. Climatic Change, 59, 5-31. |
[3] |
Blois JL, Williams JW, Fitzpatrick MC, Jackson ST, Ferrier S (2013). Space can substitute for time in predicting climate- change effects on biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 110, 9374-9379.
URL PMID |
[4] |
Bolmgren K, Vanhoenacker D, Miller-Rushing AJ (2013). One man, 73 years, and 25 species. Evaluating phenological responses using a lifelong study of first flowering dates. International Journal of Biometeorology, 57, 367-375.
URL PMID |
[5] | Cao YF, Wu RF, Yan WX (2008). Variation characteristics of Plantago phenology and its response to climate change. Meteorology Journal of Inner Mongolia, (6), 8-9,31. |
[ 曹艳芳, 吴瑞芬, 闫伟雄 (2008). 车前草物候变化特征及对气候变化的响应. 内蒙古气象, (6), 8-9,31.] | |
[6] | Chen HL, Liu J (2019). Response of phenological period of Plantago to climate change in grassland henanin county in Qinghai Province. Qinghai Prataculture, 28(3), 39-43. |
[ 陈海莲, 柳静 (2019). 青海省河南县草地车前物候期对气候变化的响应. 青海草业, 28(3), 39-43.] | |
[7] | Chen XQ, Zhang FC (2001). Spring phonological change in Beijing in the last 50 years and its response to the climatic changes. Chinese Journal of Agrometeorology, 22(1), 2-6. |
[ 陈效逑, 张福春 (2001). 近50年北京春季物候的变化及其对气候变化的响应. 中国农业气象, 22(1), 2-6.] | |
[8] | Chmielewski FM, Rötzer T (2001). Response of tree phenology to climate change across Europe. Agricultural and Forest Meteorology, 108, 101-112. |
[9] | Cui S, Meng F, Suonan J, Wang Q, Li B, Liu P, Renzeng W, Lv W, Jiang L, Zhang L, Li X, Li Y, Zhang Z, Luo C, Tsechoe D, Wang S (2017). Responses of phenology and seed production of annual Koenigia islandica to warming in a desertified alpine meadow. Agricultural and Forest Meteorology, 247, 376-384. |
[10] |
Dai JH, Wang HJ, Ge QS (2013). Multiple phenological responses to climate change among 42 plant species in Xiʼan, China. International Journal of Biometeorology, 57, 749-758.
URL PMID |
[11] |
Dai JH, Wang HJ, Ge QS (2014). The spatial pattern of leaf phenology and its response to climate change in China. International Journal of Biometeorology, 58, 521-528.
URL PMID |
[12] | Ding MJ, Zhang YL, Liu LS, Wang ZF (2011). Spatiotemporal changes of commencement of vegetation regreening and its response to climate change on Tibetan Plateau. Advances in Climate Change Research, 7, 317-323. |
[ 丁明军, 张镱锂, 刘林山, 王兆锋 (2011). 青藏高原植物返青期变化及其对气候变化的响应. 气候变化研究进展, 7, 317-323.] | |
[13] | Fan GZ, Jia ZJ (2010). Study advances on plant phenology. Arid Meteorology, 28, 250-255. |
[ 范广洲, 贾志军 (2010). 植物物候研究进展. 干旱气象, 28, 250-255.] | |
[14] | Fang XQ, Yu WH (2002). Progress in the studies on the phenological responding to global warming. Advance in Earth Sciences, 17, 714-719. |
[ 方修琦, 余卫红 (2002). 物候对全球变暖响应的研究综述. 地球科学进展, 17, 714-719.] | |
[15] | Fitzpatrick MC, Sanders NJ, Ferrier S, Longino JT, Weiser MD, Dunn R (2011). Forecasting the future of biodiversity: a test of single- and multi-species models for ants in North America. Ecography, 34, 836-847. |
[16] | Guo SL (2002). Advances in ecology and evolutionary biology of the genus Plantago. Chinese Bulletin of Botany, 19, 567-574. |
[ 郭水良 (2002). 车前属(Plantago L.)植物生态与进化生物学研究进展. 植物学通报, 19, 567-574.] | |
[17] | Huang WJ, Ge QS, Dai JH, Wang HJ (2017). Sensitivity of first flowering dates to temperature change for typical woody plants in Guiyang City, China. Progress in Geography, 36, 1015-1024. |
[ 黄文婕, 葛全胜, 戴君虎, 王焕炯 (2017). 贵阳木本植物始花期对温度变化的敏感度. 地理科学进展, 36, 1015-1024.] | |
[18] | IPCC (2013). Summary for policymakers//Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM. Climate Change 2013: the Physical Science Basis. Cambridge University Press, Cambridge, UK. 3-29. |
[19] |
Jiang LL, Wang SP, Meng FD, Duan JC, Niu HS, Xu GP, Zhu XX, Zhang ZH, Luo CY, Cui SJ, Li YM, Li XE, Wang Q, Zhou Y, Bao XY, Li YN, Dorji T, Piao SL, Ciais P, Peñuelas J, Du MY, Zhao XQ, Zhao L, Zhang FW, Wang GJ (2016). Relatively stable response of fruiting stage to warming and cooling relative to other phenological events. Ecology, 97, 1961-1969.
URL PMID |
[20] |
Johnson EA, Miyanishi K (2008). Testing the assumptions of chronosequences in succession. Ecology Letters, 11, 419-431.
URL PMID |
[21] |
Karl TR, Arguez A, Huang B, Lawrimore JH, McMahon JR, Menne MJ, Peterson TC, Vose RS, Zhang HM (2015). Possible artifacts of data biases in the recent global surface warming hiatus. Science, 348, 1469-1472.
URL PMID |
[22] | Koenig U, Abegg B (1997). Impacts of climate change on winter tourism in the Swiss Alps. Journal of Sustainable Tourism, 5, 46-58. |
[23] | Kong DD, Zhang Q, Huang WL, Gu XH (2017). Vegetation phenology change in Tibetan Plateau from 1982 to 2013 and its related meteorological factors. Acta Geographica Sinica, 72, 39-52. |
[ 孔冬冬, 张强, 黄文琳, 顾西辉 (2017). 1982-2013年青藏高原植被物候变化及气象因素影响. 地理学报, 72, 39-52.] | |
[24] |
Körner C (2007). The use of “altitude” in ecological research. Trends in Ecology & Evolution, 22, 569-574.
URL PMID |
[25] | Li L, Wang ZY, Qin NS, Wang QC (2002). Climate change and its impact on desertization around Qinghai Lake. Plateau Meteorology, 21, 59-65. |
[ 李林, 王振宇, 秦宁生, 汪青春 (2002). 环青海湖地区气候变化及其对荒漠化的影响. 高原气象, 21, 59-65.] | |
[26] | Malhi Y, Silman M, Salinas N, Bush M, Meir P, Saatchi S (2010). Introduction: elevation gradients in the tropics: laboratories for ecosystem ecology and global change research. Global Change Biology, 16, 3171-3175. |
[27] |
Menzel A, Fabian P (1999). Growing season extended in Europe. Nature, 397, 659.
DOI URL |
[28] | Pei SX, Guo QS, Xin XB, Hong M, Kang Y (2009). Research on plant phenological responses to climate change abroad. World Forestry Research, 22(6), 31-37. |
[ 裴顺祥, 郭泉水, 辛学兵, 洪明, 康义 (2009). 国外植物物候对气候变化响应的研究进展. 世界林业研究, 22(6), 31-37.] | |
[29] |
Peñuelas J, Sardans J, Estiarte M, Ogaya R, Carnicer J, Coll M, Barbeta A, Rivas-Ubach A, Llusià J, Garbulsky M, Filella I, Jump AS (2013). Evidence of current impact of climate change on life: a walk from genes to the biosphere. Global Change Biology, 19, 2303-2338.
URL PMID |
[30] | Piao SL, Fang JY, Zhou LM, Ciais P, Zhu B (2006). Variations in satellite-derived phenology in Chinaʼs temperate vegetation. Global Change Biology, 12, 672-685. |
[31] | Qi RY, Zhao LX (2013). Response of plantain phenology to climate change in Qinghai. Journal of Anhui Agricultural Sciences, 41, 3025-3026, 3028. |
[ 祁如英, 赵隆香 (2013). 青海车前草物候对气候变化的响应研究. 安徽农业科学, 41, 3025-3026, 3028.] | |
[32] |
Schaber J, Badeck FW (2002). Evaluation of methods for the combination of phenological time series and outlier detection. Tree Physiology, 22, 973-982.
URL PMID |
[33] |
Sherry RA, Zhou X, Gu S, Arnone JA, Schimel DS, Verburg PS, Wallace LL, Luo YQ (2007). Divergence of reproductive phenology under climate warming. Proceedings of the National Academy of Sciences of the United States of America, 104, 198-202.
URL PMID |
[34] |
Steltzer H, Post E (2009). Seasons and life cycles. Science, 324, 886-887.
DOI URL PMID |
[35] |
Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Townsend Peterson A, Phillips OL, Williams SE (2004). Extinction risk from climate change. Nature, 427, 145-148.
DOI URL PMID |
[36] |
Tierney JE, Russell JM, Eggermont H, Hopmans EC, Verschuren D, Sinninghe Damsté JS (2010). Environmental controls on branched tetraether lipid distributions in tropical East African lake sediments. Geochimica et Cosmochimica Acta, 74, 4902-4918.
DOI URL |
[37] |
Wang HJ, Dai JH, Zheng JY, Ge QS (2014a). Temperature sensitivity of plant phenology in temperate and subtropical regions of China from 1850 to 2009. International Journal of Climatology, 35, 913-922.
DOI URL |
[38] | Wang SP, Wang CS, Duan JC, Zhu XX, Xu GP, Luo CY, Zhang ZH, Meng FD, Li YN, Du MY (2014b). Timing and duration of phenological sequences of alpine plants along an elevation gradient on the Tibetan Plateau. Agricultural and Forest Meteorology, 189-190, 220-228. |
[39] |
Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Travers SE, Pau S, Regetz J, Davies TJ, Kraft NJB, Ault TR, Bolmgren K, Mazer SJ, McCabe GJ, McGill BJ, Parmesan C, Salamin N, Schwartz MD, Cleland EE (2012). Warming experiments underpredict plant phenological responses to climate change. Nature, 485, 494-497.
URL PMID |
[40] | Wu RJ, Zheng YF, Zhao GQ, Wang M (2009). Spring phenophase changes of dominant plants in Zhengzhou and their responses to air temperature change. Chinese Journal of Ecology, 28, 1049-1054. |
[ 吴荣军, 郑有飞, 赵国强, 王敏 (2009). 郑州主要植物春季物候变化及其对气温变化的响应. 生态学杂志, 28, 1049-1054.] | |
[41] | Xu GX, Luo SX, Guo QS, Pei SX, Shi ZM, Zhu L, Zhu NN (2014). Responses of leaf unfolding and flowering to climate change in 12 tropical evergreen broadleaf tree species in Jianfengling, Hainan Island. Chinese Journal of Plant Ecology, 38, 585-598. |
[ 许格希, 罗水兴, 郭泉水, 裴顺祥, 史作民, 朱莉, 朱妮妮 (2014). 海南岛尖峰岭12种热带常绿阔叶乔木展叶期与开花期对气候变化的响应. 植物生态学报, 38, 585-598.] | |
[42] | Xu YJ, Zhong SY, Dai JH, Tao ZX, Wang HJ (2017). Changes in flowering phenology of plants and their model simulation in Mudanjiang, China. Geographical Research, 36, 779-789. |
[ 徐韵佳, 仲舒颖, 戴君虎, 陶泽兴, 王焕炯 (2017). 1978-2014年牡丹江地区植物花期变化及模型模拟. 地理研究, 36, 779-789.] | |
[43] | Xu YQ, Lu PL, Yu Q (2005). Response of tree phenology to climate change for recent 50 years in Beijing. Geographical Research, 24, 412-420. |
[ 徐雨晴, 陆佩玲, 于强 (2005). 近50年北京树木物候对气候变化的响应. 地理研究, 24, 412-420.] | |
[44] | Zhang FC (1995). Effects of global warming on plant phenological everts in China. Acta Geographica Sinica, 50, 402-410. |
[ 张福春 (1995). 气候变化对中国木本植物物候的可能影响. 地理学报, 50, 402-410.] | |
[45] | Zhang XX, Ge QS, Zheng JY, Zhang FC (2005). Responses of spring phenology to climate changes in Beijing in last 150 years. Chinese Journal of Agrometeorology, 26, 263-267. |
[ 张学霞, 葛全胜, 郑景云, 张福春 (2005). 近150年北京春季物候对气候变化的响应. 中国农业气象, 26, 263-267.] | |
[46] | Zhao JB, Zhang YP, Song FQ, Xu ZF, Xiao YL (2009). A comparison of the phenological characteristics of introduced plant species in the Xishuangbanna Tropical Botanical Garden. Bulletin of Botany, 44, 464-472. |
[ 赵俊斌, 张一平, 宋富强, 许再富, 肖云来 (2009). 西双版纳热带植物园引种植物物候特征比较. 植物学报, 44, 464-472.] | |
[47] | Zheng ZT (2018). Responses of Net Primary Productivity to Green-Up Dynamics in the Alpine Grassland on the Qinghai-Tibetan Plateau. PhD dissertation, Beijing Normal University, Beijing. 7-29. |
[ 郑周涛 (2018). 青藏高原草地返青期对净初级生产力的调控作用研究. 博士学位论文, 北京师范大学, 北京. 7-29.] | |
[48] | Zheng ZT, Zhu WQ, Chen GS, Jiang N, Fan DQ, Zhang DH (2016). Continuous but diverse advancement of spring- summer phenology in response to climate warming across the Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 223, 194-202. |
[49] | Zhu WQ, Zheng ZT, Jiang N, Zhang DH (2018). A comparative analysis of the spatio-temporal variation in the phenologies of two herbaceous species and associated climatic driving factors on the Tibetan Plateau. Agricultural and Forest Meteorology, 248, 177-184. |
[1] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[2] | 索南吉, 李博文, 吕汪汪, 王文颖, 拉本, 陆徐伟, 宋扎磋, 陈程浩, 苗琪, 孙芳慧, 汪诗平. 增温增水情景下钉柱委陵菜物候序列的变化及其抗冻性[J]. 植物生态学报, 2024, 48(2): 158-170. |
[3] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[4] | 白雨鑫, 苑丹阳, 王兴昌, 刘玉龙, 王晓春. 东北地区3种桦木木质部导管特征对气候变化响应的趋同与差异[J]. 植物生态学报, 2023, 47(8): 1144-1158. |
[5] | 李兆光, 文高, 和桂青, 徐天才, 和琼姬, 侯志江, 李燕, 薛润光. 滇西北藜麦氮磷钾生态化学计量特征的物候期动态[J]. 植物生态学报, 2023, 47(5): 724-732. |
[6] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[7] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[8] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[9] | 陈心怡, 吴晨, 黄锦学, 熊德成. 增温对林木细根物候影响的研究进展[J]. 植物生态学报, 2023, 47(11): 1471-1482. |
[10] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[11] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[12] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[13] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[14] | 陈奕竹, 郎伟光, 陈效逑. 中国北方树木秋季物候的过程模拟及其区域分异归因[J]. 植物生态学报, 2022, 46(7): 753-765. |
[15] | 金伊丽, 王皓言, 魏临风, 侯颖, 胡景, 吴铠, 夏昊钧, 夏洁, 周伯睿, 李凯, 倪健. 青藏高原植物群落样方数据集[J]. 植物生态学报, 2022, 46(7): 846-854. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19