植物生态学报 ›› 2014, Vol. 38 ›› Issue (8): 809-820.DOI: 10.3724/SP.J.1258.2014.00076
所属专题: 生态系统碳水能量通量
徐冰鑫1,2, 胡宜刚1,*(), 张志山1, 陈永乐1,2, 张鹏1, 李刚1,2
收稿日期:
2013-12-30
接受日期:
2014-04-14
出版日期:
2014-12-30
发布日期:
2014-08-18
通讯作者:
胡宜刚
作者简介:
*E-mail: huyig@lzb.ac.cn基金资助:
XU Bing-Xin1,2, HU Yi-Gang1,*(), ZHANG Zhi-Shan1, CHEN Yong-Le1,2, ZHANG Peng1, LI Gang1,2
Received:
2013-12-30
Accepted:
2014-04-14
Online:
2014-12-30
Published:
2014-08-18
Contact:
HU Yi-Gang
摘要:
目前, 有关增温条件下荒漠生物土壤结皮(BSCs)-土壤系统与大气之间主要温室气体(CO2、CH4和N2O)通量变化的研究十分匮乏, 以致很难准确地评估荒漠生态系统温室气体通量对气候变暖的响应与反馈的方向和程度。该文选择腾格里沙漠东南缘天然植被区由藻类、藓类以及二者混生的3种类型的BSCs覆盖土壤为研究对象, 以开顶式生长室(OTC)为增温方式模拟全球变暖, 采用静态箱-气相色谱法探究了2012年7月至2013年6月增温和不增温处理下CO2、CH4和N2O通量的变化特征。结果表明: 增温和结皮类型对CO2、CH4和N2O通量没有显著影响。采样日期、结皮类型与采样日期, 以及增温与结皮类型和采样日期的互作显著影响CO2和CH4通量, 增温和采样日期互作显著影响CH4通量。BSCs-土壤系统的CO2、CH4和N2O年通量及其增温潜能在增温和不增温处理下的差异均不显著。CO2通量与5 cm深度的土壤温度呈显著的指数正相关关系, 与10 cm深度的土壤湿度呈线性正相关关系; 藓类、混生结皮的CH4通量与5 cm深度的土壤温度和10 cm深度的土壤湿度均呈显著的线性负相关关系; 3种结皮类型的N2O通量与5 cm深度的土壤温度均无相关关系, 藓类结皮的N2O通量与10 cm深度的土壤湿度呈显著的线性负相关关系。藓类结皮的CO2和CH4在增温和不增温两种处理下的通量差异与5 cm深度的土壤温度差异呈显著的负线性相关, 藻类结皮N2O的通量差异与温度差异呈近似正相关关系(p = 0.051)。以上结果说明: 在全球变暖的背景下, 荒漠BSCs-土壤系统主要温室气体通量不会有明显的变化, 意味着荒漠生态系统温室气体的排放可能对气候变暖没有明显的 反馈。
徐冰鑫, 胡宜刚, 张志山, 陈永乐, 张鹏, 李刚. 模拟增温对荒漠生物土壤结皮-土壤系统CO2、CH4和N2O通量的影响. 植物生态学报, 2014, 38(8): 809-820. DOI: 10.3724/SP.J.1258.2014.00076
XU Bing-Xin, HU Yi-Gang, ZHANG Zhi-Shan, CHEN Yong-Le, ZHANG Peng, LI Gang. Effects of experimental warming on CO2, CH4 and N2O fluxes of biological soil crust and soil system in a desert region. Chinese Journal of Plant Ecology, 2014, 38(8): 809-820. DOI: 10.3724/SP.J.1258.2014.00076
图1 增温对5 cm深度土壤温度的影响(平均值±标准误差)。NW, 不增温; W, 增温。不同字母表示差异显著(p < 0.05)。
Fig. 1 Effects of warming on soil temperature at 5 cm depth (mean ± SE). NW, non-warming; W, warming. Different letters indicate significant differences at 0.05 level.
因素 Factor | CO2 | CH4 | N2O | |||||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | |||
增温 Warming (W) | 0.411 | 0.522 | 4.818 | 0.159 | 0.842 | 0.360 | ||
生物土壤结皮类型 Type of biological soil crusts (T) | 2.364 | 0.098 | 1.265 | 0.285 | 0.287 | 0.751 | ||
采样日期 Date of sampling (D) | 25.879 | <0.001 | 5.001 | <0.001 | 1.120 | 0.350 | ||
T × D | 5.124 | <0.001 | 2.421 | <0.001 | 0.658 | 0.874 | ||
W × D | 1.683 | 0.083 | 2.113 | 0.023 | 0.825 | 0.615 | ||
W × T | 1.815 | 0.167 | 1.864 | 0.159 | 0.637 | 0.530 | ||
W × T × D | 2.407 | 0.001 | 2.137 | 0.004 | 1.480 | 0.090 |
表1 CO2、CH4和N2O通量的多因素方差分析
Table 1 Multivariate analysis of CO2, CH4 and N2O fluxes
因素 Factor | CO2 | CH4 | N2O | |||||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | |||
增温 Warming (W) | 0.411 | 0.522 | 4.818 | 0.159 | 0.842 | 0.360 | ||
生物土壤结皮类型 Type of biological soil crusts (T) | 2.364 | 0.098 | 1.265 | 0.285 | 0.287 | 0.751 | ||
采样日期 Date of sampling (D) | 25.879 | <0.001 | 5.001 | <0.001 | 1.120 | 0.350 | ||
T × D | 5.124 | <0.001 | 2.421 | <0.001 | 0.658 | 0.874 | ||
W × D | 1.683 | 0.083 | 2.113 | 0.023 | 0.825 | 0.615 | ||
W × T | 1.815 | 0.167 | 1.864 | 0.159 | 0.637 | 0.530 | ||
W × T × D | 2.407 | 0.001 | 2.137 | 0.004 | 1.480 | 0.090 |
图2 增温和不增温处理下不同生物土壤结皮类型的CO2通量(平均值±标准误差)。*表示处理间差异显著(p < 0.05)。相同字母表示处理间差异不显著(p > 0.05)。A, 藓类结皮。B, 藻类结皮。C, 藓类和藻类结皮。
Fig. 2 CO2 fluxes of various biological soil crust types under warming and non-warming treatments (mean ± SE). * indicate significant differences between treatments (p < 0.05). The same letters indicate no significant differences between treatments (p > 0.05). A, Moss crusts. B, Algae crusts. C, Moss & algae crusts.
图3 增温和不增温处理下不同生物土壤结皮类型的CH4通量变化(平均值±标准误差)。*表示处理间差异显著(p < 0.05)。相同字母表示处理间差异不显著(p > 0.05)。A, 藓类结皮。B, 藻类结皮。C, 藓类和藻类结皮。
Fig. 3 CH4 fluxes of various biological soil crust types under warming and non-warming treatments (mean ± SE). * indicate significant differences between treatments (p < 0.05). The same letters indicate no significant differences between treatments (p > 0.05). A, Moss crusts. B, Algae crusts. C, Moss & algae crusts.
图4 增温和不增温处理下不同生物土壤结皮类型N2O通量变化(平均值±标准误差)。*表示处理间差异显著(p < 0.05)。相同字母表示处理间差异不显著(p > 0.05)。A, 藓类结皮。B, 藻类结皮。C, 藓类和藻类结皮。
Fig. 4 N2O fluxes of various biological soil crust types under warming and non-warming treatments (mean ± SE). * indicate significant differences between treatments (p < 0.05). The same letters indicate no significant differences between treatments (p > 0.05). A, Moss crusts. B, Algae crusts. C, Moss & algae crusts.
生物土壤结皮类型 Type of biological soil crusts | 处理 Treatment | CO2累积通量 Cumulative CO2 emission (g·m-2) | CH4累积通量 Cumulative CH4 emission (g·m-2) | N2O累积通量 Cumulative N2O emission (g·m-2) | GWP (g·m-2) |
---|---|---|---|---|---|
藓类结皮 | W | 380 ± 185.9 | -4.36 × 10-4 ± 1.74 × 10-4 | -0.060 ± 0.039 | 363 ± 197 |
Moss crusts | NW | 440 ± 110.8 | -3.29 × 10-4 ± 2.31 × 10-4 | -0.387 ± 0.037 | 429 ± 122 |
藻类结皮 | W | 306 ± 99.8 | -5.72 × 10-4 ± 2.17 × 10-4 | -0.062 ± 0.061 | 288 ± 118 |
Algae crusts | NW | 377 ± 121.2 | -9.91 × 10-5 ± 2.22 × 10-4 | -0.019 ± 0.024 | 372 ± 128 |
藓类和藻类结皮 | W | 337 ± 65.0 | -3.65 × 10-4 ± 1.17 × 10-4 | -0.089 ± 0.036 | 311 ± 76 |
Moss & algae crusts | NW | 273 ± 78.1 | -4.93 × 10-4 ± 1.30 × 10-4 | -0.027 ± 0.029 | 265 ± 87 |
表2 增温(W)和不增温(NW)处理下CO2、CH4和N2O累积通量(g·m-2)和年增温潜能(GWP) (平均值±标准偏差)
Table 2 Cumulative CO2, CH4 and N2O emission (g·m-2) and annual warming potentials (GWP) (mean ± SD) under warming (W) and non-warming (NW) treatments
生物土壤结皮类型 Type of biological soil crusts | 处理 Treatment | CO2累积通量 Cumulative CO2 emission (g·m-2) | CH4累积通量 Cumulative CH4 emission (g·m-2) | N2O累积通量 Cumulative N2O emission (g·m-2) | GWP (g·m-2) |
---|---|---|---|---|---|
藓类结皮 | W | 380 ± 185.9 | -4.36 × 10-4 ± 1.74 × 10-4 | -0.060 ± 0.039 | 363 ± 197 |
Moss crusts | NW | 440 ± 110.8 | -3.29 × 10-4 ± 2.31 × 10-4 | -0.387 ± 0.037 | 429 ± 122 |
藻类结皮 | W | 306 ± 99.8 | -5.72 × 10-4 ± 2.17 × 10-4 | -0.062 ± 0.061 | 288 ± 118 |
Algae crusts | NW | 377 ± 121.2 | -9.91 × 10-5 ± 2.22 × 10-4 | -0.019 ± 0.024 | 372 ± 128 |
藓类和藻类结皮 | W | 337 ± 65.0 | -3.65 × 10-4 ± 1.17 × 10-4 | -0.089 ± 0.036 | 311 ± 76 |
Moss & algae crusts | NW | 273 ± 78.1 | -4.93 × 10-4 ± 1.30 × 10-4 | -0.027 ± 0.029 | 265 ± 87 |
图5 CO2、CH4和N2O通量与5 cm深处的土壤温度的关系。A, D, G, 藓类结皮。B, E, H, 藻类结皮。C, F, I, 藓类和藻类结皮。
Fig. 5 Relationships of CO2, CH4 and N2O fluxes with soil temperature at 5 cm depth. A, D, G, Moss crusts. B, E, H, Algae crusts. C, F, I, Moss & algae crusts.
图6 CO2、CH4和N2O通量与10 cm深处的土壤湿度的关系。A, D, G, 藓类结皮。B, E, H, 藻类结皮。C, F, I, 藓类和藻类结皮。
Fig. 6 Relationships of CO2, CH4 and N2O fluxes with soil moisture at 10 cm depth. A, D, G, Moss crusts. B, E, H, Algae crusts. C, F, I, Moss & algae crusts.
生物土壤结皮类型 Type of biological soil crusts | CO2 | CH4 | N2O | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
线性方程 Linear equation | p | R2 | 线性方程 Linear equation | p | R2 | 线性方程 Linear equation | p | R2 | |||
藓类结皮 Moss crusts | y = -19.5x + 25.3 | 0.036 | 0.097 | y = -0.043x + 0.059 | 0.018 | 0.128 | y = -6.76x + 13.6 | 0.141 | 0.035 | ||
藻类结皮 Algae crusts | y = 10.9x - 26.1 | 0.216 | 0.016 | y = 0.027x - 0.099 | 0.264 | 0.008 | y = 13.1x - 27.5 | 0.051 | 0.081 | ||
藻类和藓类结皮 Moss & algae crusts | y = -3.35x + 12.8 | 0.487 | 0.000 | y = 0.022x - 0.043 | 0.125 | 0.040 | y = 2.97x - 11.4 | 0.602 | 0.000 |
表3 增温和不增温处理下5 cm深度土壤温度差异与CO2、CH4和N2O通量差异的回归分析
Table 3 Regressions of the differences in soil temperature at 5 cm depth with the differences in fluxes of CO2, CH4 and N2O between warming and non-warming treatments
生物土壤结皮类型 Type of biological soil crusts | CO2 | CH4 | N2O | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
线性方程 Linear equation | p | R2 | 线性方程 Linear equation | p | R2 | 线性方程 Linear equation | p | R2 | |||
藓类结皮 Moss crusts | y = -19.5x + 25.3 | 0.036 | 0.097 | y = -0.043x + 0.059 | 0.018 | 0.128 | y = -6.76x + 13.6 | 0.141 | 0.035 | ||
藻类结皮 Algae crusts | y = 10.9x - 26.1 | 0.216 | 0.016 | y = 0.027x - 0.099 | 0.264 | 0.008 | y = 13.1x - 27.5 | 0.051 | 0.081 | ||
藻类和藓类结皮 Moss & algae crusts | y = -3.35x + 12.8 | 0.487 | 0.000 | y = 0.022x - 0.043 | 0.125 | 0.040 | y = 2.97x - 11.4 | 0.602 | 0.000 |
[1] |
Allison SD, Treseder KK (2008). Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Global Change Biology, 14, 2898-2909.
DOI URL |
[2] | Aronson EL, McNulty SG (2009). Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality. Agricultural and Forest Meteorology, 149, 1791-1799. |
[3] | Barnard R, Leadley PW, Hungate BA (2005). Global change, nitrification, and denitrification: a review. Global Biogeochemical Cycles, 19(1), doi: 10.1029/2004GB002282. |
[4] | Belnap J, Lange OL (2001). Biological Soil Crusts: Structure, Function, and Management. Springer-Verlag, Berlin. |
[5] | Bollmann A, Conrad R (1998). Influence of O2 availability on NO and N2O release by nitrification and denitrification in soils. Global Change Biology, 4, 387-396. |
[6] |
Bremner JM (1997). Sources of nitrous oxide in soils. Nutrient Cycling in Agroecosystems, 49, 7-16.
DOI URL |
[7] |
Burford JR, Bremner JM (1975). Relationships between denitrification capacities of soils and total, water-soluble and readily decomposable soil organic matter. Soil Biology & Biochemistry, 7, 389-394.
DOI URL |
[8] |
Castro MS, Steudler PA, Melillo JM, Aber JD, Bowden RD (1995). Factors controlling atmospheric methane consumption by temperate forest soils. Global Biogeochemical Cycles, 9, 1-10.
DOI URL |
[9] |
Chaban B, Ng SYM, Jarrell KF (2006). Archaeal habitats— from the extreme to the ordinary. Canadian Journal of Microbiology, 52, 73-116.
DOI URL |
[10] | Chen ZF (2012). The Effect of Simulated Warming and N Addition on Ecosystem Gas Exchange in Inner Mongolia Desert Steppe. Master degree dissertation, Inner Mongolia Agricultural University, Hohhot. (in Chinese) |
[ 陈志芳 (2012). 模拟增温和氮素添加对荒漠草原生态系统气体交换的影响. 硕士学位论文, 内蒙古农业大学, 呼和浩特.] | |
[11] |
Chimner RA, Welker JM (2005). Ecosystem respiration responses to experimental manipulations of winter and summer precipitation in a Mixedgrass Prairie, WY, USA. Biogeochemistry, 73, 257-270.
DOI URL |
[12] |
Christensen TR, Prentice IC, Kaplan J, Haxeltine A, Sitch S (1996). Methane flux from northern wetlands and tundra. Tellus B, 48, 652-661.
DOI URL |
[13] |
Dalal RC, Allen DE (2008). TURNER REVIEW No. 18. Greenhouse gas fluxes from natural ecosystems. Australian Journal of Botany, 56, 369-407.
DOI URL |
[14] |
Du R, Lu D, Wang GC (2006). Diurnal, seasonal, and inter-annual variations of N2O fluxes from native semi-arid grassland soils of Inner Mongolia. Soil Biology & Biochemistry, 38, 3474-3482.
DOI URL |
[15] |
Fearnside PM (2000). Global warming and tropical land-use change: greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation. Climatic Change, 46, 115-158.
DOI URL |
[16] | Feng L, Li XR, Guo Q, Zhang JG, Zhang ZS (2011). Effects of highway on the vegetation species composition along a distance gradient from road edge in southeastern margin of Tengger Desert. Chinese Journal of Applied Ecology, 22, 1114-1120. (in Chinese with English abstract) |
[ 冯丽, 李新荣, 郭群, 张景光, 张志山 (2011). 腾格里沙漠东南缘公路对路域植被物种组成的影响. 应用生态学报, 22, 1114-1120.] | |
[17] | Gao LQ (2012). The Effect and It’s Mechanism of Biological Soil Crusts on Soil Erodibility. Master degree dissertation, Graduate University of Chinese Academy of Sciences, Beijing. (in Chinese) |
[ 高丽倩 (2012). 生物结皮对土壤可蚀性的影响及机理. 硕士学位论文, 中国科学院研究生院, 北京.] | |
[18] |
Gleick PH, Adams RM, Amasino RM, Anders E, Anderson DJ, Anderson WW, Anderson WW, Anselin LE, Arroyo MK, Asfaw B, Ayala FJ, Bax A, Bebbington AJ, Bell G, Bennett MV, Bennetzen JL, Berenbaum MR, Berlin OB, Bjorkman PJ, Blackburn E, Blamont JE, Botchan MR, Boyer JS, Boyle EA, Branton D, Briggs SP, Briggs WR, Brill WJ, Britten RJ, Broecker WS, Brown JH, Brown PO, Brunger AT, Cairns J Jr, Canfield DE, Carpenter SR, Carrington JC, Cashmore AR, Castilla JC, Cazenave A, Chapin FS 3rd, Ciechanover AJ, Clapham DE, Clark WC, Clayton RN, Coe MD, Conwell EM, Cowling EB, Cowling RM, Cox CS, Croteau RB, Crothers DM, Crutzen PJ, Daily GC, Dalrymple GB, Dangl JL, Darst SA, Davies DR, Davis MB, De Camilli PV, Dean C, DeFries RS, Deisenhofer J, Delmer DP, DeLong EF, DeRosier DJ, Diener TO, Dirzo R, Dixon JE, Donoghue MJ, Doolittle RF, Dunne T, Ehrlich PR, Eisenstadt SN, Eisner T, Emanuel KA, Englander SW, Ernst WG, Falkowski PG, Feher G, Ferejohn JA, Fersht A, Fischer EH, Fischer R, Flannery KV, Frank J, Frey PA, Fridovich I, Frieden C, Futuyma DJ, Gardner WR, Garrett CJ, Gilbert W, Goldberg RB, Goodenough WH, Goodman CS, Goodman M, Greengard P, Hake S, Hammel G, Hanson S, Harrison SC, Hart SR, Hartl DL, Haselkorn R, Hawkes K, Hayes JM, Hille B, Hökfelt T, House JS, Hout M, Hunten DM, Izquierdo IA, Jagendorf AT, Janzen DH, Jeanloz R, Jencks CS, Jury WA, Kaback HR, Kailath T, Kay P, Kay SA, Kennedy D, Kerr A, Kessler RC, Khush GS, Kieffer SW, Kirch PV, Kirk K, Kivelson MG, Klinman JP, Klug A, Knopoff L, Kornberg H, Kutzbach JE, Lagarias JC, Lambeck K, Landy A, Langmuir CH, Larkins BA, Le Pichon XT, Lenski RE, Leopold EB, Levin SA, Levitt M, Likens GE, Lippincott-Schwartz J, Lorand L, Lovejoy CO, Lynch M, Mabogunje AL, Malone TF, Manabe S, Marcus J, Massey DS, McWilliams JC, Medina E, Melosh HJ, Meltzer DJ, Michener CD, Miles EL, Mooney HA, Moore PB, Morel FM, Mosley-Thompson ES, Moss B, Munk WH, Myers N, Nair GB, Nathans J, Nester EW, Nicoll RA, Novick RP, O'Connell JF, Olsen PE, Opdyke ND, Oster GF, Ostrom E, Pace NR, Paine RT, Palmiter RD, Pedlosky J, Petsko GA, Pettengill GH, Philander SG, Piperno DR, Pollard TD, Price PB Jr, Reichard PA, Reskin BF, Ricklefs RE, Rivest RL, Roberts JD, Romney AK, Rossmann MG, Russell DW, Rutter WJ, Sabloff JA, Sagdeev RZ, Sahlins MD, Salmond A, Sanes JR, Schekman R, Schellnhuber J, Schindler DW, Schmitt J, Schneider SH, Schramm VL, Sederoff RR, Shatz CJ, Sherman F, Sidman RL, Sieh K, Simons EL, Singer BH, Singer MF, Skyrms B, Sleep NH, Smith BD, Snyder SH, Sokal RR, Spencer CS, Steitz TA, Strier KB, Südhof TC, Taylor SS, Terborgh J, Thomas DH, Thompson LG, Tjian RT, Turner MG, Uyeda S, Valentine JW, Valentine JS, Van Etten JL, van Holde KE, Vaughan M, Verba S, von Hippel PH, Wake DB, Walker A, Walker JE, Watson EB, Watson PJ, Weigel D, Wessler SR, West-Eberhard MJ, White TD, Wilson WJ, Wolfenden RV, Wood JA, Woodwell GM, Wright HE Jr, Wu C, Wunsch C, Zoback ML (2010). Climate change and the integrity of science. Science, 328, 689-691.
URL PMID |
[19] | Granli T, Bockman OC (1994). Nitrous oxide from agriculture. Norwegian Journal of Agricultural Sciences, 12(suppl.), 7-128. |
[20] | Hou AX, Chen GX, Wu J (1997). Relationship between CH4 and N2O emissions from rice field and its microbiological mechanism and impacting factors. Chinese Journal of Applied Ecology, 8, 270-274. (in Chinese with English abstract) |
[ 侯爱新, 陈冠雄, 吴杰 (1997). 稻田CH4和N2O排放关系及其微生物学机理和一些影响因子. 应用生态学报, 8, 270-274.] | |
[21] |
Hu YG, Chang XF, Lin XW, Wang YF, Wang SP, Duan JC, Zhang ZH, Yang XX, Luo CY, Xu GP, Zhao XQ (2010). Effects of warming and grazing on N2O fluxes in an alpine meadow ecosystem on the Tibetan Plateau. Soil Biology & Biochemistry, 42, 944-952.
DOI URL |
[22] | Hu YG, Feng YL, Zhang ZS, Huang L, Zhang P, Xu BX (2014). Greenhouse gases fluxes of biological soil crusts and soil ecosystem in the artificial sand-fixing vegetation region in Shapotou area. Chinese Journal of Applied Ecology, 25, 61-68. (in Chinese with English abstract). |
[ 胡宜刚, 冯玉兰, 张志山, 黄磊, 张鹏, 徐冰鑫 (2014). 沙坡头人工植被固沙区生物结皮-土壤系统温室气体通量特征. 应用生态学报, 25, 61-68.] | |
[23] | Hu ZH, Zhou YP, Cui HL, Chen ST, Xiao QT, Liu Y (2013). Effects of diurnal warming on soil N2O emission in soybean field. Environmental Science, 34, 2961-2967. (in Chinese with English abstract) |
[ 胡正华, 周迎平, 崔海羚, 陈书涛, 肖启涛, 刘艳 (2013). 昼夜增温对大豆田土壤 N2O排放的影响. 环境科学, 34, 2961-2967.] | |
[24] | IPCC (Intergovernmental Panel on Climate Change) (2007). Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[25] | IPCC (Intergovernmental Panel on Climate Change) (2013). Climate Change 2013: the Scientific Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[26] |
Kammann C, Hepp S, Lenhart K, Müller C (2009). Stimulation of methane consumption by endogenous CH4 production in aerobic grassland soil. Soil Biology & Biochemistry, 41, 622-629.
DOI URL |
[27] |
Kato T, Tang YH, Gu S, Cui XY, Hirota M, Du MY, Li YN, Zhao XQ, Oikawa T (2004). Carbon dioxide exchange between the atmosphere and an alpine meadow ecosystem on the Qinghai-Tibetan Plateau, China. Agricultural and Forest Meteorology, 124, 121-134.
DOI URL |
[28] |
Keller M, Kaplan WA, Wofsy SC (1986). Emissions of N2O, CH4 and CO2 from tropical forest soils. Journal of Geophysical Research: Atmospheres (1984-2012), 91(D11), 11791-11802.
DOI URL |
[29] | Le Mer J, Roger P (2001). Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology, 37, 25-50. |
[30] | Li N (2010). Effect of Warming and Nitrogen Addition on Soil Greenhouse Gases Fluxes of Desert Steppe Ecosystem. Master degree dissertation, Inner Mongolia Agricultural University, Hohhot. (in Chinese) |
[ 李娜 (2010). 增温和施氮肥对荒漠草原生态系统土壤温室气体通量的影响. 硕士学位论文, 内蒙古农业大学, 呼和浩特.] | |
[31] | Li XR, Zhang YM, Zhao YG (2009). A study of biological soil crusts: recent development, trend and prospect. Advances in Earth Science, 24, 11-24. |
(in Chinese with English abstract) [ 李新荣, 张元明, 赵允格 (2009). 生物土壤结皮研究: 进展、前沿与展望. 地球科学进展, 24, 11-24.] | |
[32] |
Lin XW, Wang SP, Ma XZ, Xu GP, Luo CY, Li YN, Jiang GM, Xie ZB (2009). Fluxes of CO2, CH4 and N2O in an alpine meadow affected by yak excreta during summer grazing periods on the Qinghai-Tibetan Plateau. Soil Biology & Biochemistry, 41, 718-725.
DOI URL |
[33] |
Lin XW, Zhang ZH, Wang SP, Hu YG, Xu GP, Luo CY, Chang XF, Duan JC, Lin QY, Xu BX, Wang YF, Zhao XQ, Xie ZB (2011). Response of ecosystem respiration to warming and grazing during the growing seasons in the alpine meadow on the Tibetan Plateau. Agricultural and Forest Meteorology, 151, 792-802.
DOI URL |
[34] | Luo C, Xu G, Chao Z, Wang S, Lin X, Hu Y, Zhang Z, Duan J, Chang X, Su A, Li Y, Zhao X, Du M, Tang Y, Kimball B (2010). Effect of warming and grazing on litter mass loss and temperature sensitivity of litter and dung mass loss on the Tibetan Plateau. Global Change Biology, 16, 1606-1617. |
[35] | Nakano T, Nemoto M, Shinoda M (2008). Environmental controls on photosynthetic production and ecosystem respiration in semi-arid grasslands of Mongolia. Agricultural and Forest Meteorology, 148, 1456-1466. |
[36] | Oberbauer SF, Starr G, Pop EW (1998). Effects of extended growing season and soil warming on carbon dioxide and methane exchange of tussock tundra in Alaska. Journal of Geophysical Research, Atmospheres (1984-2012), 103(D22), 29075-29082. |
[37] | Oberbauer SF, Tweedie CE, Welker JM, Fahnestock JT, Henry GH, Webber PJ, Hollister RD, Walker MD, Kuchy A, Elmore E, Starr G (2007). Tundra CO2 fluxes in response to experimental warming across latitudinal and moisture gradients. Ecological Monographs, 77, 221-238. |
[38] | Rodionow A, Flessa H, Kazansky O, Guggenberger G (2006). Organic matter composition and potential trace gas production of permafrost soils in the forest tundra in northern Siberia. Geoderma, 135, 49-62. |
[39] |
Rustad LE, Fernandez IJ (1998). Experimental soil warming effects on CO2 and CH4 flux from a low elevation spruce-fir forest soil in Maine, USA. Global Change Biology, 4, 597-605.
DOI URL |
[40] | Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007). Climate Change 2007: The Physical Science Basis, Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York. |
[41] | Wan SQ, Hui DF, Wallace L, Luo YQ (2005). Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Global Biogeochemical Cycles, 19(2), doi: 10.1029/2004GB002315. |
[42] |
Wang Y, Xue M, Zheng X, Ji B, Du R, Wang Y (2005). Effects of environmental factors on N2O emission from and CH4 uptake by the typical grasslands in the Inner Mongolia. Chemosphere, 58, 205-215.
DOI URL |
[43] |
Welker JM, Fahnestock JT, Henry GH, O’Dea KW, Chimner RA (2004). CO2 exchange in three Canadian High Arctic ecosystems: response to long-term experimental warming. Global Change Biology, 10, 1981-1995.
DOI URL |
[44] | Xia JY, Niu SL, Wan SQ (2009). Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a temperate steppe. Global Change Biology, 15, 1544-1556. |
[45] | Xu R, Wang YS, Zheng XH, Ji BM, Wang MX (2003). A comparison between measured and modeled N2O emissions from Inner Mongolian semi-arid grassland. Plant and Soil, 255, 513-528. |
[46] | Zhang P, Li XR, He MZ, Li XJ, Gao YH (2012). Effects of wintertime low temperature and simulated warming on nitrogen-fixing activity of soil biocrusts. Chinese Journal of Ecology, 31, 1653-1658. (in Chinese with English abstract) |
[ 张鹏, 李新荣, 何明珠, 李小军, 高艳红 (2012). 冬季低温及模拟升温对生物土壤结皮固氮活性的影响. 生态学杂志, 31, 1653-1658.] | |
[47] | Zhang ZS, Li XR, Nowak RS, Wu P, Gao YH, Zhao Y, Huang L, Hu YG, Jia RL (2013). Effect of sand-stabilizing shrubs on soil respiration in a temperate desert. Plant and Soil, 367, 449-463. |
[1] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[2] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[3] | 郭敏, 罗林, 梁进, 王彦杰, 赵春章. 冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J]. 植物生态学报, 2023, 47(6): 882-894. |
[4] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[5] | 赵镇贤, 陈银萍, 王立龙, 王彤彤, 李玉强. 河西走廊荒漠区不同功能类群植物叶片建成成本的比较[J]. 植物生态学报, 2023, 47(11): 1551-1560. |
[6] | 葛萍, 李昂, 王银柳, 姜良超, 牛国祥, 哈斯木其尔, 王彦兵, 薛建国, 赵威, 黄建辉. 草甸草原温室气体排放对氮添加量的非线性响应[J]. 植物生态学报, 2023, 47(11): 1483-1492. |
[7] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[8] | 张玉林, 尹本丰, 陶冶, 李永刚, 周晓兵, 张元明. 早春首次降雨时间及降雨量对古尔班通古特沙漠两种短命植物形态特征与叶绿素荧光的影响[J]. 植物生态学报, 2022, 46(4): 428-439. |
[9] | 张庆, 尹本丰, 李继文, 陆永兴, 荣晓莹, 周晓兵, 张丙昌, 张元明. 荒漠藓类植物死亡对表层土壤酶活性的影响[J]. 植物生态学报, 2022, 46(3): 350-361. |
[10] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[11] | 靳川, 李鑫豪, 蒋燕, 徐铭泽, 田赟, 刘鹏, 贾昕, 查天山. 黑沙蒿光合能量分配组分在生长季的相对变化与调控机制[J]. 植物生态学报, 2021, 45(8): 870-879. |
[12] | 张欢, 张云玲, 张彦才, 阎平. 新疆奇台荒漠类草地自然保护区主要植物群落及其特征[J]. 植物生态学报, 2021, 45(8): 918-924. |
[13] | 魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽. 实验增温对陆地生态系统根系生物量的影响[J]. 植物生态学报, 2021, 45(11): 1203-1212. |
[14] | 赵河聚, 岳艳鹏, 贾晓红, 成龙, 吴波, 李元寿, 周虹, 赵雪彬. 模拟增温对高寒沙区生物土壤结皮-土壤系统呼吸的影响[J]. 植物生态学报, 2020, 44(9): 916-925. |
[15] | 马龙龙, 杜灵通, 丹杨, 王乐, 乔成龙, 吴宏玥. 基于茎流-蒸渗仪法的荒漠草原带人工灌丛群落蒸散特征[J]. 植物生态学报, 2020, 44(8): 807-818. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19