植物生态学报 ›› 2022, Vol. 46 ›› Issue (7): 753-765.DOI: 10.17521/cjpe.2021.0254
收稿日期:
2021-07-07
接受日期:
2021-09-27
出版日期:
2022-07-20
发布日期:
2021-12-16
通讯作者:
陈效逑
作者简介:
* (cxq@pku.edu.cn)基金资助:
CHEN Yi-Zhu, LANG Wei-Guang, CHEN Xiao-Qiu()
Received:
2021-07-07
Accepted:
2021-09-27
Online:
2022-07-20
Published:
2021-12-16
Contact:
CHEN Xiao-Qiu
Supported by:
摘要:
揭示温带落叶树木秋季物候的发生机理对提高生态系统固碳量和植被生产力的预估精度具有重要意义。该研究利用低温和光周期乘积模型模拟了1981-2014年中国北方温带90余个站点6个树种的叶始变色期和落叶末期, 并对逐站点-物种的最优模型进行了模拟精度评价, 分析了最优模型模拟精度的时空差异及其随水分梯度的空间变化。主要结果如下: (1)在诱导叶片衰老方面, 光周期缩短的影响通常大于温度降低的影响。据此建立的叶始变色期和落叶末期最优模型模拟的平均均方根误差分别为6.9 d和6.0 d, 模拟与观测时间序列呈显著正相关关系的比例分别为71.4%和83.6%; (2)最优模型对区域平均和多年平均叶始变色期和落叶末期模拟的绝对误差小于2.4 d, 但模拟日期的时空变幅通常小于观测日期, 这与秋季物候发生日期的高度时间变异性密切相关; (3)水分条件在一定程度上影响叶片衰老诱导途径的选择, 表现为光周期缩短诱导叶片衰老的叶始变色期最优模型所占比例在干旱和半干旱区大于湿润和半湿润区, 而最优模型的模拟精度在湿润和半湿润区高于干旱和半干旱区。该研究验证了低温和光周期乘积模型在中国温带地区的适用性, 并揭示了水分条件对秋季物候发生机理和模拟精度的影响。
陈奕竹, 郎伟光, 陈效逑. 中国北方树木秋季物候的过程模拟及其区域分异归因. 植物生态学报, 2022, 46(7): 753-765. DOI: 10.17521/cjpe.2021.0254
CHEN Yi-Zhu, LANG Wei-Guang, CHEN Xiao-Qiu. Process-based simulation of autumn phenology of trees and the regional differentiation attribution in northern China. Chinese Journal of Plant Ecology, 2022, 46(7): 753-765. DOI: 10.17521/cjpe.2021.0254
物候期 Phenophase | 物种 species | TPMp (%) | TPMt (%) | RMSE平均值 Average RMSE | RMSE < 8 d比例 Proportion of RMSE < 8 d (%) | r > 0.6 (p < 0.05)比例 Proportion of r > 0.6 (p < 0.05) (%) |
---|---|---|---|---|---|---|
叶始变色期 First leaf coloration | 刺槐 Robinia pseudoacacia | 50.0 | 50.0 | 7.6 | 60.7 | 14.3 |
旱柳 Salix matsudana | 66.0 | 34.0 | 6.6 | 74.5 | 51.9 | |
杏 Armeniaca vulgaris | 75.0 | 25.0 | 6.9 | 83.3 | 41.7 | |
榆树 Ulmus pumila | 68.6 | 31.4 | 7.0 | 71.4 | 31.4 | |
毛白杨 Populus tomentosa | 54.5 | 45.5 | 7.6 | 63.6 | 31.8 | |
小叶杨 Populus simonii | 69.0 | 31.0 | 6.4 | 75.9 | 44.8 | |
落叶末期 Leaf fall end | 刺槐 Robinia pseudoacacia | 56.7 | 43.3 | 6.4 | 70.0 | 30.0 |
旱柳 Salix matsudana | 59.6 | 40.4 | 6.0 | 80.9 | 44.7 | |
杏 Armeniaca vulgaris | 58.3 | 41.7 | 5.3 | 95.8 | 50.0 | |
榆树 Ulmus pumila | 62.9 | 37.1 | 5.5 | 88.6 | 51.4 | |
毛白杨 Populus tomentosa | 60.9 | 39.1 | 6.1 | 73.9 | 43.5 | |
小叶杨 Populus simonii | 56.7 | 43.3 | 6.6 | 73.3 | 33.3 |
表1 中国北方不同树种秋季物候最优模型的序列比例和评价指标的比较
Table 1 Comparison of proportions and evaluation indicators of autumn phenology optimum models among different tree species in northern China
物候期 Phenophase | 物种 species | TPMp (%) | TPMt (%) | RMSE平均值 Average RMSE | RMSE < 8 d比例 Proportion of RMSE < 8 d (%) | r > 0.6 (p < 0.05)比例 Proportion of r > 0.6 (p < 0.05) (%) |
---|---|---|---|---|---|---|
叶始变色期 First leaf coloration | 刺槐 Robinia pseudoacacia | 50.0 | 50.0 | 7.6 | 60.7 | 14.3 |
旱柳 Salix matsudana | 66.0 | 34.0 | 6.6 | 74.5 | 51.9 | |
杏 Armeniaca vulgaris | 75.0 | 25.0 | 6.9 | 83.3 | 41.7 | |
榆树 Ulmus pumila | 68.6 | 31.4 | 7.0 | 71.4 | 31.4 | |
毛白杨 Populus tomentosa | 54.5 | 45.5 | 7.6 | 63.6 | 31.8 | |
小叶杨 Populus simonii | 69.0 | 31.0 | 6.4 | 75.9 | 44.8 | |
落叶末期 Leaf fall end | 刺槐 Robinia pseudoacacia | 56.7 | 43.3 | 6.4 | 70.0 | 30.0 |
旱柳 Salix matsudana | 59.6 | 40.4 | 6.0 | 80.9 | 44.7 | |
杏 Armeniaca vulgaris | 58.3 | 41.7 | 5.3 | 95.8 | 50.0 | |
榆树 Ulmus pumila | 62.9 | 37.1 | 5.5 | 88.6 | 51.4 | |
毛白杨 Populus tomentosa | 60.9 | 39.1 | 6.1 | 73.9 | 43.5 | |
小叶杨 Populus simonii | 56.7 | 43.3 | 6.6 | 73.3 | 33.3 |
图2 中国北方6种树木所有站点逐年最优模拟日期与观测日期之间的相关回归分析和均方根误差(RMSE)。A, 叶始变色期。B, 落叶末期。1, 刺槐。2, 旱柳。3, 杏。4, 榆树。5, 毛白杨。6, 小叶杨。
Fig. 2 Correlation and regression analyses and root-mean-square errors (RMSE) between optimum model simulated dates and observed dates for six tree species in each year at each station in northern China. A, First leaf coloration. B, Leaf fall end. 1, Robinia pseudoacacia. 2,Salix matsudana. 3, Armeniaca vulgaris. 4, Ulmus pumila. 5, Populus tomentosa. 6, Populus simonii.
图3 中国北方逐年6个树种模拟与观测日期空间变幅的比较。A, 叶始变色期。B, 落叶末期。1, 刺槐。2, 旱柳。3, 杏。4, 榆树。5, 毛白杨。6, 小叶杨。
Fig. 3 Comparison between spatial ranges of simulated and observed dates for six tree species in each year in northern China. A, First leaf coloration. B, Leaf fall end. 1, Robinia pseudoacacia. 2, Salix matsudana. 3, Armeniaca vulgaris. 4, Ulmus pumila. 5, Populus tomentosa. 6, Populus simonii.
图4 中国北方6个树种各站点模拟与观测日期年际变幅的比较。A, 叶始变色期。B, 落叶末期。1, 刺槐。2, 旱柳。3, 杏。4, 榆树。5, 毛白杨。6, 小叶杨。
Fig. 4 Comparison between interannual ranges of simulated and observed dates for six tree species at each station in northern China. A, First leaf coloration. B, Leaf fall end. 1, Robinia pseudoacacia. 2, Salix matsudana. 3, Armeniaca vulgaris. 4, Ulmus pumila. 5, Populus tomentosa. 6, Populus simonii.
干湿区 Arid-humid region | 叶始变色期 First leaf coloration | 落叶末期 Leaf fall end | ||
---|---|---|---|---|
TPMp比例 Proportion of TPMp (%) | TPMt比例 Proportion of TPMt (%) | TPMp比例 Proportion of TPMp (%) | TPMt比例 Proportion of TPMt (%) | |
干旱区 Arid region | 74.3 | 25.7 | 56.8 | 43.2 |
半干旱区 Semi-arid region | 68.2 | 31.8 | 63.6 | 36.4 |
半湿润区 Semi-humid region | 60.0 | 40.0 | 63.4 | 36.6 |
湿润区 Humid region | 57.7 | 42.3 | 42.3 | 57.7 |
表2 中国北方不同干湿地区叶始变色期和落叶末期最优模型的比例
Table 2 Proportions of optimum models for first leaf coloration date and leaf fall end date across different arid-humid regions in northern China
干湿区 Arid-humid region | 叶始变色期 First leaf coloration | 落叶末期 Leaf fall end | ||
---|---|---|---|---|
TPMp比例 Proportion of TPMp (%) | TPMt比例 Proportion of TPMt (%) | TPMp比例 Proportion of TPMp (%) | TPMt比例 Proportion of TPMt (%) | |
干旱区 Arid region | 74.3 | 25.7 | 56.8 | 43.2 |
半干旱区 Semi-arid region | 68.2 | 31.8 | 63.6 | 36.4 |
半湿润区 Semi-humid region | 60.0 | 40.0 | 63.4 | 36.6 |
湿润区 Humid region | 57.7 | 42.3 | 42.3 | 57.7 |
干湿区 Arid-humid region | 叶始变色期 First leaf coloration | 落叶末期 Leaf fall end | ||
---|---|---|---|---|
RMSE < 8 d的比例 Proportion of RMSE < 8 d (%) | 显著正相关比例 Proportion of significantly positive correlation (%) | RMSE < 8 d所占比例 Proportion of RMSE < 8 d (%) | 显著正相关比例 Proportion of significantly positive correlation (%) | |
干旱区 Arid region | 62.9 | 62.9 | 83.8 | 89.2 |
半干旱区 Semi-arid region | 77.3 | 72.7 | 79.5 | 75.0 |
半湿润区 Semi-humid region | 66.3 | 71.3 | 80.5 | 81.7 |
湿润区 Humid region | 92.3 | 80.8 | 76.9 | 96.2 |
表3 中国北方不同干湿地区叶始变色期和落叶末期最优模型模拟效果的比较
Table 3 Comparison of simulation effects of optimum models for first leaf coloration date and leaf fall end date in different arid-humid regions in northern China
干湿区 Arid-humid region | 叶始变色期 First leaf coloration | 落叶末期 Leaf fall end | ||
---|---|---|---|---|
RMSE < 8 d的比例 Proportion of RMSE < 8 d (%) | 显著正相关比例 Proportion of significantly positive correlation (%) | RMSE < 8 d所占比例 Proportion of RMSE < 8 d (%) | 显著正相关比例 Proportion of significantly positive correlation (%) | |
干旱区 Arid region | 62.9 | 62.9 | 83.8 | 89.2 |
半干旱区 Semi-arid region | 77.3 | 72.7 | 79.5 | 75.0 |
半湿润区 Semi-humid region | 66.3 | 71.3 | 80.5 | 81.7 |
湿润区 Humid region | 92.3 | 80.8 | 76.9 | 96.2 |
指标 Indicator | Lang等( Results from Lang et al. ( | 本研究结果 Results of this study |
---|---|---|
TPMp拟合的时间序列比例 Proportion of time series fitted by TPMp (%) | 61.9 | 64.3 |
TPMt拟合的时间序列比例 Proportion of time series fitted by TPMt (%) | 38.1 | 35.7 |
RMSE的数值范围 Range of RMSE (d) | 4.1-18.9 | 2.6-16.9 |
RMSE平均值 Average RMSE (d) | 8.2 | 6.9 |
RMSE ≤ 10 d的时间序列比例 Proportions of time series for RMSE ≤ 10 d (%) | 85.7 | 88.1 |
模拟与观测日期显著正相关的时间序列比例 Proportion of time series with significantly positive correlation between simulated and observed first leaf coloration dates (%) | 76.2 | 71.4 |
表4 青藏高原和中国北方温带地区树木叶始变色期最优模型及模拟结果的比较
Table 4 Comparison of optimum models and simulation results of trees' first leaf coloration dates between Qingzang Plateau and temperate northern China
指标 Indicator | Lang等( Results from Lang et al. ( | 本研究结果 Results of this study |
---|---|---|
TPMp拟合的时间序列比例 Proportion of time series fitted by TPMp (%) | 61.9 | 64.3 |
TPMt拟合的时间序列比例 Proportion of time series fitted by TPMt (%) | 38.1 | 35.7 |
RMSE的数值范围 Range of RMSE (d) | 4.1-18.9 | 2.6-16.9 |
RMSE平均值 Average RMSE (d) | 8.2 | 6.9 |
RMSE ≤ 10 d的时间序列比例 Proportions of time series for RMSE ≤ 10 d (%) | 85.7 | 88.1 |
模拟与观测日期显著正相关的时间序列比例 Proportion of time series with significantly positive correlation between simulated and observed first leaf coloration dates (%) | 76.2 | 71.4 |
图5 中国北方6个树种叶始变色与落叶末观测日期标准差与模拟日期均方根误差(RMSE)之间的相关回归分析。A, 叶始变色期。B, 落叶末期。
Fig. 5 Correlation and regression analyses between observed standard deviation and simulated root mean squared error (RMSE) for first leaf coloration and leaf fall end dates of six tree species in northern China. A, First leaf coloration. B, Leaf fall end.
[1] | Aikio S, Taulavuori K, Hurskainen S, Taulavuori E, Tuomi J (2019). Contributions of day length, temperature and individual variability on the rate and timing of leaf senescence in the common lilac Syringa vulgaris. Tree Physiology, 39, 961-970. |
[2] |
Archetti M, Richardson AD, O'Keefe J, Delpierre N (2013). Predicting climate change impacts on the amount and duration of autumn colors in a New England forest. PLOS ONE, 8, e57373. DOI: 10.1371/journal.pone.0057373.
DOI URL |
[3] | Chen XQ (2013). East Asia//Schwartz MD. Phenology: An Integrative Environmental Science. 2nd ed. Springer, Dordrecht, the Netherlands. 9-22. |
[4] | Chen XQ (2017). Spatiotemporal Processes of Plant Phenology: Simulation and Prediction. Springer, Berlin. |
[5] | Editorial Board of Climate Atlas of the Peopleʼs Republic of China (1979). Climate Atlas of the People's Republic of China. China Meterological Press, Beijing. |
[《中华人民共和国气候图集》编委会 (1979). 中华人民共和国气候图集. 气象出版社, 北京.] | |
[6] | China Meterological Administration (1993). Observation Criterion of Agicultural Meteorology. China Meterological Press, Beijing. |
[国家气象局 (1993). 农业气象观测规范. 气象出版社, 北京.] | |
[7] |
Chuine I (2000). A unified model for budburst of trees. Journal of Theoretical Biology, 207, 337-347.
PMID |
[8] | Chuine I, Cour P, Rousseau DD (1998). Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing. Plant, Cell & Environment, 21, 455-466. |
[9] |
Cleland EE, Chiariello NR, Loarie SR, Mooney HA, Field CB (2006). Diverse responses of phenology to global changes in a grassland ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 103, 13740-13744.
PMID |
[10] |
Delpierre N, Dufrêne E, Soudani K, Ulrich E, Cecchini S, Boé J, François C (2009). Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agricultural and Forest Meteorology, 149, 938-948.
DOI URL |
[11] |
Dufrêne E, Davi H, François C, Maire GI, Dantec VL, Granier A (2005). Modelling carbon and water cycles in a beech forest. Ecological Modelling, 185, 407-436.
DOI URL |
[12] |
Estiarte M, Peñuelas J (2015). Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency. Global Change Biology, 21, 1005-1017.
DOI PMID |
[13] |
Forsythe WC, Rykiel Jr EJ, Stahl RS, Wu H, Schoolfield RM (1995). A model comparison for daylength as a function of latitude and day of year. Ecological Modelling, 80, 87-95.
DOI URL |
[14] |
Fracheboud Y, Luquez V, Björkén L, Sjödin A, Tuominen H, Jansson S (2009). The control of autumn senescence in European aspen. Plant Physiology, 149, 1982-1991.
DOI PMID |
[15] | Fu YSH, Campioli M, Vitasse Y, de Boeck HJ, van den Berge J, AbdElgawad H, Asard H, Piao S, Deckmyn G, Janssens IA (2014). Variation in leaf flushing date influences autumnal senescence and next yearʼs flushing date in two temperate tree species. Proceedings of the National Academy of Sciences of the United States of America, 111, 7355-7360. |
[16] |
Garonna I, de Jong R, de Wit AJW, Mücher CA, Schmid B, Schaepman ME (2014). Strong contribution of autumn phenology to changes in satellite-derived growing season length estimates across Europe (1982-2011). Global Change Biology, 20, 3457-3470.
DOI PMID |
[17] |
Hogg EH, Price DT, Black TA (2000). Postulated feedbacks of deciduous forest phenology on seasonal climate patterns in the western Canadian interior. Journal of Climate, 13, 4229-4243.
DOI URL |
[18] |
Keenan TF, Richardson AD (2015). The timing of autumn senescence is affected by the timing of spring phenology: implications for predictive models. Global Change Biology, 21, 2634-2641.
DOI URL |
[19] |
Lang WG, Chen XQ, Qian SW, Liu GH, Piao SL (2019). A new process-based model for predicting autumn phenology: How is leaf senescence controlled by photoperiod and temperature coupling? Agricultural and Forest Meteorology, 268, 124-135.
DOI URL |
[20] |
Liu GH, Chen XQ, Zhang QH, Lang WG, Delpierre N (2018). Antagonistic effects of growing season and autumn temperatures on the timing of leaf coloration in winter deciduous trees. Global Change Biology, 24, 3537-3545.
DOI URL |
[21] |
Liu GH, Chen XQ, Fu YS, Delpierre N (2019). Modelling leaf coloration dates over temperate China by considering effects of leafy season climate. Ecological Modelling, 394, 34-43.
DOI URL |
[22] | Matos FS, de Oliveria LR, de Freitas RG, Evaristo AB, Missio RF, Oliva Cano MA, Dias LADS (2012). Physiological characterization of leaf senescence of Jatropha curcas L. populations. Biomass & Bioenergy, 45, 57-64. |
[23] |
Menzel A, Fabian P (1999). Growing season extended in Europe. Nature, 397, 659.
DOI URL |
[24] |
Morin X, Roy J, Sonié L, Chuine I (2010). Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytologist, 186, 900-910.
DOI URL |
[25] |
Nash JE, Sutcliffe JV (1970). River flow forecasting through conceptual models part I-A discussion of principles. Journal of Hydrology, 10, 282-290.
DOI URL |
[26] |
Norby RJ, Hartz-Rubin JS, Verbrugge MJ (2003). Phenological responses in maple to experimental atmospheric warming and CO2 enrichment. Global Change Biology, 9, 1792-1801.
DOI URL |
[27] |
Parmesan C (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637-669.
DOI URL |
[28] |
Piao S, Wang X, Wang K, Li X, Bastos A, Canadell JG, Ciais P, Friedlingstein P, Sitch S (2020). Interannual variation of terrestrial carbon cycle: issues and perspectives. Global Change Biology, 26, 300-318.
DOI URL |
[29] | Pilegaard K, Ibrom A (2020). Net carbon ecosystem exchange during 24 years in the Sorø Beech Forest-Relations to phenology and climate. Tellus B: Chemical and Physical Meteorology, 72, 1-17. |
[30] |
Pudas E, Leppälä M, Tolvanen A, Poikolainen J, Venäläinen A, Kubin E (2008). Trends in phenology of Betula pubescens across the boreal zone in Finland. International Journal of Biometeorology, 52, 251-259.
DOI PMID |
[31] |
Richardson AD, Andy Black T, Ciais P, Delbart N, Friedl MA, Gobron N, Hollinger DY, Kutsch WL, Longdoz B, Luyssaert S, Migliavacca M, Montagnani L, William Munger J, Moors E, Piao S, et al. (2010). Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philosophical Transactions of the Royal Society B, 365, 3227-3246.
DOI URL |
[32] |
Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M (2013). Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 169, 156-173.
DOI URL |
[33] |
Ryu Y, Baldocchi DD, Ma S, Hehn T (2008). Interannual variability of evapotranspiration and energy exchange over an annual grassland in California. Journal of Geophysical Research, 113, D9104. DOI: 10.1029/2007JD009263.
DOI URL |
[34] | Soolanayakanahally RY, Guy RD, Silim SN, Song MH (2013). Timing of photoperiodic competency causes phenological mismatch in balsam poplar (Populus balsamifera L.). Plant, Cell & Environment, 36, 116-127. |
[35] |
Tao Z, Wang H, Dai J, Alatalo J, Ge Q (2018). Modeling spatiotemporal variations in leaf coloring date of three tree species across China. Agricultural and Forest Meteorology, 249, 310-318.
DOI URL |
[36] | Worrall J (1998). Autumn leaf colouration. The Forestry Chronicle, 74, 668-669. |
[37] |
Wu CY, Chen JM, Black TA, Price DT, Kurz WA, Desai AR, Gonsamo A, Jassal RS, Gough CM, Bohrer G, Dragoni D, Herbst M, Gielen B, Berninger F, Vesala T, et al. (2013). Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn. Global Ecology and Biogeography, 22, 994-1006.
DOI URL |
[38] | Xie Y, Wang X, Silander Jr JA (2015). Deciduous forest responses to temperature, precipitation, and drought imply complex climate change impacts. Proceedings of the National Academy of Sciences of the United States of America, 112, 13585-13590. |
[39] |
Zani D, Crowther TW, Mo L, Renner SS, Zohner CM (2020). Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science, 370, 1066-1071.
DOI URL |
[40] |
Zhang Y, Chen HYH, Reich PB (2012). Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. Journal of Ecology, 100, 742-749.
DOI URL |
[41] |
Zhu WQ, Tian HQ, Xu XF, Pan YZ, Chen GS, Lin WP (2012). Extension of the growing season due to delayed autumn over mid and high latitudes in north America during 1982-2006. Global Ecology and Biogeography, 21, 260-271.
DOI URL |
[1] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[2] | 郭敏, 罗林, 梁进, 王彦杰, 赵春章. 冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J]. 植物生态学报, 2023, 47(6): 882-894. |
[3] | 魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽. 实验增温对陆地生态系统根系生物量的影响[J]. 植物生态学报, 2021, 45(11): 1203-1212. |
[4] | 闫涵, 张云玲, 马松梅, 王春成, 张丹. 黑果枸杞在新疆的适宜分布模拟与局部环境适应性分化[J]. 植物生态学报, 2021, 45(11): 1221-1230. |
[5] | 朱彪, 陈迎. 陆地生态系统野外增温控制实验的技术与方法[J]. 植物生态学报, 2020, 44(4): 330-339. |
[6] | 李旭, 吴婷, 程严, 谭钠丹, 蒋芬, 刘世忠, 褚国伟, 孟泽, 刘菊秀. 南亚热带常绿阔叶林4个树种对增温的生理生态适应能力比较[J]. 植物生态学报, 2020, 44(12): 1203-1214. |
[7] | 闫鹏飞, 展鹏飞, 肖德荣, 王燚, 余瑞, 刘振亚, 王行. 模拟增温及分解界面对茭草凋落物分解速率及叶际微生物结构和功能的影响[J]. 植物生态学报, 2019, 43(2): 107-118. |
[8] | 宋小艳, 王根绪, 冉飞, 杨燕, 张莉, 肖瑶. 东北大兴安岭演替初期泰加林灌草层典型植物开花物候与生长对模拟暖干化气候的响应[J]. 植物生态学报, 2018, 42(5): 539-549. |
[9] | 刘晓, 戚超, 闫艺兰, 袁国富. 不同生态系统水分利用效率指标在黄土高原半干旱草地应用的适宜性评价[J]. 植物生态学报, 2017, 41(5): 497-505. |
[10] | 王芑丹, 杨温馨, 黄洁钰, 徐昆, 王佩. 灌丛化的蒸散耗水效应数值模拟研究——以内蒙古灌丛化草原为例[J]. 植物生态学报, 2017, 41(3): 348-358. |
[11] | 管超, 张鹏, 李新荣. 腾格里沙漠东南缘生物结皮土壤呼吸对水热因子变化的响应[J]. 植物生态学报, 2017, 41(3): 301-310. |
[12] | 陈定帅, 董正武, 高磊, 陈效民, 彭新华, 司炳成, 赵英. 不同降水条件下科尔沁沙地小叶锦鸡儿和盐蒿的水分利用动态[J]. 植物生态学报, 2017, 41(12): 1262-1272. |
[13] | 贾彦龙, 李倩茹, 许中旗, 桑卫国. 基于CO2FIX模型的华北落叶松人工林碳循环过程[J]. 植物生态学报, 2016, 40(4): 405-415. |
[14] | 徐世琴, 吉喜斌, 金博文. 典型固沙植物梭梭生长季蒸腾变化及其对环境因子的响应[J]. 植物生态学报, 2015, 39(9): 890-900. |
[15] | 徐冰鑫, 胡宜刚, 张志山, 陈永乐, 张鹏, 李刚. 模拟增温对荒漠生物土壤结皮-土壤系统CO2、CH4和N2O通量的影响[J]. 植物生态学报, 2014, 38(8): 809-820. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19