植物生态学报 ›› 2015, Vol. 39 ›› Issue (11): 1044-1052.DOI: 10.17521/cjpe.2015.0101
所属专题: 稳定同位素生态学
收稿日期:
2015-05-27
接受日期:
2015-10-04
出版日期:
2015-11-01
发布日期:
2015-12-02
通讯作者:
王中良
作者简介:
# 共同第一作者
基金资助:
CHEN Qing, WANG Yi-Dong, GUO Chang-Cheng, WANG Zhong-Liang*()
Received:
2015-05-27
Accepted:
2015-10-04
Online:
2015-11-01
Published:
2015-12-02
Contact:
Zhong-Liang WANG
About author:
# Co-first authors
摘要:
天津芦苇(Phragmites australis)沼泽具有重要的生态功能。目前天津地区水体咸化、氮污染和水资源短缺问题严重, 显著影响了芦苇湿地的植物生理生态过程。植物稳定碳同位素组成(碳稳定同位素比值(δ13C))能够记录与植物生长过程相关联的环境变化信息, 反映植物对环境变化的生理生态适应特性。该研究调查了天津七里海、北大港和大黄堡湿地芦苇叶片的δ13C分布特征, 探讨了影响该地区叶片δ13C值变化的主要因素。研究表明: 1)天津芦苇湿地植物叶片δ13C的变化范围在-26.3‰ - -23.6 ‰之间, 平均值为-25.8‰; 2)芦苇叶片δ13C与底泥相对含水量呈显著负相关关系, 与底泥有效氮和全氮含量呈显著正相关关系, 而与底泥盐度和磷含量没有显著相关关系; 水分条件和底泥氮营养状况是影响叶片的δ13C值变化的主要因素; 3)淹水条件下, 芦苇叶片δ13C与叶片质量氮含量呈显著正相关关系, 与叶碳氮比呈显著负相关关系, 8月份七里海湿地干涸打破了此相关关系。当前环境压力下, 天津沼泽湿地干涸极大地改变了芦苇的氮、水平衡和植物对水、氮资源的利用策略, 而湿地干涸对该过程的影响要高于盐度和氮负荷增加。
陈清, 王义东, 郭长城, 王中良. 天津沼泽湿地芦苇叶片的碳稳定同位素比值分布特征及其环境影响因素. 植物生态学报, 2015, 39(11): 1044-1052. DOI: 10.17521/cjpe.2015.0101
CHEN Qing,WANG Yi-Dong,GUO Chang-Cheng,WANG Zhong-Liang. Foliar stable carbon isotope ratios of Phragmites australis and the relevant environmental factors in marsh wetlands in Tianjin. Chinese Journal of Plant Ecology, 2015, 39(11): 1044-1052. DOI: 10.17521/cjpe.2015.0101
七里海 Qilihai | 北大港 Beidagang | 大黄堡 Dahuangpu | |
---|---|---|---|
pH值 pH value | 8.79 ± 0.06a | 8.91 ± 0.03a | 8.55 ± 0.04b |
盐度 Salinity (g·kg-1) | 6.36 ± 0.38a | 4.24 ± 0.06b | 2.76 ± 0.17c |
电导率 Electrical conductivity (ms·cm-1) | 2.38 ± 0.14a | 1.59 ± 0.02b | 1.02 ± 0.07c |
相对含水量 Relative soil moisture (%) | 69.90 ± 2.25b | 100.00 ± 0.00a | 100.00 ± 0.00a |
表1 8月份天津3块沼泽湿地0-25 cm底泥基本性状(平均值±标准误差)
Table 1 Sediment basic properties in 0-25 cm soil layers in three marsh wetlands in Tianjin in August (mean ± SE)
七里海 Qilihai | 北大港 Beidagang | 大黄堡 Dahuangpu | |
---|---|---|---|
pH值 pH value | 8.79 ± 0.06a | 8.91 ± 0.03a | 8.55 ± 0.04b |
盐度 Salinity (g·kg-1) | 6.36 ± 0.38a | 4.24 ± 0.06b | 2.76 ± 0.17c |
电导率 Electrical conductivity (ms·cm-1) | 2.38 ± 0.14a | 1.59 ± 0.02b | 1.02 ± 0.07c |
相对含水量 Relative soil moisture (%) | 69.90 ± 2.25b | 100.00 ± 0.00a | 100.00 ± 0.00a |
时间 Time | 样地 Site | δ13C (‰) | 碳氮比 C and N ratio | 氮含量 N content (%) | 碳含量 C content (%) |
---|---|---|---|---|---|
5月 | 七里海 Qilihai | -25.26 ± 0.12b | 11.71 ± 0.16b | 3.99 ± 0.05a | 46.73 ± 0.22a |
May | 北大港 Beidagang | -26.03 ± 0.13c | 13.44 ± 0.40a | 3.41 ± 0.12b | 45.61 ± 0.26b |
大黄堡 Dahuangpu | -24.15 ± 0.22a | 11.64 ± 0.37b | 4.05 ± 0.13a | 46.94 ± 0.08a | |
8月 | 七里海 Qilihai | -25.43 ± 0.12a | 23.90 ± 1.06a | 2.00 ± 0.09b | 47.42 ± 0.34a |
August | 北大港 Beidagang | -26.17 ± 0.07c | 22.54 ± 0.36a | 2.06 ± 0.04b | 46.43 ± 0.12b |
大黄堡 Dahuangpu | -25.79 ± 0.12b | 18.17 ± 0.41b | 2.59 ± 0.06a | 47.01 ± 0.18ab |
表2 天津3块沼泽湿地芦苇叶片碳稳定同位素比值(δ13C)值、碳氮含量和碳氮比(平均值±标准误差)
Table 2 Leaf stable carbon isotope ratios (δ13C), leaf C, N content and C and N ratio of Phragmites australis in three marsh wetlands in Tianjin (mean ± SE)
时间 Time | 样地 Site | δ13C (‰) | 碳氮比 C and N ratio | 氮含量 N content (%) | 碳含量 C content (%) |
---|---|---|---|---|---|
5月 | 七里海 Qilihai | -25.26 ± 0.12b | 11.71 ± 0.16b | 3.99 ± 0.05a | 46.73 ± 0.22a |
May | 北大港 Beidagang | -26.03 ± 0.13c | 13.44 ± 0.40a | 3.41 ± 0.12b | 45.61 ± 0.26b |
大黄堡 Dahuangpu | -24.15 ± 0.22a | 11.64 ± 0.37b | 4.05 ± 0.13a | 46.94 ± 0.08a | |
8月 | 七里海 Qilihai | -25.43 ± 0.12a | 23.90 ± 1.06a | 2.00 ± 0.09b | 47.42 ± 0.34a |
August | 北大港 Beidagang | -26.17 ± 0.07c | 22.54 ± 0.36a | 2.06 ± 0.04b | 46.43 ± 0.12b |
大黄堡 Dahuangpu | -25.79 ± 0.12b | 18.17 ± 0.41b | 2.59 ± 0.06a | 47.01 ± 0.18ab |
图2 8月份天津沼泽湿地芦苇叶片碳稳定同位素比值(δ13C)与底泥相对含水量(A)、盐度(B)、有效氮(C)和总氮(D)的相关关系。BDG, 北大港沼泽湿地; DHP, 大黄堡沼泽湿地; QLH, 七里海沼泽湿地。相关分析的统计见表3 (n = 15)。
Fig. 2 Relationships between foliar stable carbon isotope ratios (δ13C) of Phragmites australis and sediment relative water content (A), salinity (B), available N (C) and total N (D) in marsh wetlands in Tianjin in August. BDG, Beidagang marsh wetlands; DHP, Dahuangpu marsh wetlands; QLH, Qilihai marsh wetlands. Correlation results were presented in Table 3 (n = 15).
相对含水量 Relative soil moisture | 盐度 Salinity | 有效氮 Available N | 总氮 Total N | 速效磷 Available P | 总磷 Total P | ||
---|---|---|---|---|---|---|---|
简单相关分析 | r | -0.719** | 0.501 | 0.798*** | 0.745*** | 0.655** | 0.643** |
Simple correlation | Sig. | 0.003 | 0.057 | 0.000 | 0.001 | 0.008 | 0.010 |
偏相关分析 | r | -0.599* | -0.507 | 0.646* | 0.626* | 0.264 | 0.118 |
Partial correlation | Sig. | 0.030 | 0.077 | 0.017 | 0.022 | 0.383 | 0.700 |
表3 8月份天津沼泽湿地芦苇叶片碳稳定同位素比值(δ13C)与底泥各环境因子的简单相关分析以及偏相关分析
Table 3 Simple and partial correlation analyses of foliar stable carbon isotope ratios (δ13C) of Phragmites australis and sediment characters in marsh wetlands in Tianjin in August
相对含水量 Relative soil moisture | 盐度 Salinity | 有效氮 Available N | 总氮 Total N | 速效磷 Available P | 总磷 Total P | ||
---|---|---|---|---|---|---|---|
简单相关分析 | r | -0.719** | 0.501 | 0.798*** | 0.745*** | 0.655** | 0.643** |
Simple correlation | Sig. | 0.003 | 0.057 | 0.000 | 0.001 | 0.008 | 0.010 |
偏相关分析 | r | -0.599* | -0.507 | 0.646* | 0.626* | 0.264 | 0.118 |
Partial correlation | Sig. | 0.030 | 0.077 | 0.017 | 0.022 | 0.383 | 0.700 |
图3 天津芦苇湿地芦苇叶片碳稳定同位素比值(δ13C)与叶片氮含量和叶碳氮比的相关关系。BDG, 北大港沼泽湿地; DHP, 大黄堡沼泽湿地; QLH, 七里海沼泽湿地。实心和空心标识符分别代表5月份和8月份的数据点。A, 叶片δ13C与叶氮含量的相关关系: 5月份, R2 = 0.379, p = 0.009; 8月份去掉七里海数据点, R2 = 0.628, p = 0.002。B, 叶片δ13C与叶碳氮比的相关关系: 5月份, R2 = 0.329, p = 0.015; 8月份, 去掉七里海数据点, R2 = 0.611, p = 0.003。
Fig. 3 Relationships between leaf stable carbon isotope ratios (δ13C) and leaf N content, leaf C and N ratio of Phragmites australis in marsh wetlands in Tianjin. BDG, Beidagang marsh wetlands; DHP, Dahuangpu marsh wetlands; QLH, Qilihai marsh wetlands. The solid symbols indicated data points from May, and the hollow ones indicated data points from August. A, the relationship between leaf δ13C and N content, May: R2 = 0.379, p = 0.009; August: after removing the data points at QLH, then R2 = 0.628, p = 0.002. B, the relationship between leaf δ13C and C and N ratio, May: R2 = 0.329, p = 0.015; August: after removing the data points at QLH, then R2 = 0.611, p = 0.003.
1 | Barter MA, Li ZW, Xu JL (2001). Shorebird numbers on the Tianjin Municipality coast in May 2000.Stilt, 39, 2-9. |
2 | Cao SK, Feng Q, Si JH, Chang ZQ, Zuo MC, Xi HY, Su YH (2009). Summary on the plant water use efficiency at leaf level.Acta Ecologica Sinica, 29, 3882-3892. |
(in Chinese with English abstract) [曹生奎, 冯起, 司建华, 常宗强, 卓玛错, 席海洋, 苏永红 (2009). 植物叶片水分利用效率研究综述. 生态学报, 29, 3882-3892.] | |
3 | Cernusak LA, Ubierna N, Winter K, Holtum JAM, Marshall JD, Farquhar GD (2013). Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants.New Phytologist, 200, 950-965. |
4 | Chen Q, Gao J, Wang ZL, Wang YD (2014). Variation characteristics of reed marshes in Tianjin and its cause during 1984-2009.Wetland Science, 12, 325-331. |
(in Chinese with English abstract) [陈清, 高军, 王中良, 王义东 (2014). 1984-2009 年天津市典型芦苇沼泽变化特征及成因分析. 湿地科学, 12, 325-331.] | |
5 | Choi WJ, Ro HM, Chang SX (2005). Carbon isotope composition of Phragmites australis in a constructed saline wetland.Aquatic Botany, 82, 27-38. |
6 | Diefendorf AF, Mueller KE, Wing SL, Koch PL, Freeman KH (2010). Global patterns in leaf 13C discrimination and implications for studies of past and future climate.Proceedings of the National Academy of Sciences of the United States of America, 107, 5738-5743. |
7 | Domingues TF, Meir P, Feldpausch TR, Saiz G, Veenendaal EM, Schrodt F, Bird M, Djagbletey G, Hien F, Compaore H, Diallo A, Grace J, Lloyd J (2010). Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands.Plant, Cell & Environment, 33, 959-980. |
8 | Duursma RA, Marshall JD (2006). Vertical canopy gradients in δ13C correspond with leaf nitrogen content in a mixed-species conifer forest.Trees, 20, 496-506. |
9 | Farquhar GD, Cernusak LA (2012). Ternary effects on the gas exchange of isotopologues of carbon dioxide.Plant, Cell & Environment, 35, 1221-1231. |
10 | Farquhar GD, Ehleringer JR, Hubick KT (1989). Carbon isotope discrimination and photosynthesis.Annual Review of Plant Physiology and Plant Molecular Biology, 40, 503-537. |
11 | Feng XP, Wang YD, Chen Q, Guo CC, Wang ZL (2014). Research on the spatial evolvement regulations of soil salt of the coastal natural wetlands in Tianjin. Journal of Tianjin Normal University (Natural Science Edition), 34(2), 41-48. |
(in Chinese with English abstract) [冯小平, 王义东, 陈清, 郭长城, 王中良 (2014). 天津滨海湿地土壤盐分空间演变规律研究. 天津师范大学学报: (自然科学版), 34(2), 41-48.] | |
12 | Gibberd MR, Turner NC, Storey R (2002). Influence of saline irrigation on growth, ion accumulation and partitioning, and leaf gas exchange of carrot (Daucus carota L.).Annals of Botany, 90, 715-724. |
13 | Gong XY, Chen Q, Lin S, Brueck H, Dittert K, Taube F, Schnyder H (2011). Tradeoffs between nitrogen- and water-use efficiency in dominant species of the semiarid steppe of Inner Mongolia.Plant and Soil, 340, 227-238. |
14 | Guo J, Yang YJ (2011). The characteristics of precipitation changes in Tianjin in recent 20 years.Journal of Arid Land Resources and Environment, 25(7), 80-83. |
(in Chinese with English abstract) [郭军, 杨艳娟 (2011). 近20年来天津市降水资源的变化特征. 干旱区资源与环境, 25(7), 80-83.] | |
15 | Hamerlynck EP, Huxman TE, McAuliffe JR, Smith SD (2004). Carbon isotope discrimination and foliar nutrient status of Larrea tridentata (creosote bush) in contrasting Mojave Desert soils.Oecologia, 138, 210-215. |
16 | Hultine KR, Marshall JD (2000). Altitude trends in conifer leaf morphology and stable carbon isotope composition.Oecologia, 123, 32-40. |
17 | Jiang QZ, Roche D, Monaco TA, Durham S (2006). Gas exchange, chlorophyll fluorescence parameters and carbon isotope discrimination of 14 barley genetic lines in response to salinity.Field Crops Research, 96, 269-278. |
18 | Kohn MJ (2010). Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo) climate.Proceedings of the National Academy of Sciences of the United States of America, 107, 19691-19695. |
19 | Li J, Liu CQ, Yue PJ, Zhu ZZ, Zhang GP, Xiang M, Li Y (2010). Hydrochem ical evidence of surface water salinization process in the Tianjin coastal plain, China.Environmental Chemistry, 29, 285-289. |
(in Chinese with English abstract) [李军, 刘丛强, 岳甫均, 朱兆洲, 张国平, 项萌, 李勇 (2010). 天津地区地表水咸化的水化学证据. 环境化学, 29, 285-289.] | |
20 | Liu XZ, Zhang Y, Su Q, Tian YL, Quan B, Wang GA (2014). Research progress in responses of modern terrestrial plant carbon isotope composition to climate change.Advances in Earth Science, 29, 1341-1354. |
(in Chinese with English abstract) [刘贤赵, 张勇, 宿庆, 田艳林, 全斌, 王国安 (2014). 现代陆生植物碳同位素组成对气候变化的响应研究进展. 地球科学进展, 29, 1341-1354.] | |
21 | Marks M, Lapin B, Randall J (1994). Phragmites australis (P. communis): Threats, management and monitoring.Natural Areas Journal, 14, 285-294. |
22 | Sardans J, Penñuuelas J, Estiarte M, Prieto P (2008). Warming and drought alter C and N concentration, allocation and accumulation in a Mediterranean shrubland.Global Change Biology, 14, 2304-2316. |
23 | Sheng WP, Ren SJ, Yu GR, Fang HJ, Jiang CM, Zhang M (2011). Patterns and driving factors of WUE and NUE in natural forest ecosystems along the Northsouth Transect of Eastern China.Journal of Geographical Sciences, 21, 651-665. |
24 | Wang WW (2011). Nutrient Dynamic and Stable Isotope Indicators in Tidal Flats of the Yangtze Estuary. PhD dissertation, East China Normal University, Shanghai. |
(in Chinese with English abstract) [王伟伟 (2011). 长江口潮滩营养动态与稳定同位素指示研究. 博士学位论文, 华东师范大学, 上海. 77-87.] | |
25 | Wang WW (2012).Response of δ13C Values of Wetland Ecosystem Plants to Soil Salinity in Yellow River Delta. Master degree dissertation, Ludong University, Yantai, Shandong. |
(in Chinese with English abstract) [王文文 (2012). 黄河三角洲湿地生态系统植物δ13C值对土壤盐分的响应. 硕士学位论文, 鲁东大学, 山东烟台. 22-51.] | |
26 | Waring EF, Maricle BR (2012). Photosynthetic variation and carbon isotope discrimination in invasive wetland grasses in response to flooding.Environmental and Experimental Botany, 77, 77-86. |
27 | Waring EF, Maricle BR (2013). Stomatal conductance correlates with flooding tolerance in Phragmites australis and Sorghum halepense.Transactions of the Kansas Academy of Science, 115, 161-166. |
28 | Wei L, Yan CL, Guo XY, Ye BB (2008). Variation in the δ13C of two mangrove plants is correlated with stomatal response to salinity.Journal of Plant Growth Regulation, 27, 263-269. |
29 | Winter K, Aranda J, Holtum JAM (2005). Carbon isotope composition and water-use efficiency in plants with crassulacean acid metabolism.Functional Plant Biology, 32, 381-388. |
30 | Wu GH, Chen SR, Su RX, Jia MQ, Li WQ (2011). Temporal trend in surface water resources in Tianjin in the Haihe River Basin, China.Hydrological Processes, 25, 2141-2151. |
31 | Xu ZZ, Zhou GS, Wang YH (2007). Effects of drought and rewatering on carbon and nitrogen allocations in Leymus chinensis grass.Journal of Meteorology and Environment, 23(3), 65-71. |
(in Chinese with English abstract) [许振柱, 周广胜, 王玉辉 (2007). 干旱和复水对羊草碳氮分配的影响. 气象与环境学报, 23(3), 65-71.] | |
32 | Xue DM, Boeckx P, Wang ZL (2014). Nitrate sources and dynamics in the salinized rivers and estuaries—A δ15 N- and δ18O-NO3- isotope approach.Biogeosciences Discussions, 11, 4563-4589. |
33 | Yang ZF, Xie T, Liu Q (2014). Physiological responses of Phragmites australis to the combined effects of water and salinity stress.Ecohydrology, 7, 420-426. |
34 | Zhan XY, Yu GR, Sheng WP, Fang HJ (2012). Foliar water use efficiency and nitrogen use efficiency of dominant plant species in main forests along the Northsouth Transect of East China.Chinese Journal of Applied Ecology, 23, 587-594. |
(in Chinese with English abstract) [展小云, 于贵瑞, 盛文萍, 方华军 (2012). 中国东部南北样带森林优势植物叶片的水分利用效率和氮素利用效率. 应用生态学报, 23, 587-594.] | |
35 | Zhang J, Gu L, Bao F, Cao Y, Hao Y, He J, Li J, Li Y, Ren Y, Wang F, Wu R, Yao B, Zhao Y, Lin G, Wu B, Lu Q, Meng P (2015). Nitrogen control of 13C enrichment in heterotrophic organs relative to leaves in a landscape- building desert plant species.Biogeosciences, 12, 15-27. |
36 | Zheng SX, Shangguan, ZP (2007). Photosynthetic character- istics and the ir relationships with leaf nitrogen content and leaf mass per area in different plant functional types.Acta Ecologica Sinica, 27, 58171-594181. |
(in Chinese with English abstract) [郑淑霞, 上官周平 (2007). 不同功能型植物光合特性及其与叶氮含量、比叶重的关系. 生态学报, 27, 58171-181594.] |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[3] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[4] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[5] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[6] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[7] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[8] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[9] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[10] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[11] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[12] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[13] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[14] | 李小玲, 朱道明, 余玉蓉, 吴浩, 牟利, 洪柳, 刘雪飞, 卜贵军, 薛丹, 吴林. 模拟氮沉降对鄂西南贫营养泥炭地两种藓类植物生长与分解的影响[J]. 植物生态学报, 2023, 47(5): 644-659. |
[15] | 李慧璇, 马红亮, 尹云锋, 高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征[J]. 植物生态学报, 2023, 47(5): 618-628. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19