植物生态学报 ›› 2011, Vol. 35 ›› Issue (10): 1029-1037.DOI: 10.3724/SP.J.1258.2011.01029
所属专题: 稳定同位素生态学
收稿日期:
2010-10-29
接受日期:
2011-03-11
出版日期:
2011-10-29
发布日期:
2011-11-07
通讯作者:
陈洪松
作者简介:
* (E-mail: hbchs@isa.ac.cn)
NIE Yun-Peng1,2,3, CHEN Hong-Song1,2,*(), WANG Ke-Lin1,2
Received:
2010-10-29
Accepted:
2011-03-11
Online:
2011-10-29
Published:
2011-11-07
Contact:
CHEN Hong-Song
摘要:
以桂西北石灰岩地区连片出露石丛生境次生林群落为研究对象, 运用稳定性氢氧同位素技术结合IsoSource模型, 分析了5种典型植物(半落叶乔木粉苹婆(Sterculia euosma)、落叶乔木菜豆树(Radermachera sinica)、常绿灌木鹅掌柴(Schefflera octophylla)以及落叶灌木红背山麻杆(Alchornea trewioides)和紫弹树(Celtis biondii))水分来源的季节性差异。结果表明: 雨季, 除鹅掌柴同时利用部分前期雨水外, 其余4种植物均主要利用最近15天内的雨水(利用比例的平均值之和均超过80%)。旱季, 5种植物均主要利用最近一次雨水与前期雨水(一个月前)的混合(利用比例的平均值之和均超过80%), 其中乔木和常绿灌木对前期雨水的利用比例更高(利用比例的平均值均超过50%)。植被良好的石灰岩连片出露石丛生境中, 植物主要以不同时期的雨水为主要水源, 这可能与石灰岩发育的裂隙及其储水能力有关。储存在裂隙中的雨水通过植物蒸腾的方式返回大气, 这一良好的水文循环过程应得到充分的保护。
聂云鹏, 陈洪松, 王克林. 石灰岩地区连片出露石丛生境植物水分来源的季节性差异. 植物生态学报, 2011, 35(10): 1029-1037. DOI: 10.3724/SP.J.1258.2011.01029
NIE Yun-Peng, CHEN Hong-Song, WANG Ke-Lin. Seasonal variation of water sources for plants growing on continuous rock outcrops in limestone area of Southwest China. Chinese Journal of Plant Ecology, 2011, 35(10): 1029-1037. DOI: 10.3724/SP.J.1258.2011.01029
图2 植物木质部水、雨水和泉水氢氧同位素值分布特征(A为雨季, B为旱季)。雨水图例旁的标记为对应的雨水采样时间(如6表示6月, 7/1表示7月1日)。图中大气降水线为全球大气降水线(δD = 8.17 × δ18O + 10.35, Rozanski et al., 1993)。误差线为标准误差。
Fig. 2 Distribution character of hydrogen and oxygen isotope values for water extracted from plant xylems, rainwater and spring water during the wet (A) and dry (B) season. The assigned dates marked the precipitation sampling days (e.g., 6 means June, 7/1 means July 1). The meteoric water line is the Global Meteoric Water Line (δD = 8.17 × δ18O + 10.35, Rozanski et al., 1993). Error bars represent standard errors.
物种 Species | 雨季(2009年7月) Wet season (July 2009) | 旱季(2009年11月) Dry season (Nov. 2009) | |||
---|---|---|---|---|---|
氢同位素值 δD value (‰) | 氧同位素值 δ18O value (‰) | 氢同位素值 δD value (‰) | 氧同位素值 δ18O value (‰) | ||
菜豆树 Radermachera sinica | -76.3 ± 5.1a | -8.6 ± 0.3bc | -63.4 ± 5.0a | -7.4 ± 0.6a | |
粉苹婆 Sterculia euosma | -78.1 ± 4.0a | -10.0 ± 0.2ab | -56.6 ± 4.2ab | -6.8 ± 0.5a | |
鹅掌柴 Schefflera octophylla | -62.7 ± 2.5b | -7.4 ± 0.3c | -52.0 ± 1.7ab | -6.1 ± 0.2ab | |
红背山麻杆 Alchornea trewioides | -71.3 ± 4.3ab | -8.9 ± 0.8abc | -46.5 ± 5.2b | -4.8 ± 0.7b | |
紫弹树 Celtis biondii | -85.8 ± 3.8a | -10.3 ± 0.7a | -47.8 ± 2.8b | -5.2 ± 0.3b |
表1 2009年雨季和旱季不同植物木质部水同位素值的比较(平均值±标准误差)
Table 1 Comparisons of xylem water isotope values of different species in the wet and dry season of 2009 (mean ± SE)
物种 Species | 雨季(2009年7月) Wet season (July 2009) | 旱季(2009年11月) Dry season (Nov. 2009) | |||
---|---|---|---|---|---|
氢同位素值 δD value (‰) | 氧同位素值 δ18O value (‰) | 氢同位素值 δD value (‰) | 氧同位素值 δ18O value (‰) | ||
菜豆树 Radermachera sinica | -76.3 ± 5.1a | -8.6 ± 0.3bc | -63.4 ± 5.0a | -7.4 ± 0.6a | |
粉苹婆 Sterculia euosma | -78.1 ± 4.0a | -10.0 ± 0.2ab | -56.6 ± 4.2ab | -6.8 ± 0.5a | |
鹅掌柴 Schefflera octophylla | -62.7 ± 2.5b | -7.4 ± 0.3c | -52.0 ± 1.7ab | -6.1 ± 0.2ab | |
红背山麻杆 Alchornea trewioides | -71.3 ± 4.3ab | -8.9 ± 0.8abc | -46.5 ± 5.2b | -4.8 ± 0.7b | |
紫弹树 Celtis biondii | -85.8 ± 3.8a | -10.3 ± 0.7a | -47.8 ± 2.8b | -5.2 ± 0.3b |
雨季 Wet season | 菜豆树 Radermachera sinica | 粉苹婆 Sterculia euosma | 鹅掌柴 Schefflera octophylla | 红背山麻杆 Alchornea trewioides | 紫弹树 Celtis biondii |
---|---|---|---|---|---|
雨水(7/1) Rain (July 1) | 74.6 (65-86) | 27.3 (13-38) | 63.2 (57-69) | 86.7 (81-95) | 47.2 (45-50) |
雨水(7/3) Rain (July 3) | 14.1 (0-24) | 28.6 (0-55) | 1.1 (0-5) | 3.0 (0-9) | 48.7 (45-51) |
雨水(7/6) Rain (July 6) | 7.4 (0-30) | 25.7 (0-67) | 1.5 (0-7) | 3.9 (0-11) | 3.2 (0-9) |
雨水(6) Rain (June) | 1.8 (0-9) | 9.8 (0-90) | 30.2 (20-36) | 3.5 (0-9) | 0.3 (0-2) |
泉水 Spring water | 2.1 (0-9) | 8.6 (0-26) | 4.0 (0-15) | 3.0 (0-7) | 0.5 (0-2) |
表2 雨季植物对各可能水源的利用比例(平均值(最小值-最大值))
Table 2 Proportions of feasible water sources (%) for species during the wet season (mean (minimum-maximum))
雨季 Wet season | 菜豆树 Radermachera sinica | 粉苹婆 Sterculia euosma | 鹅掌柴 Schefflera octophylla | 红背山麻杆 Alchornea trewioides | 紫弹树 Celtis biondii |
---|---|---|---|---|---|
雨水(7/1) Rain (July 1) | 74.6 (65-86) | 27.3 (13-38) | 63.2 (57-69) | 86.7 (81-95) | 47.2 (45-50) |
雨水(7/3) Rain (July 3) | 14.1 (0-24) | 28.6 (0-55) | 1.1 (0-5) | 3.0 (0-9) | 48.7 (45-51) |
雨水(7/6) Rain (July 6) | 7.4 (0-30) | 25.7 (0-67) | 1.5 (0-7) | 3.9 (0-11) | 3.2 (0-9) |
雨水(6) Rain (June) | 1.8 (0-9) | 9.8 (0-90) | 30.2 (20-36) | 3.5 (0-9) | 0.3 (0-2) |
泉水 Spring water | 2.1 (0-9) | 8.6 (0-26) | 4.0 (0-15) | 3.0 (0-7) | 0.5 (0-2) |
旱季 Dry season | 菜豆树 Radermachera sinica | 粉苹婆 Sterculia euosma | 鹅掌柴 Schefflera octophylla | 红背山麻杆 Alchornea trewioides | 紫弹树 Celtis biondii |
---|---|---|---|---|---|
雨水(10/14) Rain (Oct. 14) | 2.3 (0-6) | 2.5 (0-8) | 0.5 (0-1) | 3.5 (0-11) | 5.1 (0-17) |
雨水(10/25) Rain (Oct. 25) | 25.5 (23-38) | 34.6 (31-39) | 46.5 (46-47) | 47.9 (40-56) | 42.6 (31-54) |
雨水(9) Rain (Sept.) | 68.5 (67-70) | 58.0 (54-60) | 53.0 (53-53) | 40.2 (32-44) | 41.4 (29-46) |
泉水 Spring water | 3.7 (0-7) | 4.9 (0-14) | 0.0 | 8.5 (0-27) | 10.9 (0-39) |
表3 旱季植物对各可能水源的利用比例(平均值(最小值-最大值))
Table 3 Proportions of feasible water sources (%) for species during the dry season (mean (minimum-maximum))
旱季 Dry season | 菜豆树 Radermachera sinica | 粉苹婆 Sterculia euosma | 鹅掌柴 Schefflera octophylla | 红背山麻杆 Alchornea trewioides | 紫弹树 Celtis biondii |
---|---|---|---|---|---|
雨水(10/14) Rain (Oct. 14) | 2.3 (0-6) | 2.5 (0-8) | 0.5 (0-1) | 3.5 (0-11) | 5.1 (0-17) |
雨水(10/25) Rain (Oct. 25) | 25.5 (23-38) | 34.6 (31-39) | 46.5 (46-47) | 47.9 (40-56) | 42.6 (31-54) |
雨水(9) Rain (Sept.) | 68.5 (67-70) | 58.0 (54-60) | 53.0 (53-53) | 40.2 (32-44) | 41.4 (29-46) |
泉水 Spring water | 3.7 (0-7) | 4.9 (0-14) | 0.0 | 8.5 (0-27) | 10.9 (0-39) |
[1] | Academic Divisions of Chinese Academy of Sciences (中国科学院学部) (2003). Some suggestions of carrying forward the comprehensive harnessing desertification in southwest karst region. Advance in Earth Sciences (地球科学进展), 18, 489-492. (in Chinese) |
[2] | Asbjornsen H, Mora G, Helmers MJ (2007). Variation in water uptake dynamics among contrasting agricultural and native plant communities in the Midwestern U.S. Agriculture Ecosystem & Environment, 121, 343-356. |
[3] | Bonacci O (2001). Analysis of the maximum discharge of karst springs. Hydrogeology Journal, 9, 328-338. |
[4] | Brunel JP, Walker GR, Kennett-Smith AK (1995). Field validation of isotopic procedures for determining sources of water used by plants in a semi-arid environment. Journal of Hydrology, 167, 351-368. |
[5] | Cai YL (蔡运龙) (1996). Preliminary research on ecological reconstruction in karst mountain poverty areas of southwest China. Advance in Earth Sciences (地球科学进展), 11, 602-606. (in Chinese with English abstract) |
[6] | Chen HS (陈洪松), Wang KL (王克林) (2008). Soil water research in karst mountain areas of southwest China. Research of Agriculture Modernization (农业现代化研究), 29, 734-738. (in Chinese with English abstract) |
[7] | Chen HS (陈洪松), Fu W (傅伟), Wang KL (王克林), Zhang JG (张继光), Zhang W (张伟) (2006). Dynamic change of soil water in Peak-Cluster depression areas of karst mountainous region in northwest Guangxi. Journal of Soil and Water Conservation (水土保持学报), 20, 136-139. (in Chinese with English abstract) |
[8] | Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002). Stable isotopes in plant ecology. Annual Review of Ecology and Systematics, 33, 507-559. |
[9] | Dawson TE, Pate JS (1996). Seasonal water uptake and movement in root systems of Austrilian phraeatophytic plants of dimorphic root morphology: a stable isotope investigation. Oecologia, 107, 13-20. |
[10] | Deng PY (邓彭艳), Chen HS (陈洪松), Nie YP (聂云鹏), Tan W (谭巍) (2010). Photosynthetic characteristics of Radermachera sinica and Alchornea trewioides in karst region of Northwest Guangxi, China in dry and rainy seasons. Chinese Journal of Ecology (生态学杂志), 29, 1498-1504. (in Chinese with English abstract) |
[11] | Deng Y (邓艳), Jiang ZC (蒋忠诚), Cao JH (曹建华), Li Q (李强), Lan FN (蓝芙宁) (2004). Characteristics comparison of the leaf anatomy of Cyclobalanopsis glauca and its adaption to the environment of typical karst peak cluster areas in Nongla. Guihaia (广西植物), 24, 317-322. (in Chinese with English abstract) |
[12] | Eggemeyer KD, Awada T, Harvey FE, Wedin DA, Zhou XH, Zanner CW (2009). Seasonal changes in depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland. Tree Physiology, 29, 157-169. |
[13] | Ehleringer JR, Roden J, Dawson TE (2000). Assessing ecosystem-level water relations through stable isotope ratio analyses. In: Sala OE, Jackson RB, Mooney HA, Howarth RW eds. Methodsin Ecosystem Science. Springer, New York. 181-214. |
[14] | Ellsworth PZ, Williams DG (2007). Hydrogen isotope fractionation during water uptake by woody xerophytes. Plant and Soil, 291, 93-107. |
[15] | Hasselquist NJ, Allen MF (2009). Increasing demands on limited water resources: consequences for two endangered plants in Amargosa Valley, USA. American Journal of Botany, 96, 620-626. |
[16] | Hasselquist NJ, Allen MF, Santiago LS (2010). Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence. Oecologia, 164, 881-890. |
[17] | He CX (何成新), Huang YQ (黄玉清), Li XK (李先琨), Wang XY (王晓英), Wang Q (汪青) (2007). The ecophysiological traits of three karst rocky desert restoration species. Guihaia (广西植物), 27, 53-61. (in Chinese with English abstract) |
[18] | Huang YQ, Zhao P, Zhang ZF, Li XK, He CX, Zhang RQ (2009). Transpiration of Cyclobalanopsis glauca (syn. Quercus glacuca) stand measured by sap-flow method in a karst rocky terrain during dry season. Ecological Research, 24, 791-801. |
[19] | Hubbert KR, Beyers JL, Graham RC (2001). Roles of weathered bedrock and soil in seasonal water relations of Pinus jeffreyi and Arctostaphylos patula. Canadian Journal of Forest Research, 31, 1947-1957. |
[20] | IAEA (2002). A new device for monthly rainfall sampling for GNIP. Water & Environment News, 16, 5. |
[21] | Lin GH, Sternberg LSL (1993). Hydrogen isotopic fractionation by plant roots during water uptake in coastal wetland plants. In: Ehleringer JR, Hall AE eds. Stable Isotopes and Plant Carbon/Water Relations. Academic Press, New York. 497-510. |
[22] | Liu JW (刘建伟), Chen HS (陈洪松), Zhang W (张伟) (2008). Water infiltration in soils containing rock fragments in karst Peak-Cluster depression areas of northwest Guangxi. Journal of Soil and Water Conservation (水土保持学报), 22, 20-24. (in Chinese with English abstract) |
[23] | McCole AA, Stern LA (2007). Seasonal water use patterns of Juniperus ashei on the Edwards Plateau, Texas, based on stable isotopes in water. Journal of Hydrology, 342, 238-248. |
[24] | Nie YP (聂云鹏), Chen HS (陈洪松), Wang KL (王克林) (2010). Methods for determining plant water source in thin soil region: a review. Chinese Journal of Applied Ecology (应用生态学报), 21, 2427-2433. (in Chinese with English abstract) |
[25] | Nie YP, Chen HS, Wang KL, Tan W, Deng PY, Yang J (2011). Seasonal water use patterns of woody species growing on the continuous dolostone outcrops and nearby thin soils in subtropical China. Plant and Soil, 341, 399-412. |
[26] | Phillips DL, Gregg JW (2003). Source partitioning using stable isotopes: coping with too many sources. Oecologia, 136, 261-269. |
[27] | Phillips DL, Newsome SD, Gregg JW (2005). Combining sources in stable isotope mixing models: alternative methods. Oecologia, 144, 520-527. |
[28] | Phillips SL, Ehleringer JR (1995). Limited uptake of summer precipitation by bigtooth maple (Acer grandidentatum Nutt) and Gambel’s oak (Quercus gambelii Nutt). Trees, 9, 214-219. |
[29] | Querejeta JI, Estrada-Medina H, Allen MF, Jiménez-Osornio JJ (2007). Water source partitioning among trees growing on shallow karst soils in a seasonally dry tropical climate. Oecologia, 152, 26-36. |
[30] | Querejeta JI, Estrada-Medina H, Allen MF, Jiménez-Osornio JJ, Ruenes R (2006). Utilization of bedrock water by Brosimum alicastrum trees growing on shallow soil atop limestone in a dry tropical climate. Plant and Soil, 287, 187-197. |
[31] | Rong L (容丽), Wang SJ (王世杰), Liu N (刘宁), Yang L (杨龙) (2005). Leaf anatomical characters and its ecological adaptation of the pioneer species in the karst mountain area—with a special reference to the Huajiang Canyon of Guizhou. Journal of Mountain Science (山地学报), 23, 35-42. (in Chinese with English abstract) |
[32] | Rose KL, Graham RC, Parker DR (2003). Water source utilization by Pinus jeffreyi and Arctostaphylos patula on thin soils over bedrock. Oecologia, 134, 46-54. |
[33] | Rozanski K, Araguds-Araguds L, Gonfantini R (1993). Isotopic patterns in modern global precipitation. In: Swart PK, Lohman KC, McKenzie J, Savin S eds. Climate Change in Continental Isotopic Records—Geophysical Monography 78. American Geophysical Union, Washington DC. 1-36. |
[34] | Schenk HJ (2008). The shallowest possible water extraction profile: a null model for global root distributions. Vadose Zone Journal, 7, 1119-1124. |
[35] | Schenk HJ, Jackson RB (2002a). The global biogeography of roots. Ecological Monographs, 72, 311-328. |
[36] | Schenk HJ, Jackson RB (2002b). Rooting depths, lateral spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. Journal of Ecology, 90, 480-494. |
[37] | Schwinning S (2008). The water relations of two evergreen tree species in a karst savanna. Oecologia, 158, 373-383. |
[38] | Tan W (谭巍), Chen HS (陈洪松), Wang KL (王克林), Nie YP (聂云鹏), Deng PY (邓彭艳) (2010). Differences in foliar carbon isotope ratio of dominant plant species in representative habitats on karst hillslopes of northwest Guangxi, China. Chinese Journal of Ecology (生态学杂志), 29, 1709-1714. (in Chinese with English abstract) |
[39] | Wang P, Song XF, Han DM, Zhang YH, Liu X (2010). A study of root water uptake of crops indicated by hydrogen and oxygen stable isotopes: a case in Shanxi Province, China. Agricultural Water Management, 97, 475-482. |
[40] | West AG, Hultine KR, Burtch KG, Ehleringer JR (2007). Seasonal variations in moisture use in a piñon-juniper woodland. Oecologia, 153, 787-798. |
[41] | White WB (2002). Karst hydrology: recent developments and open questions. Engineering Geology, 65, 85-105. |
[42] | Williams DG, Ehleringer JR (2000). Intra- and interspecific variation for summer precipitation use in pinyon-juniper woodlands. Ecological Monographs, 70, 517-537. |
[43] | Williams PW (1983). The role of the subcutaneous zone in karst hydrology. Journal of Hydrology, 61, 45-67. |
[44] | Zhang JG (张继光), Chen HS (陈洪松), Su YR (苏以荣), Wu JS (吴金水), Zhang W (张伟) (2006). Spatital variability of surface soil moisture content in depression area of karst region under moist and arid conditions. Chinese Journal of Applied Ecology (应用生态学报), 17, 2277-2282. (in Chinese with English abstract) |
[1] | 路晨曦, 徐漫, 石学瑾, 赵成, 陶泽, 李敏, 司炳成. 基于贝叶斯模型MixSIAR的不同水同位素输入方法对苹果园吸水特征分析结果的影响[J]. 植物生态学报, 2023, 47(2): 238-248. |
[2] | 朱林, 王甜甜, 赵学琳, 祁亚淑, 许兴. 紫花苜蓿和斜茎黄耆水力提升作用及其对伴生植物的效应[J]. 植物生态学报, 2020, 44(7): 752-762. |
[3] | 方运霆, 刘冬伟, 朱飞飞, 图影, 李善龙, 黄韶楠, 全智, 王盎. 氮稳定同位素技术在陆地生态系统氮循环研究中的应用[J]. 植物生态学报, 2020, 44(4): 373-383. |
[4] | 魏杰, 陈昌华, 王晶苑, 温学发. 箱式通量观测技术和方法的理论假设及其应用进展[J]. 植物生态学报, 2020, 44(4): 318-329. |
[5] | 庞家平, 温学发. 稳定同位素红外光谱技术测定CO2同位素校正方法的研究进展[J]. 植物生态学报, 2018, 42(2): 143-152. |
[6] | 李亚飞, 于静洁, 陆凯, 王平, 张一驰, 杜朝阳. 额济纳三角洲胡杨和多枝柽柳水分来源解析[J]. 植物生态学报, 2017, 41(5): 519-528. |
[7] | 吕婷, 赵西宁, 高晓东, 潘燕辉. 黄土丘陵区典型天然灌丛和人工灌丛优势植物土壤水分利用策略[J]. 植物生态学报, 2017, 41(2): 175-185. |
[8] | 邹婷婷, 张子良, 李娜, 袁远爽, 郑东辉, 刘庆, 尹华军. 川西亚高山针叶林主要树种对土壤中不同形态氮素的吸收差异[J]. 植物生态学报, 2017, 41(10): 1051-1059. |
[9] | 何春霞, 陈平, 孟平, 张劲松, 杨洪国. 华北低丘山区果药复合系统种间水分利用策略[J]. 植物生态学报, 2016, 40(2): 151-164. |
[10] | 陈清, 王义东, 郭长城, 王中良. 天津沼泽湿地芦苇叶片的碳稳定同位素比值分布特征及其环境影响因素[J]. 植物生态学报, 2015, 39(11): 1044-1052. |
[11] | 王丹, 张荣, 熊俊, 郭海强, 赵斌. 互花米草入侵对滨海湿地土壤碳库的贡献——基于稳定同位素的研究[J]. 植物生态学报, 2015, 39(10): 941-949. |
[12] | 戴岳,郑新军,唐立松,李彦. 古尔班通古特沙漠南缘梭梭水分利用动态[J]. 植物生态学报, 2014, 38(11): 1214-1225. |
[13] | 朱林,祁亚淑,许兴. 宁夏盐池不同坡位旱地紫苜蓿水分来源[J]. 植物生态学报, 2014, 38(11): 1226-1240. |
[14] | 周海,郑新军,唐立松,李彦. 准噶尔盆地东南缘多枝柽柳、白刺和红砂水分来源的异同[J]. 植物生态学报, 2013, 37(7): 665-673. |
[15] | 王林, 冯锦霞, 万贤崇. 土层厚度对刺槐旱季水分状况和生长的影响[J]. 植物生态学报, 2013, 37(3): 248-255. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19