植物生态学报 ›› 2017, Vol. 41 ›› Issue (10): 1051-1059.DOI: 10.17521/cjpe.2017.0165
所属专题: 稳定同位素生态学; 青藏高原植物生态学:植物-土壤-微生物
邹婷婷1,2, 张子良1,2, 李娜1, 袁远爽1,2, 郑东辉1,2, 刘庆1, 尹华军1,3,*()
出版日期:
2017-10-10
发布日期:
2017-12-24
通讯作者:
尹华军
基金资助:
Ting-Ting ZOU1,2, Zi-Liang ZHANG1,2, Na LI1, Yuan-Shuang YUAN1,2, Dong-Hui ZHENG1,2, Qin LIU1, Hua-Jun YIN1,3,*()
Online:
2017-10-10
Published:
2017-12-24
Contact:
Hua-Jun YIN
摘要:
在陆地生态系统中, 植物对土壤有机氮(主要指氨基酸)的获取是一个普遍的生态学现象, 然而植物对土壤有机氮的吸收速率及土壤有机氮在植物养分供应中所占比例仍不清楚。为探究土壤无机氮和有机氮对西南高寒森林植物氮源的贡献效应, 以川西亚高山针叶林两个主要树种云杉(Picea asperata)和红桦(Betula albo-sinensis)的幼苗为研究对象, 采用稳定同位素标记法对K15NO3、15NH4Cl和(U-13C2/15N)甘氨酸3种氮素进行示踪, 分析了两个树种对无机氮(NH4+-N和NO3–-N)和有机氮(甘氨酸)的吸收速率及其差异。结果显示: (1)云杉和红桦幼苗在施加同位素标记物2 h后, 两种幼苗细根的13C和15N均出现明显的富集现象, 表明两种树种幼苗均能吸收甘氨酸。(2)与甘氨酸和NH4+-N相比, 云杉和红桦幼苗对NO3–-N有显著的偏好吸收, 其吸收速率为NH4+-N和甘氨酸吸收速率的5-10倍。(3)两个树种的幼苗对甘氨酸也有较高的吸收速率, 其吸收速率高于对NH4+-N的吸收速率, 表明土壤有机氮(如氨基酸)也是亚高山针叶林植物养分获取的重要氮源。
邹婷婷, 张子良, 李娜, 袁远爽, 郑东辉, 刘庆, 尹华军. 川西亚高山针叶林主要树种对土壤中不同形态氮素的吸收差异. 植物生态学报, 2017, 41(10): 1051-1059. DOI: 10.17521/cjpe.2017.0165
Ting-Ting ZOU, Zi-Liang ZHANG, Na LI, Yuan-Shuang YUAN, Dong-Hui ZHENG, Qin LIU, Hua-Jun YIN. Differential uptakes of different forms of soil nitrogen among major tree species in subalpine coniferous forests of western Sichuan, China. Chinese Journal of Plant Ecology, 2017, 41(10): 1051-1059. DOI: 10.17521/cjpe.2017.0165
图2 不同采样时间云杉(A)和红桦(B)幼苗细根中13C自然丰度值(δ13C)的动态变化(平均值±标准偏差, n = 6)。柱状图中不同小写字母表示同一树种δ13C在不同取样时间差异显著(p < 0.05)。
Fig. 2 Dynamics of natural 13C abundance (δ13C) in fine roots of Picea asperata (A) and Betula albo-sinensis seedlings (B) at different sampling times (mean ± SD, n = 6). Different lowercase letters indicate significant differences in the δ13C value among sampling times within species (p < 0.05).
图3 不同采样时间云杉和红桦幼苗细根中15N自然丰度值(δ15N)动态变化(平均值±标准偏差, n = 6)。A, 15NO3–-N处理下的δ15N。B, (U-13C2/15N)甘氨酸(Glycine)处理下的δ15N。C, 15NH4+-N处理下的δ15N。柱状图中不同小写字母表示同一树种δ15N在不同取样时间差异显著(p < 0.05)。
Fig. 3 Dynamics of natural 15N abundance (δ15N) in fine roots of Picea asperata and Betula albo-sinensis seedlings at different sampling times (mean ± SD, n = 6). A, δ15N under 15NO3–-N labeling treatment. B, δ15N under glycine labeling treatment. C, δ15N for 15NH4+-N labeling treatment. Different lowercase letters indicate significant differences in the δ15N value among sampling times within species (p < 0.05).
图4 不同采样时间点云杉(A)和红桦(B)幼苗对3种不同形态N素(NO3–-N、甘氨酸和NH4+-N)的吸收速率差异(平均值±标准偏差, n = 6)。柱状图中不同小写字母表示同一时间不同形态N吸收速率差异显著(p < 0.05)。
Fig. 4 Differences in the mass-specific uptake rate for NO3–-N, glycine and NH4+-N in Picea asperata (A) and Betula albo-sinensis seedlings (B) at different sampling times (mean ± SD, n = 6). Different lowercase letters indicate significant differences in the uptake rate of different N forms at given sampling time (p < 0.05).
图5 云杉(A)和红桦(B)幼苗根系中13C和15N的单位摩尔原子百分超比值的差异(平均值±标准偏差, 6个重复)。虚线代表注射的双标记甘氨酸C:N原始值为2.0。
Fig. 5 Differences in the molar ratio of excess 13C to excess 15N derived from double-labelled (U-13C2/15N) glycine in fine roots of Picea asperata (A) and Betula albo-sinensis seedlings (B). Horizontal line represents the 2:1 injection ratio of C:N administered with the doubly labeled glycine treatment.
[1] | Ashton IW, Miller AE, Bowman WD, Suding KN (2010). Niche complementarity due to plasticity in resource use: Plant partitioning of chemical N forms.Ecology, 91, 3252-3260. |
[2] |
Bennett JN, Prescott CE (2004). Organic and inorganic nitrogen nutrition of western red cedar, western hemlock and salal in mineral N-limited cedar-hemlock forests.Oecologia, 141, 468-476.
DOI URL PMID |
[3] |
Binkley D, Aber J, Pastor J, Nadelhoffer K (1986). Nitrogen availability in some Wisconsin forests: Comparisons of resin bags and on-site incubations.Biology Fertility of Soils, 2, 77-82.
DOI URL |
[4] |
Breteler H, Siegerist M (1984). Effect of ammonium on nitrate utilization by root of dwarf bean.Plant Physiology, 75, 1099-1103.
DOI URL PMID |
[5] |
Britto DT, Kronzucker HJ (2002). NH4+ toxicity in higher plants: A critical review.Journal of Plant Physiology, 159, 567-584.
DOI URL |
[6] |
Burton J, Chen CR, Xu ZH, Ghadiri H (2007). Soluble organic nitrogen pools in adjacent native and plantation forests of subtropical Australia.Soil Biology & Biochemistry, 39, 2723-2734.
DOI URL |
[7] | Chapin FS Ⅲ, Moilanen L, Kielland K (1993). Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge.Nature, 361, 150-153. |
[8] | Chen G, Guo SW, Kronzucker HJ, Shi WM (2013). Nitrogen use efficiency (NUE) in rice links to NH4+ toxicity and futile NH4+ cycling in roots. Plant and Soil, 369, 351-363. |
[9] | Coskun D, Britto DT, Li MY, Becker A, Kronzucker HJ (2013). Rapid ammonia gas transport accounts for futile transmembrane cycling under NH3/NH4+ toxicity in plant roots.Plant Physiology, 163, 1859-1867. |
[10] |
Cui XY (2007). Organic nitrogen use by plants and its significance in some natural ecosystems.Acta Ecologica Sinica, 27, 3500-3512. (in Chinese with English abstract)[崔晓阳 (2007). 植物对有机氮源的利用及其在自然生态系统中的意义. 生态学报, 27, 3500-3512.]
DOI URL |
[11] | Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems.Ecology Letters, 10, 1135-1142. |
[12] |
Finzi AC, Berthrong ST (2005). The uptake of amino acids bymicrobes and trees in three cold-temperate forests.Ecology, 86, 3345-3353.
DOI URL |
[13] |
Gallet-Budynek A, Brzostek E, Rodgers VL, Talbot JM, Hyzy S, Finzi AC (2009). Intact amino acid uptake by northern hardwood and conifer trees.Ecosystem Ecology Original Paper, 160, 129-138.
DOI URL PMID |
[14] | Gessler A, Schneider S, von Sengbusch D, Weber P, Hanemann U, Huber C, Rothe A, Kreutzer K, Rennenberg H (1998). Field and laboratory experiments on net uptake of nitrate and ammonium by the roots of spruce (Picea abies) and beech(Fagus sylvatica) trees. New Phytologist, 138, 275-285. |
[15] |
Jones DL, Healey JR, Willett VB, Farrar JF, Hodge A (2005). Dissolved organic nitrogen uptake by plants—An important N uptake pathway.Soil Biology & Biochemistry, 37, 413-423.
DOI URL |
[16] |
Lajtha K (1994). Nutrient uptake in eastern deciduous tree seedlings.Plant and Soil, 160, 193-199.
DOI URL |
[17] | Li HS (2002). Modern Plant Physiology. Higher Education Press, Beijing. (in Chinese)[李合生 (2002). 现代植物生理学. 高等教育出版社, 北京.] |
[18] | Li YJ, Sun DD, Li DD, Xu ZF, Zhao CZ, Lin HH, Liu Q (2015). Effects of warming on ectomycorrhizal colonization and nitrogen nutrition ofPicea asperata seedlings grown in two contrasting forest ecosystems. Scientific Report, 5, 17546. doi: 10.1038/srep17546. |
[19] | Lipson D, Nasholm T (2001). The unexpected versatility of plants: Organic nitrogen use and availability in terrestrial ecosystems.Oecologia, 128, 305-316. |
[20] | Lu JL (2003). Plant Nutriology. China Agricultural University Press, Beijing. (in Chinese)[陆景陵 (2003).植物营养学. 中国农业大学出版社, 北京.] |
[21] | McKane RB, Johnson LC, Shaver GR, Nadelhoffer KJ, Rastetter EB, Fry B, Giblin AE, Kielland K, Kwiatkowski BL, Laundre JA, Murray G (2002). Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra.Nature, 415, 68-71. |
[22] | Miller AE, Bowman WD, Suding KN (2007). Plant uptake of inorganic and organic nitrogen: Neighbor identity matters.Ecology, 88, 1832-1840. |
[23] | Nan HW, Liu Q, Chen JS, Cheng XY, Yin HJ, Yin CY, Zhao CZ (2013). Effects of nutrient heterogeneity and competition on root architecture of spruce seedlings: implications for an essential feature of root foraging.PLOS ONE, 8, e65650. doi: 10.1371/journal.pone.0065650. |
[24] | N?sholm T, Ekblad A, Nordin A, Giesler R, Hogberg M, Hogberg P (1998). Boreal forest plants take up organic nitrogen. Nature, 392, 914-916. |
[25] | N?sholm T, Kielland K, Ganeteg U (2009). Uptake of organic nitrogen by plants.New Phytologist, 182, 31-48. |
[26] | Nordin A, Hogberg P, N?sholm T (2001). Soil nitrogen form and plant nitrogen uptake along a boreal forest productivity gradient.Oecologia, 129, 125-132. |
[27] | Ohlund J, N?sholm T (2001). Growth of conifer seedlings on organic and inorganic nitrogen sources.Tree Physiology, 18, 1319-1326. |
[28] | Pastor J, Aber J, McClaugherty C, Melillo J (1984). Aboveground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin.Ecology, 65, 256-268. |
[29] | Persson J, Gardestr?m P, N?sholm T (2006). Uptake, metabolism and distribution of organic and inorganic nitrogen sources byPinus sylvestris. Journal of Experimental Botany, 57, 2651-2659. |
[30] | Rothstein DE (2014). In-situ root uptake and soil transformations of glycine, glutamine and ammonium in two temperate deciduous forests of contrasting N availability.Soil Biology & Biochemistry, 75, 233-236. |
[31] | Song FQ, Tian XJ, Yang CL, He XB, Chen Bin, Zhu J, Hao JJ (2006). Ectomycorrhizal infection intensity of subalpine forest ecosystems in western Sichuan, China.Acta Ecologica Sinica, 26, 4171-4178. (in Chinese with English abstract)[宋福强, 田兴军, 杨昌林, 何兴兵, 陈彬, 朱静, 郝杰杰 (2006). 川西亚高山带森林生态系统外生菌根的形成. 生态学报, 26, 4171-4178.] |
[32] | Song MH, Zheng LL, Suding KN, Yin TF, Yu FH (2015). Plasticity in nitrogen form uptake and preference in response to long-term nitrogen fertilization.Plant and Soil, 394, 215-224. |
[33] | Stribley DP, Read DJ (1980). The biology of mycorrhizae in the Ericaceae VII. The relationship between mycorrhizal infection and the capacity to utilize simple and complex organic nitrogen sources.New Phytologist, 86, 365-371. |
[34] | Templer P, Dawson T (2004). Nitrogen uptake by four tree species of the Catskill Mountains, New York: Implications for forest N dynamics.Plant and Soil, 262, 251-261. |
[35] | Wang LX, Macko SA (2011). Constrained preferences in nitrogen uptake across plant species and environments.Plant, Cell & Environment, 34, 525-534. |
[36] | Warren CR (2009). Does nitrogen concentration affect relative uptake rates of nitrate, ammonium, and glycine?Journal of Plant Nutrition and Soil Science, 172, 224-229. |
[37] | Warren CR, Taranto MT (2010). Temporal variation in pools of amino acids, inorganic and microbial N in a temperate grassland soil.Soil Biology & Biochemistry, 42, 353-359. |
[38] | Wei LL, Chen CR, Yu S (2014). Uptake of organic nitrogen and preference for inorganic nitrogen by two Australian native Araucariaceae species.Plant Ecology & Diversity, 8, 259-264. |
[39] | Xu ZF, Hu R, Xiong P, Wan CA, Cao G, Liu Q (2010). Initial soil responses to experimental warming in two contrasting forest ecosystems, Eastern Tibetan Plateau, China: Nutrient availabilities, microbial properties and enzyme activities.Applied Soil Ecology, 46, 291-299. |
[40] | Yin HJ, Lai T, Chen XY, Jiang XM, Liu Q (2008). Warming effects on growth and physiology of seedlings of Betula albo-sinensis and Abies faxoniana under two contrasting light conditions in subalpine coniferous forest of western Sichuan, China. Journal of Plant Ecology (Chinese Version), 32, 1072-1083. (in Chinese with English abstract)[尹华军, 赖挺, 程新颖, 蒋先敏, 刘庆 (2008). 增温对川西亚高山针叶林内不同光环境下红桦和岷江冷杉幼苗生长和生理的影响. 植物生态学报, 32, 1072-1083.] |
[41] | Zhang ZL, Yuan YS, Zhao WQ, He HL, Li DD, He W, Liu Q, Yin HJ (2017). Seasonal variations in the soil amino acid pool and flux following the conversion of a natural forest to a pine plantation on the eastern Tibetan Plateau, China.Soil Biology & Biochemistry, 105, 1-11. |
[1] | 何茜, 冯秋红, 张佩佩, 杨涵, 邓少军, 孙小平, 尹华军. 基于叶片和土壤酶化学计量的川西亚高山岷江冷杉林养分限制海拔变化规律[J]. 植物生态学报, 2023, 47(12): 1646-1657. |
[2] | 赵阳, 栾军伟, 王一, 杨怀, 刘世荣. 模拟干旱和磷添加对热带低地雨林氮矿化过程的影响[J]. 植物生态学报, 2022, 46(1): 102-113. |
[3] | 刘攀, 王文颖, 周华坤, 毛旭锋, 刘艳方. 青藏高原人工草地土壤可溶性氮组分与植被生产力动态变化过程[J]. 植物生态学报, 2021, 45(5): 562-572. |
[4] | 蔡琴, 丁俊祥, 张子良, 胡君, 汪其同, 尹明珍, 刘庆, 尹华军. 青藏高原东缘主要针叶树种叶片碳氮磷化学计量分布格局及其驱动因素[J]. 植物生态学报, 2019, 43(12): 1048-1060. |
[5] | 罗亲普, 龚吉蕊, 徐沙, 宝音陶格涛, 王忆慧, 翟占伟, 潘琰, 刘敏, 杨丽丽. 氮磷添加对内蒙古温带典型草原净氮矿化的影响[J]. 植物生态学报, 2016, 40(5): 480-492. |
[6] | 梁儒彪, 梁进, 乔明锋, 徐振锋, 刘庆, 尹华军. 模拟根系分泌物C:N化学计量特征对川西亚高山森林土壤碳动态和微生物群落结构的影响[J]. 植物生态学报, 2015, 39(5): 466-476. |
[7] | 杨春, 谭太龙, 余佳玲, 廖琼, 张晓龙, 张振华, 宋海星, 官春云. 大气CO2浓度倍增对油菜韧皮部汁液成分及根部氮素积累的影响[J]. 植物生态学报, 2014, 38(7): 776-784. |
[8] | 刘翥,杨玉盛,司友涛,康根丽,郑怀舟. 植被恢复对侵蚀红壤可溶性有机质含量及光谱学特征的影响[J]. 植物生态学报, 2014, 38(11): 1174-1183. |
[9] | 李铭, 朱利川, 张全发, 程晓莉. 不同土地利用类型对丹江口库区土壤氮矿化的影响[J]. 植物生态学报, 2012, 36(6): 530-538. |
[10] | 安然, 龚吉蕊, 尤鑫, 葛之葳, 段庆伟, 晏欣. 不同龄级速生杨人工林土壤微生物数量与养分动态变化[J]. 植物生态学报, 2011, 35(4): 389-401. |
[11] | 尹华军, 程新颖, 赖挺, 林波, 刘庆. 川西亚高山65年人工云杉林种子雨、种子库和幼苗定居研究[J]. 植物生态学报, 2011, 35(1): 35-44. |
[12] | 熊沛, 徐振锋, 林波, 刘庆. 岷江上游华山松林冬季土壤呼吸对模拟增温的短期响应[J]. 植物生态学报, 2010, 34(12): 1369-1376. |
[13] | 陈智, 尹华军, 卫云燕, 刘庆. 夜间增温和施氮对川西亚高山针叶林土壤有效氮和微生物特性的短期影响[J]. 植物生态学报, 2010, 34(11): 1254-1264. |
[14] | 段仁燕, 王孝安, 黄敏毅, 王志高, 汪超. 太白红杉林斑块结构与群落特征[J]. 植物生态学报, 2009, 33(3): 460-468. |
[15] | 尹华军, 赖挺, 程新颖, 蒋先敏, 刘庆. 增温对川西亚高山针叶林内不同光环境下红桦和岷江冷杉幼苗生长和生理的影响[J]. 植物生态学报, 2008, 32(5): 1072-1083. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19