植物生态学报 ›› 2017, Vol. 41 ›› Issue (12): 1262-1272.DOI: 10.17521/cjpe.2017.0219
所属专题: 稳定同位素生态学
陈定帅2,3,*, 董正武1,*, 高磊2, 陈效民3, 彭新华2, 司炳成4, 赵英1,4,**()
出版日期:
2017-12-10
发布日期:
2018-02-23
通讯作者:
陈定帅,董正武,赵英
基金资助:
CHEN Ding-Shuai2,3,*, DONG Zheng-Wu1,*, GAO Lei2, CHEN Xiao-Min3, PENG Xin-Hua2, SI Bing-Cheng4, ZHAO Ying1,4,**()
Online:
2017-12-10
Published:
2018-02-23
Contact:
CHEN Ding-Shuai,DONG Zheng-Wu,ZHAO Ying
摘要:
植物水分来源的判定是干旱半干旱区土壤-植物水分关系研究的重要方面, 有助于理解沙地植物对干旱环境的适应机制。该文研究了不同降水条件下科尔沁沙地典型灌木小叶锦鸡儿(Caragana microphylla)和盐蒿(Artemisia halodendron)的水分利用过程。试验采用增减雨装置模拟自然降水方法, 设置增雨(+50%)、对照和减雨(-50%) 3个处理, 利用稳定性同位素技术测量了两种植物木质部水、降水、0-120 cm不同土层土壤水的稳定氢同位素比率(δD)和稳定氧同位素比率(δ18O)值, 最后利用IsoSource模型计算了两种灌木对潜在水源的利用比例。结果表明: 1)增减雨处理主要影响表层(0-30 cm)土壤水分, 增雨处理显著提高了两种灌木地上和地下生物量, 且δ18O值随土壤深度增加而降低; 而减雨处理δ18O值随土壤深度增加而降低的趋势更加明显; 2)在增雨处理下, 盐蒿增加了对浅层0-40 cm土壤水的利用比例, 而小叶锦鸡儿对各土层水分的利用程度较为平均; 在减雨处理下, 由于表层土壤含水量较低, 两种植物均提高了对深层土壤水的利用比例, 其中盐蒿主要用水层次为60-80 cm, 而小叶锦鸡儿为60-120 cm; 3)就不同降水季节而言, 湿季(5-6月)由于降水迅速补给浅层土壤水分, 两种植物主要利用0-60 cm的土壤水; 旱季(9月)由于降水偏少, 小叶锦鸡儿对浅层水分利用急剧减少, 转而利用更深层次的土壤水分; 而盐蒿对各层次水分利用程度较为均匀。由此可见, 同小叶锦鸡儿相比, 盐蒿具有更强的抗旱能力及适应性。
陈定帅, 董正武, 高磊, 陈效民, 彭新华, 司炳成, 赵英. 不同降水条件下科尔沁沙地小叶锦鸡儿和盐蒿的水分利用动态. 植物生态学报, 2017, 41(12): 1262-1272. DOI: 10.17521/cjpe.2017.0219
CHEN Ding-Shuai, DONG Zheng-Wu, GAO Lei, CHEN Xiao-Min, PENG Xin-Hua, SI Bing-Cheng, ZHAO Ying. Water-use process of two desert shrubs along a precipitation gradient in Horqin Sandy Land. Chinese Journal of Plant Ecology, 2017, 41(12): 1262-1272. DOI: 10.17521/cjpe.2017.0219
图1 研究区降水和气温(2015) (A)及降水、土壤水和植物木质部水稳定氢、氧同位素比率(δD、δ18O) (B)。
Fig. 1 The precipitation and air temperature (2015) (A), and the stable hydrogen and oxygen isotope ratios (δD and δ18O) of precipitation, soil water and plant water (B) in the study area.
图2 不同降水处理下小叶锦鸡儿(A、B、C)和盐蒿(D、E、F)的土壤含水量(平均值±标准误差, n = 4)。
Fig. 2 Soli water content under Caragana microphylla (A, B, C) or Artemisia halodendron (D, E, F) as affected by enhanced or reduced rainfall (mean ± SE, n = 4).
图3 不同降水处理下小叶锦鸡儿(A)和盐蒿(B)的地上和地下生物量(平均值±标准误差, n = 4)。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 3 The aboveground and underground biomass of Caragana microphylla (A) and Artemisia halodendron (B) as affected by enhanced or reduced precipitation (mean ± SE, n = 4). Different lowercase letters indicate significant differences among treatments (p < 0.05).
图4 小叶锦鸡儿(A、B)和盐蒿(C、D)吸收根与输导根的垂直分布特征(平均值±标准误差, n = 4)。
Fig. 4 The distribution of absorptive-conductive root biomass for Caragana microphylla (A, B) and Artemisia halodendron (C, D) as affected by enhanced or reduced precipitation (mean ± SE, n = 4).
图5 不同降水处理下土壤水氧稳定同位素(δ18O)值(平均值±标准误差, n = 4)。A、B、C为不同月份小叶锦鸡儿土壤水δ18O值, D、E为不同月份盐蒿土壤水δ18O值。
Fig. 5 Oxygen stable isotope ratio (δ18O) of soil water as affected by enhanced or reduced precipitation (mean ± SE, n = 4). A, B and C show the δ18O values of Caragana microphylla in different months, D and E show the δ18O values of Artemisia halodendron in different months.
图6 不同降水处理下小叶锦鸡儿(A)和盐蒿(B)木质部水氧稳定同位素(δ18O)值(平均值±标准误差, n = 4)。
Fig. 6 The xylem water δ18O values of Caragana microphylla (A) and Artemisia halodendron (B) as affected by enhanced or reduced precipitation (mean ± SE, n = 4).
种 Species | 土壤深度 Soil depth (cm) | 5月17日 17 May | 6月23日 23 June | 9月2日 2 September | ||||||
---|---|---|---|---|---|---|---|---|---|---|
增雨 Enhanced rainfall | 对照 Natural rainfall | 减雨 Reduced rainfall | 增雨 Enhanced rainfall | 对照 Natural rainfall | 减雨 Reduced rainfall | 增雨 Enhanced rainfall | 对照 Natural rainfall | 减雨 Decreased rainfall | ||
小叶锦鸡儿 Caragana microphylla | 0-20 | 12.5 (0-29) | 15.8 (0-48) | 32.9 (0-50) | 10.1 (0-30) | 21.8 (0-88) | 8.1 (0-38) | 1.5 (0-8) | 2.6 (0-14) | 2.3 (0-10) |
20-40 | 12.5 (0-29) | 14.6 (0-43) | 20.3 (0-100) | 15.1 (0-52) | 21.2 (0-57) | 8.9 (0-42) | 2.6 (0-14) | 4.5 (0-23) | 3.5 (0-15) | |
40-60 | 19.4 (0-82) | 19.8 (0-82) | 14.4 (0-71) | 17.4 (0-65) | 22.1 (0-84) | 12.6 (0-59) | 4.2 (0-20) | 7.8 (0-38) | 24.1 (0-95) | |
60-80 | 18.5 (0-72) | 17.6 (0-68) | 11.8 (0-58) | 20.1 (0-83) | 12.8 (0-58) | 15.1 (0-72) | 11.7 (0-54) | 17.6 (0-84) | 22.5 (0-98) | |
80-100 | 18.3 (0-71) | 15.8 (0-57) | 10.7 (0-54) | 18.6 (0-69) | 12.8 (0-58) | 26.0 (0-80) | 12.8 (0-59) | 17.8 (0-85) | 28 (0-89) | |
100-120 | 18.8 (0-76) | 16.4 (0-61) | 9.8 (0-49) | 18.7 (0-69) | 9.3 (0-42) | 29.3 (0-61) | 67.2 (41-91) | 49.6 (15-85) | 19.7 (0-92) | |
盐蒿 Artemisia halodendron | 0-20 | - | - | - | 25.7 (0-44) | 17.4 (0-40) | 3.6 (0-11) | 26.9 (7-49) | 31.5 (18-42) | 11.4 (0-20) |
20-40 | - | - | - | 31.3 (0-94) | 31.4 (0-73) | 6.7 (0-20) | 31.4 (0-92) | 27.6 (0-81) | 31.2 (0-74) | |
40-60 | - | - | - | 24.6 (0-74) | 28.3 (0-61) | 7.3 (0-21) | 23.8 (0-70) | 21.5 (0-63) | 28.7 (0-20) | |
60-80 | - | - | - | 18.4 (0-55) | 22.9 (0-55) | 82.4 (79-89) | 17.9 (0-53) | 19.4 (0-58) | 28.7 (0-20) |
表1 不同降水处理下两种灌木对各潜在水源的利用比例(%) (平均值(最小值-最大值))
Table 1 Contributions of soil water at different depths to two desert shrubs as affected by enhanced or reduced precipitation (%) (mean (minimum - maximum))
种 Species | 土壤深度 Soil depth (cm) | 5月17日 17 May | 6月23日 23 June | 9月2日 2 September | ||||||
---|---|---|---|---|---|---|---|---|---|---|
增雨 Enhanced rainfall | 对照 Natural rainfall | 减雨 Reduced rainfall | 增雨 Enhanced rainfall | 对照 Natural rainfall | 减雨 Reduced rainfall | 增雨 Enhanced rainfall | 对照 Natural rainfall | 减雨 Decreased rainfall | ||
小叶锦鸡儿 Caragana microphylla | 0-20 | 12.5 (0-29) | 15.8 (0-48) | 32.9 (0-50) | 10.1 (0-30) | 21.8 (0-88) | 8.1 (0-38) | 1.5 (0-8) | 2.6 (0-14) | 2.3 (0-10) |
20-40 | 12.5 (0-29) | 14.6 (0-43) | 20.3 (0-100) | 15.1 (0-52) | 21.2 (0-57) | 8.9 (0-42) | 2.6 (0-14) | 4.5 (0-23) | 3.5 (0-15) | |
40-60 | 19.4 (0-82) | 19.8 (0-82) | 14.4 (0-71) | 17.4 (0-65) | 22.1 (0-84) | 12.6 (0-59) | 4.2 (0-20) | 7.8 (0-38) | 24.1 (0-95) | |
60-80 | 18.5 (0-72) | 17.6 (0-68) | 11.8 (0-58) | 20.1 (0-83) | 12.8 (0-58) | 15.1 (0-72) | 11.7 (0-54) | 17.6 (0-84) | 22.5 (0-98) | |
80-100 | 18.3 (0-71) | 15.8 (0-57) | 10.7 (0-54) | 18.6 (0-69) | 12.8 (0-58) | 26.0 (0-80) | 12.8 (0-59) | 17.8 (0-85) | 28 (0-89) | |
100-120 | 18.8 (0-76) | 16.4 (0-61) | 9.8 (0-49) | 18.7 (0-69) | 9.3 (0-42) | 29.3 (0-61) | 67.2 (41-91) | 49.6 (15-85) | 19.7 (0-92) | |
盐蒿 Artemisia halodendron | 0-20 | - | - | - | 25.7 (0-44) | 17.4 (0-40) | 3.6 (0-11) | 26.9 (7-49) | 31.5 (18-42) | 11.4 (0-20) |
20-40 | - | - | - | 31.3 (0-94) | 31.4 (0-73) | 6.7 (0-20) | 31.4 (0-92) | 27.6 (0-81) | 31.2 (0-74) | |
40-60 | - | - | - | 24.6 (0-74) | 28.3 (0-61) | 7.3 (0-21) | 23.8 (0-70) | 21.5 (0-63) | 28.7 (0-20) | |
60-80 | - | - | - | 18.4 (0-55) | 22.9 (0-55) | 82.4 (79-89) | 17.9 (0-53) | 19.4 (0-58) | 28.7 (0-20) |
1 |
Barnes CJ, Allison GB (1998). Tracing of water movement in the unsaturated zone using stable isotopes of hydrogen and oxygen.Journal of Hydrology, 100, 143-176.
DOI URL |
2 |
Cao CY, Jiang DM, Luo YM, Kou ZW (2004). Stability ofCaragana microphylla plantation for wind protection and sand fixation. Acta Ecologica Sinica, 24, 1178-1186.(in Chinese with English abstract) [曹成有, 蒋德明, 骆永明, 寇振武 (2004). 小叶锦鸡儿防风固沙林稳定性研究. 生态学报, 24, 1178-1186.]
DOI URL |
3 | Cheng XB, Wu J, Han SJ, Zhou YM, Wang XX (2011). Effects of decreased rainfall onQuercus mongolica leaf eco- physiological characteristics. Chinese Journal of Ecology, 30, 1908-1914.(in Chinese with English abstract) [程徐冰, 吴军, 韩士杰, 周玉梅, 王秀秀 (2011). 减少降水对长白山蒙古栎叶片生理生态特性的影响. 生态学杂志, 30, 1908-1914.] |
4 |
Chimner RA, Cooper DJ (2004). Using stable oxygen isotopes to quantify the water source used for transpiration by native shrubs in the San Luis Valley, Colorado USA.Plant and Soil, 260, 225-236.
DOI URL |
5 | Dai Y, Zheng XJ, Tang LS, Li Y (2014). Dynamics of water usage inHaloxylon ammodendron in the southern edge of the Gurbantünggüt Desert. Chinese Journal of Plant Ecology, 38, 1214-1225.(in Chinese with English abstract) [戴岳, 郑新军, 唐立松, 李彦 (2014). 古尔班通古特沙漠南缘梭梭水分利用动态. 植物生态学报, 38, 1214-1225.] |
6 |
Dawson TE, Mambelli S, Plamboeck AH (2002). Stable isotopes in plant ecology.Annual Review of Ecology and Systematics, 33, 507-559.
DOI URL |
7 |
Dodd MB, Lauenroth WK, Welker JM (1998). Differential water resource use by herbaceous and woody plant life forms in a shortgrass steppe community.Oecologia, 117, 504-512.
DOI URL PMID |
8 | Du XL, Wang SJ (2011). Recent advances of stable hydrogen and oxygen isotopic techniques in plant water use strategy.Chinese Agricultural Science Bulletin, 27(22), 5-10.(in Chinese with English abstract) [杜雪莲, 王世杰 (2011). 稳定性氢氧同位素在植物用水策略中的研究进展. 中国农学通报,27(22), 5-10.] |
9 |
Duan DY, Ouyang H, Song MH (2008). Water sources of dominant species in three alpine ecosystems on the Tibetan Plateau, China.Journal of Integrative Plant Biology, 50, 257-264.
DOI URL |
10 |
Dunne JA, Harte J, Taylor KJ (2003). Subalpine meadow flowering phenology responses to climate change: Integrating experimental and gradient methods.Ecological Monographs, 73, 69-86.
DOI URL |
11 |
Ehleringer JR, Dawson TE (1992). Water uptake by plants: Perspectives from stable isotope composition.Plant, Cell & Environment, 15, 1073-1082.
DOI URL |
12 | Flanagan LB, Ehleringer JR (1992). Differential uptake of summer precipitation among co-occurring trees and shrubs in a pinyon-juniper woodland.Plant, Cell & Environment, 15, 831-836. |
13 |
Groisman PY, Karl TR, Easterling DR (1999). Changes in the probability of heavy precipitation: Important indicators of climatic change. Climatic Change, 42, 243-283.
DOI URL |
14 |
Knapp AK, Briggs JM, Koelliker JK (2001). Frequency and extent of water limitation to primary production in a mesic temperate grassland.Ecosystems, 4, 19-28.
DOI URL |
15 | Li KF, Luo YY, Zhang HL, She HY (2012). The relations between root distribution of Artemisia halodendron and soil water in Horqin. Journal of Arid Land Resources and Environment, 26(8), 167-171.(in Chinese with English abstract) [李凯锋, 罗于洋, 张海龙, 折红燕 (2012). 科尔沁差巴嘎蒿根系分布规律与土壤水分关系的研究. 干旱区资源与环境,26(8), 167-171.] |
16 | Li XY (2012). Coupling, respond and adaptation of soil-plant water in arid areas in arid area.Science China: Earth Science, 41, 1721-1730.(in Chinese) [李小雁 (2012). 干旱地区土壤-植被-水文耦合, 响应与适应机制. 中国科学: 地球科学, 41, 1721-1730.] |
17 | Li XY, Zhang SY, Peng HY (2013). Soil water and temperature dynamics in shrub-encroached grasslands and climatic implications: Results from Inner Mongolia steppe ecosystem of north China. Agricultural and Forest Meteorology, 171-172, 20-30. |
18 |
Li YF, Yu JJ, Lu K, Wang P, Zhang YC (2017). Water sources ofPopulus euphratica and Tamarix ramosissima in Ejina Delta, the lower reaches of the Heihe River, China. Chinese Journal of Plant Ecology, 41, 519-528.(in Chinese with English abstract) [李亚飞, 于静洁, 陆凯, 王平, 张一驰 (2017). 额济纳三角洲胡杨和多枝柽柳水分来源解析. 植物生态学报, 41, 519-528.]
DOI URL |
19 |
Lin GH, Phillips SL, Ehleringer JR (1996). Monsoonal precipitation responses of shrubs in a cold desert community on the Colorado Plateau.Oecologia, 106, 8-17.
DOI URL |
20 | Liu K, Gao L, Peng XH, Zhang ZB (2015). Spatio-temporal variability of soil moisture in Horqin sandy land.Soils, 47, 765-772.(in Chinese with English abstract) [刘凯, 高磊, 彭新华, 张中彬 (2015). 半干旱区科尔沁沙地土壤水分时空特征研究. 土壤, 47, 765-772.] |
21 | Liu SG, Piao SJ, An MZ, Liu F (2003). Distribution dynamics of Artemisia halodendron absorbent roots in different kinds of sandy land. Acta Phytoecologica Sinica ,27, 684-689.(in Chinese with English abstract) [刘士刚, 朴顺姬, 安卯柱, 刘芳 (2003). 不同类型沙地上差不嘎蒿细根的分布状态. 植物生态学报, 27, 684-689.] |
22 |
Ma CC, Gao YB, Jiang FQ, Wang JL, Guo HY, Wu JB, Su D (2004). The comparison studies of ecological and water regulation characteristics of Caragana microphylla and Caragana stenophylla. Acta Ecologica Sinica, 24, 1442-1451.(in Chinese with English abstract) [马成仓, 高玉葆, 蒋福全, 王金龙, 郭宏宇, 吴建波, 苏丹 (2004). 小叶锦鸡儿和狭叶锦鸡儿的生态和水分调节特性比较研究. 生态学报, 24, 1442-1451.]
DOI URL |
23 | Meehl GA, Arblaster JM, Tebaldi C (2005). Understanding future patterns of increased precipitation intensity in climate model simulations.Geophysical Research Letters, 32, 109-127. |
24 | Niu H, Li HP, Zhao ML, Han X, Dong XH (2008). Relationship between soil water content and vertical distribution of root system under different ground water gradients in Maowusu Sandy Land.Journal of Arid Land Resources and Environment, 22, 157-163.(in Chinese with English abstract) [牛海, 李和平, 赵萌莉, 韩雄, 董晓红 (2008). 毛乌素沙地不同水分梯度根系垂直分布与土壤水分关系的研究. 干旱区资源与环境, 22, 157-163.] |
25 |
Phillips DL, Gregg JW (2003). Source partitioning using stable isotopes: Coping with too many sources. Oecologia, 136, 261-269.
DOI URL PMID |
26 |
Phillips DL, Newsome SD, Gregg JW (2005). Combining sources in stable isotope mixing models: Alternative methods.Oecologia, 144, 520-527.
DOI URL PMID |
27 | Saxena RK (1984). Seasonal variations of oxygen-18 in soil moisture and estimation of recharge in esker and moraine formations.Nordic Hydrology, 15, 235-242. |
28 |
Schwinning S, Ehleringer JR (2001). Water use trade-offs and optimal adaptations to pulse-driven arid ecosystems.Journal of Ecology, 89, 464-480.
DOI URL |
29 |
Schwinning S, Starr BI, Ehleringer JR (2005). Summer and winter drought in a cold desert ecosystem (Colorado Plateau) part I: Effects on soil water and plant water uptake.Journal of Arid Environments, 60, 547-566.
DOI URL |
30 | Vitousek PM (1994). Beyond global warming: Ecology and global change.Ecology, 75, 1862-1876. |
31 | Williams DG, Ehleringer JR (2000). Intra and interspecific variation for summer precipitation use in pinyon-juniper woodlands.Ecological Monographs, 70, 517-537. |
32 | Xiong XG, Han XG, Bai YF, Pan QM (2003). Increased distribution of Caragana microphylla in rangelands and its causes and consequences in Xilin River Basin. Acta Prataculturae Sinica, 12(3), 57-62.(in Chinese with English abstract) [熊小刚, 韩兴国, 白永飞, 潘庆民 (2003). 锡林河流域草原小叶锦鸡儿分布增加的趋势、原因和结局. 草业学报, 12(3), 57-62.] |
33 |
Xu Q, Li H, Chen J (2011). Water use patterns of three species in subalpine forest, southwest China: The deuterium isotope approach.Ecohydrology, 4, 236-244.
DOI URL |
34 | Yu SW, Sun ZY, Zhou AG, Zhang X, Duan LJ (2012). Determination of water sources of Gobi plants by δD and δ18O stable isotopes in middle reaches of the Heihe River. Journal of Desert Research, 32, 717-723.(in Chinese with English abstract) [余绍文, 孙自永, 周爱国, 张溪, 段丽军 (2012). 用δD、δ18O同位素确定黑河中游戈壁地区植物水分来源. 中国沙漠, 32, 717-723.] |
35 | Zhang K, Feng Q, Lü YQ, Zhang B, Si JH (2011). Study on spatial heterogeneity of soil water contents in oasis-desert belt of Minqin.Journal of Desert Research, 31, 1149-1155.(in Chinese with English abstract) [张凯, 冯起, 吕永清, 张勃, 司建华 (2011). 民勤绿洲荒漠带土壤水分的空间分异研究. 中国沙漠, 31, 1149-1155.] |
36 |
Zhang LM, Liu XP, Zhao XY, Zhang TH, Yue XF (2014). Response of sandy vegetation characteristics to precipitation change in Horqin Sandy Land.Acta Ecologica Sinica, 34, 2737-2745.(in Chinese with English abstract) [张腊梅, 刘新平, 赵学勇, 张铜会, 岳祥飞 (2014). 科尔沁固定沙地植被特征对降雨变化的响应. 生态学报, 34, 2737-2745.]
DOI URL |
37 | Zhao LJ, Xiao HL, Cheng GD (2008). A preliminary study of water sources of riparian plants in the lower reaches of the Heihe Basin.Acta Geoscientica Sinica, 29, 709-718.(in Chinese with English abstract) [赵良菊, 肖洪浪, 程国栋 (2008). 黑河下游河岸林植物水分来源初步研究. 地球学报, 29, 709-718.] |
38 | Zhao WZ, Liu ZM, Chang XL (2002). Skewness and inequality of height distribution of young Pinus sylvestris var. mongolica stands introduced on sandy soil with lower limited precipitation for tree survival and normal growth. Chinese Journal of Applied Ecology, 13, 6-10.(in Chinese with English abstract) [赵文智, 刘志民, 常学礼 (2002). 降水量下限引种区沙地樟子松幼林种群树高分布偏斜度和不整齐性. 应用生态学报, 13, 6-10.] |
39 |
Zheng XR, Zhao GQ, Li XY, Li L, Wu HW, Zhang SY, Zhang ZH (2015). Application of stable hydrogen isotope in study of water sources for Caragana microphylla bush land in Nei Mongol. Chinese Journal of Plant Ecology, 39, 184-196.(in Chinese with English abstract) [郑肖然, 赵国琴, 李小雁, 李柳, 吴华武, 张思毅, 张志华 (2015). 氢同位素在内蒙古小叶锦鸡儿灌丛水分来源研究中的应用. 植物生态学报,39, 184-196.]
DOI URL |
40 |
Zhou H, Zheng XJ, Tang LS, Li Y (2013). Differences and similarities between water sources of Tamarix ramosissima, Nitraria sibirica and Reaumuria soongorica in the southeastern Junggar Basin. Chinese Journal of Plant Ecology, 37, 665-673.(in Chinese with English abstract) [周海, 郑新军, 唐立松, 李彦 (2013). 准噶尔盆地东南缘多枝柽柳、白刺和红砂水分来源的异同. 植物生态学报, 37, 665-673.]
DOI URL |
41 | Zhou YD, Chen SP, Song WM, Lu Q, Lin GH (2011). Water- use strategies of two desert plants along a precipitation gradient in northwestern China.Chinese Journal of Plant Ecology, 35, 789-800.(in Chinese with English abstract) [周雅聃, 陈世苹, 宋维民, 卢琦, 林光辉 (2011). 不同降水条件下两种荒漠植物的水分利用策略. 植物生态学报, 35, 789-800.] |
42 | Zhu YJ, Zhao XB, Liu YS, Li Y, Fan WX (2017). Water use process of Salix psammophila and Salix cheilophila in Gonghe Basin, Qinghai Province. Journal of Desert Research, 37, 281-287.(in Chinese with English abstract) [朱雅娟, 赵雪彬, 刘艳书, 李蕴, 范文秀 (2017). 青海共和盆地沙柳(Salix psammophila)和乌柳(Salix cheilophila)的水分利用过程. 中国沙漠, 37, 281-287.] |
[1] | 祖姆热提•于苏甫江, 董正武, 成鹏, 叶茂, 刘隋赟昊, 李生宇, 赵晓英. 多枝柽柳水分利用策略对沙堆堆积过程的响应[J]. 植物生态学报, 2024, 48(1): 113-126. |
[2] | 张潇, 武娟娟, 贾国栋, 雷自然, 张龙齐, 刘锐, 吕相融, 代远萌. 降水控制对侧柏液流变化特征及其水分来源的影响[J]. 植物生态学报, 2023, 47(11): 1585-1599. |
[3] | 李亚飞, 于静洁, 陆凯, 王平, 张一驰, 杜朝阳. 额济纳三角洲胡杨和多枝柽柳水分来源解析[J]. 植物生态学报, 2017, 41(5): 519-528. |
[4] | 吕婷, 赵西宁, 高晓东, 潘燕辉. 黄土丘陵区典型天然灌丛和人工灌丛优势植物土壤水分利用策略[J]. 植物生态学报, 2017, 41(2): 175-185. |
[5] | 郑肖然, 赵国琴, 李小雁, 李柳, 吴华武, 张思毅, 张志华. 氢同位素在内蒙古小叶锦鸡儿灌丛水分来源研究中的应用[J]. 植物生态学报, 2015, 39(2): 184-196. |
[6] | 朱林,祁亚淑,许兴. 宁夏盐池不同坡位旱地紫苜蓿水分来源[J]. 植物生态学报, 2014, 38(11): 1226-1240. |
[7] | 戴岳,郑新军,唐立松,李彦. 古尔班通古特沙漠南缘梭梭水分利用动态[J]. 植物生态学报, 2014, 38(11): 1214-1225. |
[8] | 赵哈林, 曲浩, 周瑞莲, 李瑾, 潘成臣, 王进. 沙埋对两种沙生植物幼苗生长的影响及其生理响应差异[J]. 植物生态学报, 2013, 37(9): 830-838. |
[9] | 周海,郑新军,唐立松,李彦. 准噶尔盆地东南缘多枝柽柳、白刺和红砂水分来源的异同[J]. 植物生态学报, 2013, 37(7): 665-673. |
[10] | 聂云鹏, 陈洪松, 王克林. 石灰岩地区连片出露石丛生境植物水分来源的季节性差异[J]. 植物生态学报, 2011, 35(10): 1029-1037. |
[11] | 张灿娟, 吴冬秀, 张琳, 展小云, 周双喜, 杨云霞. 内蒙古草原3年生小叶锦鸡儿根瘤特征及其对环境变化的响应[J]. 植物生态学报, 2009, 33(6): 1165-1176. |
[12] | 岳广阳, 赵哈林, 张铜会, 赵学勇, 赵玮, 牛丽, 刘新平. 小叶锦鸡儿灌丛群落蒸腾耗水量估算方法[J]. 植物生态学报, 2009, 33(3): 508-515. |
[13] | 苏永中, 赵哈林, 张铜会, 李玉霖. 科尔沁沙地不同年代小叶锦鸡儿人工林植物群落特征及其土壤特性[J]. 植物生态学报, 2004, 28(1): 93-100. |
[14] | 沈振西, 周兴民, 陈佐忠, 周华坤. 高寒矮嵩草草甸植物类群对模拟降水和施氮的响应[J]. 植物生态学报, 2002, 26(3): 288-294. |
[15] | 肖春旺, 周广胜, 马风云. 施水量变化对毛乌素沙地优势植物形态与生长的影响[J]. 植物生态学报, 2002, 26(1): 69-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19