植物生态学报 ›› 2015, Vol. 39 ›› Issue (2): 184-196.DOI: 10.17521/cjpe.2015.0018
所属专题: 稳定同位素生态学
郑肖然1,2, 赵国琴2, 李小雁1,2,*(), 李柳2, 吴华武2, 张思毅2, 张志华2
收稿日期:
2014-07-07
接受日期:
2014-12-09
出版日期:
2015-02-01
发布日期:
2015-03-10
通讯作者:
李小雁
作者简介:
# 共同第一作者
基金资助:
ZHENG Xiao-Ran1,2, ZHAO Guo-Qin2, LI Xiao-Yan1,2,*(), LI Liu2, WU Hua-Wu2, ZHANG Si-Yi2, ZHANG Zhi-Hua2
Received:
2014-07-07
Accepted:
2014-12-09
Online:
2015-02-01
Published:
2015-03-10
Contact:
Xiao-Yan LI
About author:
# Co-first authors
摘要:
小叶锦鸡儿(Caragana microphylla)是我国内蒙古草原广泛分布的优势灌木, 目前国内外有关小叶锦鸡儿水分利用来源的定量研究较少。该文运用氢稳定同位素法, 分析了内蒙古小叶锦鸡儿木质部水和潜在水源(夏季降雨、冬季降雪和土壤水)的氢稳定同位素比率(δD)的季节变化, 发现小叶锦鸡儿在遮雨处理和自然状态下δD季节变化差异不明显, 分别为-101.36‰ ± 13.02‰和-101.18‰ ± 12.71‰。在遮雨处理条件下, 小叶锦鸡儿主要利用0-20 cm土壤层水分, 占其所利用水分的73.30% ± 16.14%; 自然状态下, 小叶锦鸡儿对0-20、20-60和60-100 cm不同土壤层土壤的水分利用较为均衡, 分别为34.66% ± 7.83%、32.44% ± 7.42%和32.90% ± 4.14%。该结果表明不同生境下灌木与草本的水分竞争可能是小叶锦鸡儿对不同土层水分利用差异的原因。结合两源模型分析了降雨对各土壤层的贡献率, 并用IsoSource多源混合模型分析了各土壤层对小叶锦鸡儿用水的贡献率, 发现降雨对小叶锦鸡儿的贡献率为42.65%-63.92%。该结果反映了小叶锦鸡儿对夏季降雨和冬季融雪的利用情况。
郑肖然, 赵国琴, 李小雁, 李柳, 吴华武, 张思毅, 张志华. 氢同位素在内蒙古小叶锦鸡儿灌丛水分来源研究中的应用. 植物生态学报, 2015, 39(2): 184-196. DOI: 10.17521/cjpe.2015.0018
ZHENG Xiao-Ran,ZHAO Guo-Qin,LI Xiao-Yan,LI Liu,WU Hua-Wu,ZHANG Si-Yi,ZHANG Zhi-Hua. Application of stable hydrogen isotope in study of water sources for Caragana microphylla bushland in Nei Mongol. Chinese Journal of Plant Ecology, 2015, 39(2): 184-196. DOI: 10.17521/cjpe.2015.0018
图3 研究区降雨、融雪、土壤水分以及植物各水线和全球大气水线。δD, 氢稳定同位素比率; δO18, 氧稳定同位素比率。
Fig. 3 Plots of δD versus δO18 values of precipitation, soil water and plant water in the study area and global meteoric water line. δD, hydrogen stable isotope ratios; δO18, oxygen stable isotope ratios.
图2 生长季内降水量变化(A)和2013年实验地降水量和氢稳定同位素比率(δD)的月尺度变化(B)(平均值±标准偏差)。
Fig. 2 Changes of rainfall during growing season (A) and monthly changes of precipitation and hydrogen stable isotope ratios (δD) (B) in the experimental field in 2013 (mean ± SD).
日期 Date (month-day) | 降水量 Precipitation (mm) | 降水强度 Precipitation intensity (mm·h-1) | δD (‰) | 月平均δD (平均值±标准偏差) Monthly average δD (‰) (mean ± SD) |
---|---|---|---|---|
6-9 | 6.6 | 0.2 | -54.01 | -48.20 ± 46.20 |
6-14 | 4.2 | 1.0 | -5.89 | -48.20 ± 46.20 |
7-8 | 15.6 | 1.2 | -10.01 | -42.80 ± 26.50 |
7-12 | 2.0 | 0.2 | -38.47 | -42.80 ± 26.50 |
8-8 | 6.2 | 3.6 | -38.10 | -50.84 ± 32.52 |
表1 6次降水事件的特征
Table 1 Features of six precipitation events
日期 Date (month-day) | 降水量 Precipitation (mm) | 降水强度 Precipitation intensity (mm·h-1) | δD (‰) | 月平均δD (平均值±标准偏差) Monthly average δD (‰) (mean ± SD) |
---|---|---|---|---|
6-9 | 6.6 | 0.2 | -54.01 | -48.20 ± 46.20 |
6-14 | 4.2 | 1.0 | -5.89 | -48.20 ± 46.20 |
7-8 | 15.6 | 1.2 | -10.01 | -42.80 ± 26.50 |
7-12 | 2.0 | 0.2 | -38.47 | -42.80 ± 26.50 |
8-8 | 6.2 | 3.6 | -38.10 | -50.84 ± 32.52 |
图5 降雨事件后遮雨处理和自然状态不同深度的土壤含水量(平均值±标准偏差)。
Fig. 5 Soil water content at different soil depths following rainfall events under rain-exclusion and natural conditions (mean ± SD).
土壤深度 Soil depth (cm) | 遮雨处理 Rain-exclusion treatment | |||||
---|---|---|---|---|---|---|
日期 Date (month-day) | ||||||
4-20 | 6-11 | 6-15 | 7-8 | 7-14 | 8-9 | |
0-5 | -151.46 ± 17.39a | -109.92 ± 30.98a | -93.19 ± 35.33a | -82.37 ± 6.97a | -82.53 ± 18.76a | -85.90 ± 4.45a |
5-10 | -140.87 ± 27.79a | -132.75 ± 34.01a | -125.13 ± 22.85a | -111.30 ± 1.96ab | -96.05 ± 16.53a | -97.08 ± 12.39ab |
10-20 | -116.40 ± 5.83abc | -144.64 ± 7.83a | -137.39 ± 25.87a | -124.57 ± 15.03abc | -110.08 ± 36.13a | -98.74 ± 16.74ab |
20-40 | -89.31 ± 1.60c | -163.35 ± 30.89a | -148.37 ± 32.38a | -152.23 ± 16.11bc | -132.06 ± 9.74b | -119.34 ± 22.01abc |
40-60 | -92.37 ± 29.59c | -154.73 ± 39.10a | -143.87 ± 41.27a | -155.80 ± 13.31c | -142.22 ± 9.81bc | -128.18 ± 17.92bc |
60-80 | -101.28 ± 16.09bc | -138.64 ± 42.40a | -136.51 ± 37.99a | -166.77 ± 21.93c | -154.07 ± 0.23c | -138.05 ± 12.59c |
80-100 | -88.28 ± 13.99c | -133.77 ± 29.10a | -111.70 ± 14.02a | -140.27 ± 18.60b | -150.10 ± 10.17c | -145.18 ± 0.42c |
总计 Total | -111.42 ± 28.30 | -139.69 ± 28.91 | -129.43 ± 30.40 | -133.33 ± 30.28 | -123.87 ± 29.85 | -114.16 ± 23.93 |
土壤深度 Soil depth (cm) | 自然状态 Natural condition | |||||
日期 Date (month-day) | ||||||
4-20 | 6-11 | 6-15 | 7-8 | 7-14 | 8-9 | |
0-5 | -161.74 ± 1.21a | -80.65 ± 11.33a | -46.96 ± 14.16a | -44.55 ± 7.54a | -39.07 ± 4.72a | -73.09 ± 3.86a |
5-10 | -145.11 ± 7.93a | -116.48 ± 0.62b | -82.27 ± 16.08ab | -55.23 ± 22.23a | -58.54 ± 18.07ab | -83.77 ± 0.03ab |
10-20 | -129.67 ± 41.18a | -143.01 ± 12.45c | -108.05 ± 23.09b | -75.70 ± 19.69ab | -80.23 ± 14.00bc | -80.38 ± 18.94a |
20-40 | -143.43 ± 33.96a | -135.82 ± 8.17c | -100.7 ± 20.72b | -119.97 ± 19.88c | -109.48 ± 9.59c | -113.12 ± 21.33b |
40-60 | -137.41 ± 38.22a | -111.21 ± 3.98b | -103.35 ± 32.47b | -124.08 ± 16.14c | -115.16 ± 30.70c | -103.35 ± 16.54ab |
60-80 | -106.92 ± 32.80a | -103.74 ± 8.42b | -93.11 ± 8.75ab | -115.80 ± 10.20bc | -100.41 ± 13.57c | -91.16 ± 4.62ab |
80-100 | -111.89 ± 21.70a | -109.07 ± 5.05b | -87.31 ± 17.86ab | -129.67 ± 20.34c | -92.01 ± 8.95bc | -100.55 ± 0.26ab |
总计 Total | -135.54 ± 28.58 | -114.28 ± 20.77 | -88.82 ± 24.72 | -95.00 ± 36.50 | -84.59 ± 30.37 | -92.24 ± 17.18 |
表2 不同深度土壤水分的氢稳定同位素比率(δD, ‰)的季节变化(平均值±标准偏差)
Table 2 Seasonal variation of hydrogen stable isotope ratio (δD, ‰) in soil water (mean ± SD)
土壤深度 Soil depth (cm) | 遮雨处理 Rain-exclusion treatment | |||||
---|---|---|---|---|---|---|
日期 Date (month-day) | ||||||
4-20 | 6-11 | 6-15 | 7-8 | 7-14 | 8-9 | |
0-5 | -151.46 ± 17.39a | -109.92 ± 30.98a | -93.19 ± 35.33a | -82.37 ± 6.97a | -82.53 ± 18.76a | -85.90 ± 4.45a |
5-10 | -140.87 ± 27.79a | -132.75 ± 34.01a | -125.13 ± 22.85a | -111.30 ± 1.96ab | -96.05 ± 16.53a | -97.08 ± 12.39ab |
10-20 | -116.40 ± 5.83abc | -144.64 ± 7.83a | -137.39 ± 25.87a | -124.57 ± 15.03abc | -110.08 ± 36.13a | -98.74 ± 16.74ab |
20-40 | -89.31 ± 1.60c | -163.35 ± 30.89a | -148.37 ± 32.38a | -152.23 ± 16.11bc | -132.06 ± 9.74b | -119.34 ± 22.01abc |
40-60 | -92.37 ± 29.59c | -154.73 ± 39.10a | -143.87 ± 41.27a | -155.80 ± 13.31c | -142.22 ± 9.81bc | -128.18 ± 17.92bc |
60-80 | -101.28 ± 16.09bc | -138.64 ± 42.40a | -136.51 ± 37.99a | -166.77 ± 21.93c | -154.07 ± 0.23c | -138.05 ± 12.59c |
80-100 | -88.28 ± 13.99c | -133.77 ± 29.10a | -111.70 ± 14.02a | -140.27 ± 18.60b | -150.10 ± 10.17c | -145.18 ± 0.42c |
总计 Total | -111.42 ± 28.30 | -139.69 ± 28.91 | -129.43 ± 30.40 | -133.33 ± 30.28 | -123.87 ± 29.85 | -114.16 ± 23.93 |
土壤深度 Soil depth (cm) | 自然状态 Natural condition | |||||
日期 Date (month-day) | ||||||
4-20 | 6-11 | 6-15 | 7-8 | 7-14 | 8-9 | |
0-5 | -161.74 ± 1.21a | -80.65 ± 11.33a | -46.96 ± 14.16a | -44.55 ± 7.54a | -39.07 ± 4.72a | -73.09 ± 3.86a |
5-10 | -145.11 ± 7.93a | -116.48 ± 0.62b | -82.27 ± 16.08ab | -55.23 ± 22.23a | -58.54 ± 18.07ab | -83.77 ± 0.03ab |
10-20 | -129.67 ± 41.18a | -143.01 ± 12.45c | -108.05 ± 23.09b | -75.70 ± 19.69ab | -80.23 ± 14.00bc | -80.38 ± 18.94a |
20-40 | -143.43 ± 33.96a | -135.82 ± 8.17c | -100.7 ± 20.72b | -119.97 ± 19.88c | -109.48 ± 9.59c | -113.12 ± 21.33b |
40-60 | -137.41 ± 38.22a | -111.21 ± 3.98b | -103.35 ± 32.47b | -124.08 ± 16.14c | -115.16 ± 30.70c | -103.35 ± 16.54ab |
60-80 | -106.92 ± 32.80a | -103.74 ± 8.42b | -93.11 ± 8.75ab | -115.80 ± 10.20bc | -100.41 ± 13.57c | -91.16 ± 4.62ab |
80-100 | -111.89 ± 21.70a | -109.07 ± 5.05b | -87.31 ± 17.86ab | -129.67 ± 20.34c | -92.01 ± 8.95bc | -100.55 ± 0.26ab |
总计 Total | -135.54 ± 28.58 | -114.28 ± 20.77 | -88.82 ± 24.72 | -95.00 ± 36.50 | -84.59 ± 30.37 | -92.24 ± 17.18 |
土壤深度 Soil depth (cm) | 日期 Date (month-day) | 平均值 Mean | ||||
---|---|---|---|---|---|---|
6-11 | 6-15 | 7-8 | 7-14 | 8-9 | ||
0-5 | 76.22% | 74.36% | 77.87% | 99.53% | 72.65% | 80.13% |
5-10 | 44.25% | 52.31% | 71.02% | 84.27% | 64.31% | 63.23% |
10-20 | 20.57% | 36.21% | 57.90% | 75.03% | 66.96% | 51.33% |
20-40 | 26.99% | 40.80% | 29.53% | 44.34% | 41.37% | 36.61% |
40-60 | 48.95% | 39.15% | 26.90% | 39.89% | 39.87% | 38.95% |
60-80 | 55.62% | 45.54% | 32.21% | 51.45% | 58.53% | 48.67% |
80-100 | 50.86% | 49.16% | 23.32% | 58.03% | 51.19% | 46.51% |
表3 自然状态下降雨对不同深度土壤水分δD值的贡献率
Table 3 Contribution of rainfall to soil water at different depths under natural conditions
土壤深度 Soil depth (cm) | 日期 Date (month-day) | 平均值 Mean | ||||
---|---|---|---|---|---|---|
6-11 | 6-15 | 7-8 | 7-14 | 8-9 | ||
0-5 | 76.22% | 74.36% | 77.87% | 99.53% | 72.65% | 80.13% |
5-10 | 44.25% | 52.31% | 71.02% | 84.27% | 64.31% | 63.23% |
10-20 | 20.57% | 36.21% | 57.90% | 75.03% | 66.96% | 51.33% |
20-40 | 26.99% | 40.80% | 29.53% | 44.34% | 41.37% | 36.61% |
40-60 | 48.95% | 39.15% | 26.90% | 39.89% | 39.87% | 38.95% |
60-80 | 55.62% | 45.54% | 32.21% | 51.45% | 58.53% | 48.67% |
80-100 | 50.86% | 49.16% | 23.32% | 58.03% | 51.19% | 46.51% |
图6 两个采样点小叶锦鸡儿水分氢稳定同位素比率(δD)比较(平均值±标准偏差)。
Fig. 6 Comparison of hydrogen stable isotope ratio (δD) in Caragana microphylla between two sampling sites (mean ± SD).
图7 不同月份植物水分与不同深度土壤水分氢稳定同位素比率(δD)的比较。
Fig. 7 Comparisons of hydrogen stable isotope ratio (δD) for plants and soil water at different depths in different months.
5 | [曹成有, 蒋德明, 骆永明, 寇振武 (2004). 小叶锦鸡儿防风固沙林稳定性研究. 生态学报, 24, 1178-1186.] |
6 | Cheng XL, An SQ, Li B, Chen JQ, Lin GH, Liu YH, Luo YQ, Liu SR (2006). Summer rain pulse size and rainwater uptake by three dominant desert plants in a desertified grassland ecosystem in northwestern China.Plant Ecology, 184, 1-12. |
7 | Chimner RA, Cooper DJ (2004). Using stable oxygen isotopes to quantify the water source used for transpiration by native shrubs in the San Luis Valley, Colorado USA.Plant and Soil, 260, 225-236. |
8 | Chu JM (2007). Study on Water Utility of Plant in Arid Area. PhD dissertation, Chinese Academy of Forestry, Beijing.(in Chinese with English abstract). |
[褚建民 (2007). 干旱区植物的水分选择性利用研究. 博士学位论文, 中国林业科学研究院, 北京] | |
9 | Dawson TE, Ehleringer JR (1991). Streamside trees that do not use stream water.Nature, 350, 335-337. |
10 | Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002). Stable isotopes in plant ecology.Annual Review of Ecology and Systematics, 33, 507-559. |
11 | Dettinger MD, Cayan DR, Diaz HF, Meko DM (1998). North-South precipitation patterns in western north america on Interannual-to-Decadal timescales.Journal of Climate, 11, 3095-3111. |
12 | Dodd MB, Lauenroth WK, Welker JM (1998). Differential water resource use by herbaceous and woody plant life-forms in a shortgrass steppe community.Oecologia, 117, 504-512. |
13 | Donovan LA, Ehleringer JR (1994). Water stress and use of summer precipitation in a Great Basin shrub community.Functional Ecology, 8, 289-297. |
14 | Du XL, Wang SJ (2011). Recent advances of stable hydrogen and oxygen isotopic techniques in plant water use strategy.Chinese Agricultural Science Bulletin, 27(22), 5-10.(in Chinese with English abstract) |
[杜雪莲, 王世杰 (2011). 稳定性氢氧同位素在植物用水策略中的研究进展. 中国农学通报, 27(22), 5-10.] | |
15 | Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000). Climate extremes: Observations, modeling, and impacts.Science, 289, 2068-2074. |
16 | Ehleringer JR, Dawson TE (1992). Water uptake by plants: Perspectives from stable isotope composition.Plant, Cell & Environment, 15, 1073-1082. |
17 | Ehleringer JR, Phillips SL, Schuster WS, Sandquist DR (1991). Differential utilization of summer rains by desert plants.Oecologia, 88, 430-434. |
18 | Ehleringer JR, Roden J, Dawson TE (2000). Assessing ecosystem-level water relations through stable isotope ratio analyses. In: Sala OE, Jackson RB, Mooney HA, Howarth RW eds. Methods in Ecosystem Science. Springer, New York. 181-198. |
19 | Flanagan LB, Ehleringer JR, Marshall JD (1992). Differential uptake of summer precipitation among co-occurring trees and shrubs in a pinyon-juniper woodland.Plant, Cell & Environment, 15, 831-836. |
20 | Gonfiantini R (1978). Standards for stable isotope measurements in natural compounds.Nature, 271, 534-536. |
21 | Griggs DJ, Noguer M (2002). Climate change 2001: The scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change.Weather, 57, 267-269. |
22 | Groisman PY, Karl TR, Easterling DR, Knight RW, Jamason PF, Hennessy KJ, Suppiah R, Page CM, Wibig J, Fortuniak K, Razuvaev VN, Douglas A, Førland E, Zhai PM (1999). Changes in the probability of heavy precipitation: Important indicators of climatic change.Climatic Change, 42, 243-283. |
23 | Jia HK, Liu YH, Xu X, Wang K, Gao Q (2006). Simulation of soil water dynamics in a Caragana intermedia woodland in Huangfuchuan watershed: Relationship among slope, aspect, plant density and soil water content. Journal of Plant Ecology (Chinese Version), 29, 910-917.(in Chinese with English abstract) |
1 | Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland.Nature, 431, 181-184. |
2 | Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG (2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau.Ecology, 89, 2140-2153. |
23 | [贾海坤, 刘颖慧, 徐霞, 王昆, 高琼 (2006). 皇甫川流域柠条林地水分动态模拟——坡度、坡向、植被密度与土壤水分的关系. 植物生态学报, 29, 910-917.] |
24 | Knapp AK, Briggs JM, Koelliker JK (2001). Frequency and extent of water limitation to primary production in a mesic temperate grassland.Ecosystems, 4, 19-28. |
25 | Leffler AJ, Caldwell MM (2005). Shifts in depth of water extraction and photosynthetic capacity inferred from stable isotope proxies across an ecotone of Juniperus osteosperma (Utah juniper) and Artemisia tridentata (big sagebrush).Journal of Ecology, 93, 783-793. |
26 | Li SG, Tsujimura M, Sugimoto A, Sasaki L, Yamanaka T, Davaa G, Oyunbaatar D, Sugita M (2006). Seasonal variation in oxygen isotope composition of waters for a montane larch forest in Mongolia.Trees-Structure and Function, 20, 122-130. |
27 | Li XY (2012). Coupling, respond and adaptation of soil-plant- water in arid areas in arid area.Science China: Earth Science, 41, 1721-1730.(in Chinese) |
[李小雁 (2012). 干旱地区土壤-植被-水文耦合, 响应与适应机制. 中国科学: 地球科学, 41, 1721-1730.] | |
3 | Bazzaz FA (1996). Plants in Changing Environments: Linking Physiological, Population, and Community Ecology. Cambridge University Press, Cambridge, UK. |
4 | Burgess SSO, Adams MA, Turner NC, Ward B (2000). Characterisation of hydrogen isotope profiles in an agroforestry system: Implications for tracing water sources of trees.Agricultural Water Management, 45, 229-241. |
5 | Cao CY, Jiang DM, Luo YM, Kou ZW (2004). Stability of Caragana microphylla plantation for wind protection and sand fixation. Acta Ecologica Sinica, 24, 1178-1186.(in Chinese with English abstract) |
28 | Li XY, Zhang SY, Peng HY, Hu X, Ma YJ (2013). Soil water and temperature dynamics in shrub-encroached grasslands and climatic implications: Results from Inner Mongolia steppe ecosystem of north China. Agricultural and Forest Meteorology, 171-172, 20-30. |
29 | Lin GH, Sternberg L (1994). Utilization of surface-water by red mangrove (Rhizophora mangle L.): An isotopic study.Bulletin of Marine Science, 54, 94-102. |
30 | Lin GH, Sternberg L, da SL (1993). Hydrogen isotopic fractionation by plant roots during water uptake in coastal wetland plants. In: Ehleringer JR, Hall AE, Farquhar GD eds. Stable Isotopes and Plant Carbon-Water Relations. Academic Press, San Diego, USA. 497-510. |
31 | Liu WR, Peng XH, Shen YJ, Chen XM (2013). Measurements of hydrogen and oxygen isotopes in liquid water by isotope ratio infrared spectroscopy (IRIS) and their spectral contamination corrections. Chinese Journal of Ecology, 32, 1181-1186.(in Chinese with English abstract) |
[刘文茹, 彭新华, 沈业杰, 陈效民 (2013). 激光同位素分析仪测定液态水的氢氧同位素及其光谱污染修正. 生态学杂志, 32, 1181-1186.] | |
32 | Ma CC, Gao YB, Jiang FQ, Wang JL, Guo HY, Wu JB, Su D (2004). The comparison studies of ecological and water regulation characteristics of Caragana microphylla and Caragana stenophylla.Acta Ecologica Sinica, 24, 1442-1451.(in Chinese with English abstract) |
[马成仓, 高玉葆, 蒋福全, 王金龙, 郭宏宇, 吴建波, 苏丹 (2004). 小叶锦鸡儿和狭叶锦鸡儿的生态和水分调节特性比较研究. 生态学报, 24, 1442-1451.] | |
33 | Meng XJ, Wen XF, Zhang XY, Han JY, Sun XM, Li XB (2012). Potential impacts of organic contaminant on δ18O and δD in leaf and xylem water detected by isotope ratio infrared spectroscopy.Chinese Journal of Eco-Agricul- ture, 20, 1359-1365.(in Chinese with English abstract) |
[孟宪菁, 温学发, 张心昱, 韩佳音, 孙晓敏, 李晓波 (2012). 有机物对红外光谱技术测定植物叶片和茎秆水δ18O和δD的影响. 中国生态农业学报, 20, 1359-1365.] | |
34 | Nippert JB, Knapp AK (2007). Soil water partitioning contributes to species coexistence in tallgrass prairie.Oikos, 116, 1017-1029. |
35 | Peng HY (2011). Spatial Pattern of Shrub Patches and Its Ecohydrological Mechanism at the Typical Steppe in Inner Mongolia. PhD dissertation, Beijing Normal University, Beijing.(in Chinese with English abstract) |
[彭海英 (2011). 内蒙古典型草原小叶锦鸡儿灌丛空间分布格局及其生态水文机理. 博士学位论文, 北京师范大学, 北京.] | |
36 | Peng HY, Li XY, Li GY, Zhang ZH, Zhang SY, Li L, Zhao GQ, Jiang ZY, Ma YJ (2013). Shrub encroachment with increasing anthropogenic disturbance in the semiarid Inner Mongolian grasslands of China.Catena, 109, 39-48. |
37 | Phillips DL, Gregg JW (2003). Source partitioning using stable isotopes: Coping with too many sources.Oecologia, 136, 261-269. |
38 | Rose KL, Graham RC, Parker DR (2003). Water source utilization by Pinus jeffreyi and Arctostaphylos patula on thin soils over bedrock.Oecologia, 134, 46-54. |
39 | Rozanski K, Araguás-Araguás L, Gonfiantini R (1993). Isotopic patterns in modern global precipitation.Geophysical Monograph Series, 78, 1-36. |
40 | Schwinning S, Starr BI, Ehleringer JR (2005). Summer and winter drought in a cold desert ecosystem (Colorado Plateau) part I: Effects on soil water and plant water uptake.Journal of Arid Environments, 60, 547-566. |
41 | Vitousek PM (1994). Beyond global warming: Ecology and global change.Ecology, 75, 1861-1876. |
42 | Wang P, Song XF, Han DM, Zhang YH, Liu X (2010). A study of root water uptake of crops indicated by hydrogen and oxygen stable isotopes: A case in Shanxi Province, China.Agricultural Water Management, 97, 475-482. |
43 | White JW, Cook ER, Lawrence JR, Wallace SB (1985). The DH ratios of sap in trees: Implications for water sources and tree ring DH ratios.Geochimica et Cosmochimica Acta, 49, 237-246. |
44 | Wu Y, Zhou H, Zheng XJ, Li Y, Tang LS (2013). Seasonal changes in the water use strategies of three co-occurring desert shrubs.Hydrological Processes, 28, 6265-6275. |
45 | Xiong XG, Han XG (2005). Spatial heterogeneity in soil carbon and nitrogen resources, caused by Caragana microphylla, in the thicketization of semiarid grassland, Inner Mongolia.Acta Ecologica Sinica, 25, 1678-1683.(in Chinese with English abstract) |
[熊小刚, 韩兴国 (2005). 内蒙古半干旱草原灌丛化过程中小叶锦鸡儿引起的土壤碳、 氮资源空间异质性分布. 生态学报, 25, 1678-1683.] | |
46 | Xiong XG, Han XG, Bai YF, Pan QM (2003). Increased distribution of Caragana microphylla in rangelands and its causes and consequences in Xilin River Basin.Acta Prataculturae Sinica, 12(3), 57-62.(in Chinese with English abstract) |
[熊小刚, 韩兴国, 白永飞, 潘庆民 (2003). 锡林河流域草原小叶锦鸡儿分布增加的趋势, 原因和结局. 草业学报, 12(3), 57-62.] | |
47 | Xu Q, Li HB, Chen JQ, Cheng XL, Liu SR, An SQ (2011). Water use patterns of three species in subalpine forest, Southwest China: The deuterium isotope approach.Ecohydrology, 4, 236-244. |
48 | Yang H, Auerswald K, Bai YF, Han XG (2011). Complementarity in water sources among dominant species in typical steppe ecosystems of Inner Mongolia, China.Plant and Soil, 340, 303-313. |
49 | Yang Q, Xiao HL, Zhao LJ, Zhou MX, Li CZ, Cao SK (2010). Stable isotope techniques in plant water sources: A review.Sciences in Cold and Arid Regions, 2, 112-122. |
50 | Zhang Z, Wang SP, Nyren P, Jiang GM (2006). Morphological and reproductive response of Caragana microphylla to different stocking rates.Journal of Arid Environments, 67, 671-677. |
51 | Zhou DW (1990). Caragana microphylla thicketization of grassland, Inner Mongolia.Inner Mongolia Prataculture, (3), 17-19.(in Chinese) |
[周道玮 (1990). 内蒙古小叶锦鸡儿灌丛化草地. 内蒙古草业, (3), 17-19.] |
[1] | 李亚飞, 于静洁, 陆凯, 王平, 张一驰, 杜朝阳. 额济纳三角洲胡杨和多枝柽柳水分来源解析[J]. 植物生态学报, 2017, 41(5): 519-528. |
[2] | 陈定帅, 董正武, 高磊, 陈效民, 彭新华, 司炳成, 赵英. 不同降水条件下科尔沁沙地小叶锦鸡儿和盐蒿的水分利用动态[J]. 植物生态学报, 2017, 41(12): 1262-1272. |
[3] | 朱林,祁亚淑,许兴. 宁夏盐池不同坡位旱地紫苜蓿水分来源[J]. 植物生态学报, 2014, 38(11): 1226-1240. |
[4] | 李乐,曾辉,郭大立. 叶脉网络功能性状及其生态学意义[J]. 植物生态学报, 2013, 37(7): 691-698. |
[5] | 赵国琴, 李小雁, 吴华武, 张思毅, 李广泳. 青海湖流域具鳞水柏枝植物水分利用氢同位素示踪研究[J]. 植物生态学报, 2013, 37(12): 1091-1100. |
[6] | 聂云鹏, 陈洪松, 王克林. 石灰岩地区连片出露石丛生境植物水分来源的季节性差异[J]. 植物生态学报, 2011, 35(10): 1029-1037. |
[7] | 张灿娟, 吴冬秀, 张琳, 展小云, 周双喜, 杨云霞. 内蒙古草原3年生小叶锦鸡儿根瘤特征及其对环境变化的响应[J]. 植物生态学报, 2009, 33(6): 1165-1176. |
[8] | 岳广阳, 赵哈林, 张铜会, 赵学勇, 赵玮, 牛丽, 刘新平. 小叶锦鸡儿灌丛群落蒸腾耗水量估算方法[J]. 植物生态学报, 2009, 33(3): 508-515. |
[9] | 苏永中, 赵哈林, 张铜会, 李玉霖. 科尔沁沙地不同年代小叶锦鸡儿人工林植物群落特征及其土壤特性[J]. 植物生态学报, 2004, 28(1): 93-100. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19