植物生态学报 ›› 2015, Vol. 39 ›› Issue (5): 466-476.DOI: 10.17521/cjpe.2015.0045
所属专题: 生态化学计量
梁儒彪1,2, 梁进1, 乔明锋1,2, 徐振锋3, 刘庆1, 尹华军1*()
收稿日期:
2014-12-08
接受日期:
2015-03-17
出版日期:
2015-05-01
发布日期:
2015-05-26
作者简介:
*作者简介:E-mail:
基金资助:
LIANG Ru-Biao1,2, LIANG Jin1, QIAO Ming-Feng1,2, XU Zhen-Feng3, LIU Qing1, YIN Hua-Jun1,*()
Received:
2014-12-08
Accepted:
2015-03-17
Online:
2015-05-01
Published:
2015-05-26
Contact:
Hua-Jun YIN
About author:
# Co-first authors
摘要:
目前有关森林根系分泌物及其诱导的土壤生态学效应研究主要关注根系碳(C)源输入, 而极少关注根系分泌物氮(N)源输入及其伴随的C:N化学计量特征对土壤过程和功能的影响, 极大地限制了我们对森林根系-土壤-微生物互作机制的深入认识。该研究以川西亚高山天然林和云杉(Picea asperata)人工林土壤为对象, 模拟配制不同C:N化学计量特征(只有N、C:N = 10、C:N = 50、C:N = 100和只有C处理)的根系分泌物溶液进行人工添加试验, 以探究根系分泌物化学计量特征对两种林分土壤碳动态及其微生物群落结构的影响差异。结果表明: 模拟根系分泌物C添加总体促进了两种林分土壤有机质分解激发效应而降低了土壤总碳(TC)含量, 而N添加在一定程度上缓和了两种林分土壤TC含量的降低幅度, 且C添加导致天然林土壤TC含量的降低幅度明显低于土壤N有效性更低的人工林。几种根系分泌物添加处理对两种林分土壤活性和惰性碳库的影响无明显规律。另外, 根系分泌物C添加总体降低了天然林土壤微生物总磷脂脂肪酸(PLFA)含量和细菌、放线菌、真菌PLFA含量, 而总体增加人工林土壤微生物PLFA总量和细菌、放线菌、真菌PLFA含量, 并诱导两种林分土壤微生物群落结构(细菌:真菌相对丰度)也发生了各自不同的变化。上述结果表明森林根系分泌物N源输入和土壤N有效性共同调控根系C源输入对土壤有机质分解激发效应的方向和幅度。研究结果为深入揭示典型森林根系分泌物化学计量特征对土壤生物化学循环过程的调控机制提供了一定的理论依据。
梁儒彪, 梁进, 乔明锋, 徐振锋, 刘庆, 尹华军. 模拟根系分泌物C:N化学计量特征对川西亚高山森林土壤碳动态和微生物群落结构的影响. 植物生态学报, 2015, 39(5): 466-476. DOI: 10.17521/cjpe.2015.0045
LIANG Ru-Biao,LIANG Jin,QIAO Ming-Feng,XU Zhen-Feng,LIU Qing,YIN Hua-Jun. Effects of simulated exudate C:N stoichiometry on dynamics of carbon and microbial community composition in a subalpine coniferous forest of western Sichuan, China. Chinese Journal of Plant Ecology, 2015, 39(5): 466-476. DOI: 10.17521/cjpe.2015.0045
理化性质 Physical-chemical properties | 天然林 Natural forest | 人工林 Plantation |
---|---|---|
pH值 pH value | 6.97 ± 0.02 | 6.73 ± 0.03 |
含水量 Water content (%) | 52.52 ± 1.76 | 37.70 ± 2.46 |
总碳 Total C (mg·g-1) | 114.87 ± 1.10 | 49.22 ± 1.18 |
总氮 Total N (mg·g-1) | 8.46 ± 0.31 | 3.20 ± 0.12 |
碳氮比 C:N | 13.59 ± 0.51 | 15.41 ± 0.55 |
表1 天然林和人工林土壤理化性质(平均值±标准偏差)
Table 1 Soil physical and chemical properties in both natural forest and plantation (mean ± SD)
理化性质 Physical-chemical properties | 天然林 Natural forest | 人工林 Plantation |
---|---|---|
pH值 pH value | 6.97 ± 0.02 | 6.73 ± 0.03 |
含水量 Water content (%) | 52.52 ± 1.76 | 37.70 ± 2.46 |
总碳 Total C (mg·g-1) | 114.87 ± 1.10 | 49.22 ± 1.18 |
总氮 Total N (mg·g-1) | 8.46 ± 0.31 | 3.20 ± 0.12 |
碳氮比 C:N | 13.59 ± 0.51 | 15.41 ± 0.55 |
处理 Treatment | 葡萄糖 Glucose (g) | 柠檬酸 Citric acid (g) | 谷氨酸 Glutamic acid (g) | 氯化铵 NH4Cl (g) | 去离子水 Deionized water (mL) |
---|---|---|---|---|---|
对照 Control (CK) | - | - | - | - | 1 000 |
仅添加N N-only | - | - | - | 0.022 9 | 1 000 |
C:N = 10 | 0.075 3 | 0.075 3 | 0.016 8 | 0.016 8 | 1 000 |
C:N = 50 | 0.083 0 | 0.083 0 | 0.003 4 | 0.003 4 | 1 000 |
C:N = 100 | 0.084 0 | 0.084 0 | 0.001 7 | 0.001 7 | 1 000 |
仅添加C C-only | 0.085 0 | 0.085 0 | - | - | 1 000 |
表2 不同C:N化学计量特征的根系分泌物模拟溶液的化学组成和含量
Table 2 Chemical components and contents of simulated root exudates in different C:N stoichiometry
处理 Treatment | 葡萄糖 Glucose (g) | 柠檬酸 Citric acid (g) | 谷氨酸 Glutamic acid (g) | 氯化铵 NH4Cl (g) | 去离子水 Deionized water (mL) |
---|---|---|---|---|---|
对照 Control (CK) | - | - | - | - | 1 000 |
仅添加N N-only | - | - | - | 0.022 9 | 1 000 |
C:N = 10 | 0.075 3 | 0.075 3 | 0.016 8 | 0.016 8 | 1 000 |
C:N = 50 | 0.083 0 | 0.083 0 | 0.003 4 | 0.003 4 | 1 000 |
C:N = 100 | 0.084 0 | 0.084 0 | 0.001 7 | 0.001 7 | 1 000 |
仅添加C C-only | 0.085 0 | 0.085 0 | - | - | 1 000 |
处理 Treatment | 天然林 Natural forest | 人工林 Plantation |
---|---|---|
对照 Control (CK) | 7.09 ± 0.02d | 7.03 ± 0.05d |
仅添加N N-only | 7.26 ± 0.02c | 7.12 ± 0.02c |
C:N = 10 | 7.32 ± 0.03b | 7.15 ± 0.01bc |
C:N = 50 | 7.39 ± 0.03a | 7.20 ± 0.02ab |
C:N = 100 | 7.35 ± 0.03b | 7.27 ± 0.02a |
仅添加C C-only | 7.26 ± 0.03c | 7.14 ± 0.02bc |
表3 不同C:N化学计量特征的根系分泌物模拟添加对天然林和人工林土壤pH的影响(平均值±标准偏差)
Table 3 Effects of simulated root exudates under different C:N stoichiometry on soil pH in both natural forest and plantation (mean ± SD)
处理 Treatment | 天然林 Natural forest | 人工林 Plantation |
---|---|---|
对照 Control (CK) | 7.09 ± 0.02d | 7.03 ± 0.05d |
仅添加N N-only | 7.26 ± 0.02c | 7.12 ± 0.02c |
C:N = 10 | 7.32 ± 0.03b | 7.15 ± 0.01bc |
C:N = 50 | 7.39 ± 0.03a | 7.20 ± 0.02ab |
C:N = 100 | 7.35 ± 0.03b | 7.27 ± 0.02a |
仅添加C C-only | 7.26 ± 0.03c | 7.14 ± 0.02bc |
图1 不同C:N化学计量特征的根系分泌物模拟添加对天然林和人工林土壤总碳含量的影响(平均值±标准偏差)。CK, 对照; C-only, 仅添加C; N-only, 仅添加N。不同小写字母表示同一林型各处理间在p < 0.05水平上差异显著。
Fig. 1 Effects of simulated root exudates under different C:N stoichiometry on total carbon content in natural forest and the plantation (mean ± SD). CK, control. Different lowercase letters mean significant differences (p < 0.05) among treatments at a given forest type.
图2 不同C:N化学计量特征的根系分泌物模拟添加对天然林和人工林土壤活性和惰性碳库的影响(平均值±标准偏差)。A, 活性碳库I。B, 活性碳库II。C, 惰性碳库。CK, 对照; C-only, 仅添加C; N-only, 仅添加N。不同小写字母表示同一林型各处理间在p < 0.05水平上差异显著。
Fig. 2 Effects of simulated root exudates under different C:N stoichiometry on soil labile and recalcitrant carbon pool in natural forest and the plantation (mean ± SD). A, labile carbon pool I (LPI-C). B, labile carbon pool II (LPII-C). C, recalcitrant carbon pool (RP-C). CK, control. Lowercase letters mean significant differences (p < 0.05) among treatments at a given forest type.
图3 不同C:N化学计量特征的根系分泌物添加对天然林和人工林不同C:N化学计量特征根系分泌物模拟溶液对天然林和人工林土壤微生物生物量碳氮比的影响(平均值±标准偏差)。CK, 对照; C-only, 仅添加C; N-only, 仅添加N。不同小写字母表示同一林型各处理间在p < 0.05水平上差异显著。
Fig. 3 Effects of simulated root exudates under different C:N stoichiometry on ratio of (microbial biomass C : microbial biomass N) MBC:MBN in natural forest and the plantation (mean ± SD). CK, control. Lowercase letters mean significant differences (p < 0.05) among treatments at a given forest type.
图4 不同C:N化学计量特征的根系分泌物添加对天然林和人工林土壤微生物磷酸脂肪酸(PLFA)含量的影响(平均值±标准偏差)。A, 微生物总PLFA。B, 细菌PLFA。C, 放线菌PLFA。D, 真菌PLFA。E, 细菌PLFA/真菌PLFA。CK, 对照; C-only, 仅添加C; N-only, 仅添加N。不同小写字母表示同一林型各处理间在p < 0.05水平上差异显著。
Fig. 4 Effects of simulated root exudates under different C:N stoichiometry on contents of soil microbial phospholipid fatty acid (PLFA) in natural forest and the plantation (mean ± SD). A, total PLFA in microbia. B, bacterial PLFA. C, actinomycetic PLFA. D, fungal PLFA. E, ratio of bacterial/fungal PLFA. CK, control. Lowercase letters mean significant differences (p < 0.05) among treatments at a given forest type.
1 | Bengtson P, Barker J, Grayston SJ (2012). Evidence of a strong coupling between root exudation, C and N availability, and stimulated SOM decomposition caused by rhizosphere priming effects.Ecology and Evolution, 2, 1843-1852. |
2 | Blagodatskaya Е, Kuzyakov Y (2008). Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: Critical review.Biology and Fertility of Soils, 45, 115-131. |
3 | Bossio DA, Scow KM, Gunapala N, Graham KJ (1998). Determinants of soil microbial communities: Effects of agricultural management, season, and soil type on phospholipid fatty acid profiles.Microbial Ecology, 36, 1-12. |
4 | Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013). Soil enzymes in a changing environment: Current knowledge and future directions.Soil Biology & Biochemistry, 58, 216-234. |
5 | Carney KM, Hungate BA, Drake BG, Megonigal JP (2007). Altered soil microbial community at elevated CO2 leads to loss of soil carbon.Proceedings of the National Academy of Sciences of the United States of America, 104, 4990-4995. |
6 | Chapin FS III, McFarland J, David McGuire A, Euskirchen ES, Ruess RW, Kielland K (2009). The changing global carbon cycle: Linking plant-soil carbon dynamics to global consequences.Journal of Ecology, 97, 840-850. |
7 | Chen RR, Senbayram M, Blagodatsky S, Myachina O, Dittert K, Lin XG, Blagodatskaya E, Kuzyakov Y (2014). Soil C and N availability determine the priming effect: Microbial N mining and stoichiometric decomposition theories.Global Change Biology, 20, 2356-2367. |
8 | Cheng WX, Parton WJ, Gonzalez-Meler MA, Phillips R, Asao S, McNickle GG, Brzostek E, Jastrow JD (2014). Synthesis and modeling perspectives of rhizosphere priming.New Phytologist, 201, 31-44. |
9 | Cleveland CC, Liptzin D (2007). C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass?Biogeochemistry, 85, 235-252. |
10 | Craine JM, Morrow C, Fierer N (2007). Microbial nitrogen limitation increases decomposition.Ecology, 88, 2105-2113. |
11 | de Graaff MA, Classen AT, Castro HF, Schadt CW (2010). Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates. New Phytologist, 188, 1055-1064. |
12 | Dijkstra FA, Cheng WX (2007). Interactions between soil and tree roots accelerate long-term soil carbon decomposition.Ecology Letters, 10, 1046-1053. |
13 | Dorodnikov M, Blagodatskaya E, Blagodatsky S, Marhan S, Fangmeier A, Kuzyakov Y (2009). Stimulation of microbial extracellular enzyme activities by elevated CO2 depends on soil aggregate size.Global Change Biology, 15, 1603-1614. |
14 | Drake J, Darby B, Giasson MA, Kramer M, Phillips R, Finzi A (2013). Stoichiometry constrains microbial response to root exudation-insights from a model and a field experiment in a temperate forest.Biogeosciences, 10, 821-838. |
15 | Espinosa-Urgel M, Ramos JL (2001). Expression of a Pseudomonas putida aminotransferase involved in lysine catabolism is induced in the rhizosphere.Applied and Environmental Microbiology, 67, 5219-5224. |
16 | Fontaine S, Bardoux G, Abbadie L, Mariotti A (2004). Carbon input to soil may decrease soil carbon content.Ecology Letters, 7, 314-320. |
17 | Fontaine S, Henault C, Aamor A, Bdioui N, Bloor JMG, Maire V, Mary B, Revaillot S, Maron PA (2011). Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect.Soil Biology & Biochemistry, 43, 86-96. |
18 | Fontaine S, Mariotti A, Abbadie L (2003). The priming effect of organic matter: A question of microbial competition?Soil Biology & Biochemistry, 35, 837-843. |
19 | Fransson P, Johansson EM (2010). Elevated CO2 and nitrogen influence exudation of soluble organic compounds by ectomycorrhizal root systems.FEMS Microbiology Ecology, 71, 186-196. |
20 | Güsewell S, Gessner MO (2009). N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms.Functional Ecology, 23, 211-219. |
21 | Grayston SJ, Vaughan D, Jones D (1997). Rhizosphere carbon flow in trees, in comparison with annual plants: The importance of root exudation and its impact on microbial activity and nutrient availability.Applied Soil Ecology, 5, 29-56. |
22 | Hessen DO, Ågren GI, Anderson TR, Elser JJ, de Ruiter PC (2004). Carbon sequestration in ecosystems: The role of stoichiometry.Ecology, 85, 1179-1192. |
23 | Jones DL, Hodge A, Kuzyakov Y (2004). Plant and mycorrhizal regulation of rhizodeposition.New Phytologist, 163, 459-480. |
24 | Kuzyakov Y (2002). Review: Factors affecting rhizosphere priming effects.Journal of Plant Nutrition and Soil Science, 165, 382-396. |
25 | Liu Q (2002). Ecological Research on Subalpine Coniferous Forests in China. Sichuan University Press, Chengdu. 142.(in Chinese) |
[刘庆 (2002). 亚高山针叶林生态学研究. 四川大学出版社, 成都. 142.] | |
26 | McGill WB, Cole CV (1981). Comparative aspects of cycling of organic C, N, S and P through soil organic matter.Geoderma, 26, 267-286. |
27 | Moorhead DL, Sinsabaugh RL (2006). A theoretical model of litter decay and microbial interaction.Ecological Monographs, 76, 151-174. |
28 | Phillips RP, Bernhardt ES, Schlesinger WH (2009). Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response.Tree Physiology, 29, 1513-1523. |
29 | Phillips RP, Finzi AC, Bernhardt ES (2011). Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation.Ecology Letters, 14, 187-194. |
30 | Ramirez KS, Craine JM, Fierer N (2012). Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes.Global Change Biology, 18, 1918-1927. |
31 | Rovira P, Vallejo VR (2002). Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: An acid hydrolysis approach.Geoderma, 107, 109-141. |
32 | Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DA, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011). Persistence of soil organic matter as an ecosystem property.Nature, 478, 49-56. |
33 | Shi SJ, Condron L, Larsen S, Richardson AE, Jones E, Jiao J, O’Callaghan M, Stewart A (2011). In situ sampling of low molecular weight organic anions from rhizosphere of radiata pine (Pinus radiata) grown in a rhizotron system.Environmental and Experimental Botany, 70, 131-142. |
34 | Strickland MS, Rousk J (2010). Considering fungal: Bacterial dominance in soils-Methods, controls, and ecosystem implications.Soil Biology & Biochemistry, 42, 1385-1395. |
35 | Sullivan BW, Hart SC (2013). Evaluation of mechanisms controlling the priming of soil carbon along a substrate age gradient.Soil Biology & Biochemistry, 58, 293-301. |
36 | Sun Y, Xu XL, Kuzyakov Y (2014). Mechanisms of rhizos- phere priming effects and their ecological significance. Chinese Journal of Plant Ecology, 38, 62-75.(in Chinese with English abstract) |
[孙悦, 徐兴良, Kuzyakov Y (2014). 根际激发效应的发生机制及其生态重要性. 植物生态学报, 38, 62-75.] | |
37 | Wu LK, Lin XM, Lin WX (2014). Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates.Chinese Journal of Plant Ecology, 38, 298-310.(in Chinese with English abstract) |
[吴林坤, 林向民, 林文雄 (2014). 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 38, 298-310.] | |
38 | Xu ZF, Wan C, Xiong P, Tang Z, Hu R, Cao G, Liu Q (2010). Initial responses of soil CO2 efflux and C, N pools to experimental warming in two contrasting forest ecosys- tems, Eastern Tibetan Plateau, China.Plant and Soil, 336, 183-195. |
39 | Yin HJ, Li YF, Xiao J, Xu ZF, Cheng XY, Liu Q (2013). Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming.Global Change Biology, 19, 2158-2167. |
40 | Yin HJ, Wheeler E, Phillips RP (2014). Root-induced changes in nutrient cycling in forests depend on exudation rates.Soil Biology & Biochemistry, 78, 213-221. |
41 | Zhang WD, Wang XF, Wang SL (2013). Addition of external organic carbon and native soil organic carbon decomposi- tion: A meta-analysis.PLoS ONE, 8, e54779. |
42 | Zhao Q, Zeng DH, Fan ZP (2010). Nitrogen and phosphorus transformations in the rhizospheres of three tree species in a nutrient-poor sandy soil.Applied Soil Ecology, 46, 341-346. |
[1] | 王艺彤, 叶尔江·拜克吐尔汉, 廖丹, 王娟. 雌雄异株植物髭脉槭不同生长阶段叶片元素计量特征与性二态间的相互关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[4] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[5] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[6] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[7] | 李雪, 董杰, 韩广轩, 张奇奇, 谢宝华, 李培广, 赵明亮, 陈克龙, 宋维民. 黄河三角洲典型滨海盐沼湿地土壤CO2和CH4排放对水盐变化的响应[J]. 植物生态学报, 2023, 47(3): 434-446. |
[8] | 白雪, 李玉靖, 景秀清, 赵晓东, 畅莎莎, 荆韬羽, 刘晋汝, 赵鹏宇. 谷子及其根际土壤微生物群落对铬胁迫的响应机制[J]. 植物生态学报, 2023, 47(3): 418-433. |
[9] | 何茜, 冯秋红, 张佩佩, 杨涵, 邓少军, 孙小平, 尹华军. 基于叶片和土壤酶化学计量的川西亚高山岷江冷杉林养分限制海拔变化规律[J]. 植物生态学报, 2023, 47(12): 1646-1657. |
[10] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[11] | 王军强, 刘彬, 常凤, 马紫荆, 樊佳辉, 何想菊, 尤思学, 阿尔孜古力·阿布都热西提, 杨滢可, 沈欣艳. 博斯腾湖湖滨带水盐梯度下植物功能性状及生态化学计量特征分析[J]. 植物生态学报, 2022, 46(8): 961-970. |
[12] | 聂秀青, 王冬, 周国英, 熊丰, 杜岩功. 三江源地区高寒湿地土壤微生物生物量碳氮磷及其化学计量特征[J]. 植物生态学报, 2021, 45(9): 996-1005. |
[13] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[14] | 裴广廷, 孙建飞, 贺同鑫, 胡宝清. 长期人为干扰对桂西北喀斯特草地土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2021, 45(1): 74-84. |
[15] | 胡宗达, 刘世荣, 罗明霞, 胡璟, 刘兴良, 李亚非, 余昊, 欧定华. 川西亚高山不同演替阶段天然次生林土壤碳氮含量及酶活性特征[J]. 植物生态学报, 2020, 44(9): 973-985. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19