植物生态学报 ›› 2010, Vol. 34 ›› Issue (11): 1254-1264.DOI: 10.3773/j.issn.1005-264x.2010.11.002
收稿日期:
2010-07-02
接受日期:
2010-08-07
出版日期:
2010-07-02
发布日期:
2010-10-31
通讯作者:
刘庆
作者简介:
(E-mail: liuqing@cib.ac.cn)
CHEN Zhi1,2, YIN Hua-Jun1, WEI Yun-Yan1, LIU Qing1,*()
Received:
2010-07-02
Accepted:
2010-08-07
Online:
2010-07-02
Published:
2010-10-31
Contact:
LIU Qing
摘要:
开展亚高山针叶林典型林地土壤有效氮和微生物特性对气候变化的响应研究, 对预测未来气候变化背景下亚高山针叶林生态系统C、N的源/汇功能具有重要意义。该文采用红外辐射加热器模拟增温结合外施氮肥的方法, 研究了川西亚高山针叶林下土壤化学特性、有效氮含量以及微生物生物量对夜间增温和施氮的短期响应。结果表明: 在模拟增温试验期间(2009年4月-2010年4月), 空气平均温度和5 cm土壤平均温度分别比对照提高了1.93和4.19 ℃, 增温幅度分别以夏季和冬季最为显著。增温对土壤pH值、有机碳、全氮和微生物生物量无显著影响。增温在试验前期降低了土壤NH4 +-N含量, 增加了NO3 --N含量, 其影响程度随着增温时间的延长而下降。施氮显著增加了有效氮和微生物生物量氮, 降低了土壤pH值, 使土壤表现出明显的酸化现象。与单独的增温和施氮处理相比, 增温和施氮联合处理对林下土壤的有效氮和微生物特性有显著的交互作用, 显著增加了土壤的有机碳、有效氮及土壤微生物生物量氮含量, 并导致土壤进一步酸化。结果说明, 川西亚高山针叶林的土壤有效氮和微生物特性对土壤氮素状况的变化反应敏感, 而林下土壤有效氮和微生物特性对单独的温度升高表现出一定的适应性, 但更对增温和施氮双因素结合处理反应敏感且表现出不同的响应方式。因此, 该区域在未来全球变化下的氮沉降状况及气候变化的多因素协同效应值得长期深入的探讨。
陈智, 尹华军, 卫云燕, 刘庆. 夜间增温和施氮对川西亚高山针叶林土壤有效氮和微生物特性的短期影响. 植物生态学报, 2010, 34(11): 1254-1264. DOI: 10.3773/j.issn.1005-264x.2010.11.002
CHEN Zhi, YIN Hua-Jun, WEI Yun-Yan, LIU Qing. Short-term effects of night warming and nitrogen addition on soil available nitrogen and microbial properties in subalpine coniferous forest, Western Sichuan, China. Chinese Journal of Plant Ecology, 2010, 34(11): 1254-1264. DOI: 10.3773/j.issn.1005-264x.2010.11.002
图1 2009年4月-2010年4月空气温度(A)、5 cm深土壤温度(B)及空气相对湿度(C)的变化。
Fig. 1 Variations of air temperature (A), soil temperature at 5-cm depth (B) and air relative humidity (C) from April 2009 to April 2010.
化学性质 Chemical properties | 时间 Time | 处理 Treatment | ||||||
---|---|---|---|---|---|---|---|---|
WF | WU | UF | U | W | F | W*F | ||
pH | 2009-11 | 6.12 ± 0.06c | 6.89 ± 0.02a | 6.34 ± 0.20b | 6.96 ± 0.05a | * | *** | NS |
2010-4 | 5.84 ± 0.10c | 6.66 ± 0.04a | 6.26 ± 0.04b | 6.68 ± 0.01a | *** | *** | *** | |
土壤有机碳 Soil organic carbon (g·kg-1) | 2009-11 | 71.92 ± 3.24a | 75.76 ± 1.13a | 75.37 ± 4.55a | 77.77 ± 5.63a | NS | NS | NS |
2010-4 | 78.58 ± 2.98a | 71.52 ± 1.07b | 70.45 ± 1.30b | 69.45 ± 0.53b | *** | ** | ** | |
全氮 Total nitrogen (g·kg-1) | 2009-11 | 4.22 ± 0.16a | 4.03 ± 0.10a | 4.18 ± 0.10a | 4.11 ± 0.09a | NS | * | NS |
2010-4 | 4.43 ± 0.18a | 4.15 ± 0.10bc | 4.28 ± 0.17ab | 4.09 ± 0.10c | NS | ** | NS | |
C/N | 2009-11 | 17.06 ± 1.10b | 18.78 ± 0.28a | 18.03 ± 1.37ab | 18.93 ± 1.09a | NS | * | NS |
2010-4 | 17.76 ± 0.94a | 17.24 ± 0.50ab | 16.50 ± 0.73b | 16.99 ± 0.46ab | * | NS | NS |
表1 夜间增温和施氮对土壤化学性质的影响(平均值±标准偏差, n = 20)
Table 1 Effects of night warming and nitrogen addition on soil chemical properties (means ± SD, n = 20)
化学性质 Chemical properties | 时间 Time | 处理 Treatment | ||||||
---|---|---|---|---|---|---|---|---|
WF | WU | UF | U | W | F | W*F | ||
pH | 2009-11 | 6.12 ± 0.06c | 6.89 ± 0.02a | 6.34 ± 0.20b | 6.96 ± 0.05a | * | *** | NS |
2010-4 | 5.84 ± 0.10c | 6.66 ± 0.04a | 6.26 ± 0.04b | 6.68 ± 0.01a | *** | *** | *** | |
土壤有机碳 Soil organic carbon (g·kg-1) | 2009-11 | 71.92 ± 3.24a | 75.76 ± 1.13a | 75.37 ± 4.55a | 77.77 ± 5.63a | NS | NS | NS |
2010-4 | 78.58 ± 2.98a | 71.52 ± 1.07b | 70.45 ± 1.30b | 69.45 ± 0.53b | *** | ** | ** | |
全氮 Total nitrogen (g·kg-1) | 2009-11 | 4.22 ± 0.16a | 4.03 ± 0.10a | 4.18 ± 0.10a | 4.11 ± 0.09a | NS | * | NS |
2010-4 | 4.43 ± 0.18a | 4.15 ± 0.10bc | 4.28 ± 0.17ab | 4.09 ± 0.10c | NS | ** | NS | |
C/N | 2009-11 | 17.06 ± 1.10b | 18.78 ± 0.28a | 18.03 ± 1.37ab | 18.93 ± 1.09a | NS | * | NS |
2010-4 | 17.76 ± 0.94a | 17.24 ± 0.50ab | 16.50 ± 0.73b | 16.99 ± 0.46ab | * | NS | NS |
图2 增温和施氮对土壤NH4+-N (A)、NO3--N (B)和有效氮/全氮(C)的影响(平均值±标准偏差)。不同字母表示处理间在p < 0.05水平上差异显著。WF、WU、U、UF同表1。
Fig. 2 Effects of warming and nitrogen addition on soil NH4+-N (A)、NO3--N (B) and available N/total N ratio (C) (mean ± SD). Different letters indicate significantly different between treatments (p < 0.05). WF, WU, U, UF see Table 1.
处理 Treatment | 微生物生物量碳 Microbial biomass C (mg·kg-1) | 微生物生物量氮 Microbial biomass N (mg·kg-1) | 微生物生物量C/N Ratio of microbial biomass C to N | |||||
---|---|---|---|---|---|---|---|---|
2009-11 | 2010-4 | 2009-11 | 2010-4 | 2009-11 | 2010-4+ | |||
WF | 752.56 ± 108.57a | 887.46 ± 190.02a | 196.94 ± 3.10a | 250.59 ± 23.96a | 3.83 ± 0.60c | 0.54 ± 0.09c | ||
WU | 710.32 ± 48.73a | 1 053.40 ± 119.94a | 86.58 ± 9.45d | 92.51 ± 12.85c | 8.25 ± 0.79ab | 1.06 ± 0.10a | ||
UF | 783.25 ± 156.38a | 1 016.10 ± 93.94a | 113.85 ± 6.28b | 123.33 ± 5.18b | 6.87 ± 1.27b | 0.91 ± 0.03b | ||
U | 907.73 ± 19.64a | 1 017.93 ± 30.50a | 100.79 ± 5.27c | 113.07 ± 11.70bc | 9.02 ± 0.39a | 0.96 ± 0.04ab | ||
W | NS | NS | *** | *** | ** | * | ||
F | NS | NS | *** | *** | *** | *** | ||
W*F | NS | NS | *** | *** | * | *** |
表2 夜间增温和施氮对土壤微生物特性的影响(平均值±标准偏差, n = 20)
Table 2 Effects of night warming and nitrogen addition on soil microbial properties (means ± SD, n = 20)
处理 Treatment | 微生物生物量碳 Microbial biomass C (mg·kg-1) | 微生物生物量氮 Microbial biomass N (mg·kg-1) | 微生物生物量C/N Ratio of microbial biomass C to N | |||||
---|---|---|---|---|---|---|---|---|
2009-11 | 2010-4 | 2009-11 | 2010-4 | 2009-11 | 2010-4+ | |||
WF | 752.56 ± 108.57a | 887.46 ± 190.02a | 196.94 ± 3.10a | 250.59 ± 23.96a | 3.83 ± 0.60c | 0.54 ± 0.09c | ||
WU | 710.32 ± 48.73a | 1 053.40 ± 119.94a | 86.58 ± 9.45d | 92.51 ± 12.85c | 8.25 ± 0.79ab | 1.06 ± 0.10a | ||
UF | 783.25 ± 156.38a | 1 016.10 ± 93.94a | 113.85 ± 6.28b | 123.33 ± 5.18b | 6.87 ± 1.27b | 0.91 ± 0.03b | ||
U | 907.73 ± 19.64a | 1 017.93 ± 30.50a | 100.79 ± 5.27c | 113.07 ± 11.70bc | 9.02 ± 0.39a | 0.96 ± 0.04ab | ||
W | NS | NS | *** | *** | ** | * | ||
F | NS | NS | *** | *** | *** | *** | ||
W*F | NS | NS | *** | *** | * | *** |
[1] | Allison SD, Czimczik CI, Treseder KK (2008). Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest. Global Change Biology, 14, 1156-1168. |
[2] | Aronson EL, McNulty SG (2009). Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality. Agricultural and Forest Meteorology, 149, 1791-1799. |
[3] | Bell TH, Klironomos JN, Henry HAL (2010). Seasonal responses of extracellular enzyme activity and microbial biomass to warming and nitrogen addition. Soil Science Society of America Journal, 74, 820-828. |
[4] | Bridgham SD, Pastor J, Updegraff K, Malterer TJ, Johnson K, Harth C, Chen JQ (1999). Ecosystem control over temperature and energy flux in northern peatlands. Ecological Applications, 9, 1345-1358. |
[5] | Brookes PC, Landman A, Pruden G, Jenkinson DS (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17, 837-842. |
[6] | Davidson EA, Trumbore SE, Amundson R (2000). Biogeochemistry: soil warming and organic carbon content. Nature, 408, 789-790. |
[7] | Deng RJ (邓仁菊), Yang WQ (杨万勤), Hu JL (胡建利), Feng RF (冯瑞芳 ) (2009). Dynamics on soil available nitrogen in organic layer and its responses to carbon and nitrogen supply in two subalpine coniferous forest of western Sichuan. Acta Ecologica Sinica (生态学报), 29, 2716-2724. (in Chinese with English abstract) |
[8] | Fang YT (方运霆), Mo JM (莫江明), Zhou GY (周国逸), Gundersen P, Li DJ (李德军), Jiang YQ (江远清 ) (2004). The short-term responses of soil available nitrogen of Dinghushan forests to simulated N deposition in subtropical China. Acta Ecologica Sinica (生态学报), 24, 2353-2359. (in Chinese with English abstract) |
[9] | Feng RF (冯瑞芳), Yang WQ (杨万勤), Zhang J (张健 ) (2006). Review on biochemical property in forest soil organic layer and its responses to climate change. Chinese Journal of Applied and Environmental Biology (应用与环境生物学报), 12, 734-739. (in Chinese with English abstract) |
[10] | Gallardo A, Schlesinger WH (1994). Factors limiting microbial biomass in the mineral soil and forest floor of a warm-temperate forest. Soil Biology and Biochemistry, 26, 1409-1415. |
[11] | Harte J, Torn MS, Chang FR, Feifarek B, Kinzig AP, Shaw R, Shen K (1995). Global warming and soil microclimate: results from a meadow-warming experiment. Ecological Applications, 5, 132-150. |
[12] | Hirai H, Araki S, Kyuma K (1988). Characterictics of brown forest soils developed on the Paleozoic shale in northern Kyoto with reference to their pedogenetic process. Soil Science and Plant Nutrition, 34, 157-170. |
[13] | Hu YL (胡艳玲), Han SJ (韩士杰), Li XF (李雪峰), Zhao YT (赵玉涛), Li D (李东 ) (2009). Responses of soil available nitrogen of natural forest and secondary forest to simulated N deposition in Changbai mountain. Journal of Northeast Forestry University (东北林业大学学报), 3, 36-42. (in Chinese with English abstract) |
[14] | IPCC (Intergovernmental Panel on Climate Change) (2007). Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA eds. Climate Change in 2007: Mitigation. Cambridge University Press, Cambridge, UK. |
[15] | Jarvis P, Linder S (2000). Botany: constraints to growth of boreal forests. Nature, 405, 904-905. |
[16] | Li DJ (李德军), Mo JM (莫江明), Fang YT (方运霆), Peng SL (彭少麟 ), Gundersen P (2003). Impact of nitrogen deposition on forest plants. Acta Ecologica Sinica (生态学报), 23, 1891-1900. (in Chinese with English abstract) |
[17] | Liu Q (刘庆 ) (2002). Ecological Research on Subalpine Coniferous Forest in China (亚高山针叶林生态学研究). Sichuan University Press, Chengdu. (in Chinese) |
[18] | Liu Y (刘艳), Zhou GY (周国逸), Chu GW (褚国伟), Liu JX (刘菊秀), Zhang QM (张倩媚 ) (2005). Seasonal dynamics of soil acidity and nutrient contents under coniferous and broad-leaved mixed forest at Dinghushan. Ecology and Environment (生态环境), 14, 81-85. (in Chinese with English abstract) |
[19] | Luo YQ, Wan SQ, Hui DF, Wallace LL (2001). Acclimatization of soil respiration to warming in tallgrass prairie. Nature, 413, 622-625. |
[20] | Matson PA, Mcdowell WH, Townsend AR, Vitousek PM (1999). The globalization of N deposition: ecosystem consequences in tropical environments. Biogeochemistry, 46, 67-83. |
[21] | Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S (2002). Soil warming and carbon-cycle feedbacks to the climate system. Science, 298, 2173-2176. |
[22] | Mo JM (莫江明), Yu MD (郁梦德), Kong GH (孔国辉 ) (1997). The dynamics of soil NH4+-N and NO3--N in a pine forest of Dinghushan, as assessed by ion exchange resin bag method. Acta Phytoecologica Sinica (植物生态学报), 21, 335-341. (in Chinese with English abstract) |
[23] | Nakaji T, Fukami M, Dokiya Y, Izuta T (2001). Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings. Trees-Structure and Function, 15, 453-461. |
[24] | Pallant E, Riha SJ (1990). Surface soil acidification under red pine and Norway spruce. Soil Science Society of America Journal, 54, 1124-1130. |
[25] | Pan XL (潘新丽), Lin B (林波), Liu Q (刘庆 ) (2008). Effects of elevated temperature on soil organic carbon and soil respiration under subalpine coniferous forest in western Sichuan Province, China. Chinese Journal of Applied Ecology (应用生态学报), 19, 1637-1643. (in Chinese with English abstract) |
[26] | Rinnan R, Stark S, Tolvanen A (2009). Responses of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath. Journal of Ecology, 97, 788-800. |
[27] |
Robertson GP (1984). Nitrification and nitrogen mineralization in a lowland rainforest succession in Costa Rica, Central America. Oecologia, 61, 99-104.
DOI URL PMID |
[28] | Schmidt IK, Jonasson S, Shaver GR, Michelsen A, Nordin A (2002). Mineralization and distribution of nutrients in plants and microbes in four arctic ecosystems: responses to warming. Plant and Soil, 242, 93-106. |
[29] | Shaw MR, Harte J (2001). Response of nitrogen cycling to simulated climate change: differential responses along a subalpine ecotone. Global Change Biology, 7, 193-210. |
[30] | Shaw MR, Zavaleta ES, Chiariello NR, Cleland EE, Mooney HA, Field CB (2002). Grassland responses to global environmental changes. Science, 298, 1987-1990. |
[31] | Su B (苏波), Han XG (韩兴国), Qu CM (渠春梅), Li GC (李贵才 ) (2002). Factors affecting soil N availability in forest ecosystems: a literature review. Chinese Journal of Ecology (生态学杂志), 21, 40-46. (in Chinese with English abstract) |
[32] | Vance ED, Brookes PC, Jenkinson DS (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19, 703-707. |
[33] | Volder A, Edwards EJ, Evans JR, Robertson BC, Schortemeyer M, Gifford RM (2004). Does greater night-time, rather than constant, warming alter growth of managed pasture under ambient and elevated atmospheric CO2? New Phytologist, 162, 397-411. |
[34] | Wan S, Luo Y, Wallace LL (2002). Changes in microclimate induced by experimental warming and clipping in tallgrass prairie. Global Change Biology, 8, 754-768. |
[35] | Wan SQ, Hui DF, Wallace LL, Luo YQ (2005). Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Global Biogeochemical Cycles, 19, GB2014. |
[36] | Wei YY ( 卫云燕), Yin HJ ( 尹华军), Liu Q ( 刘庆), Li YX ( 黎云祥 ) ( 2010). Responses on rhizosphere effect of two subalpine coniferous species to night-time warming and nitrogen fertilization in western Sichuan, China. Acta Ecologica Sinica (生态学报). |
(in Chinese with English abstract) (in press) | |
[37] | Xia J, Han Y, Zhang Z, Wan S (2009). Effects of diurnal warming on soil respiration are not equal to the summed effects of day and night warming in a temperate steppe. Biogeosciences, 6, 1361-1370. |
[38] |
Zak DR, Holmes WE, Burton AJ, Pregitzer KS, Talhelm AF (2008). Simulated atmospheric NO3- deposition increases soil organic matter by slowing decomposition. Ecological Applications, 18, 2016-2027.
URL PMID |
[39] | Zhang W, Parker KM, Luo Y, Wan S, Wallace LL, Hu S (2005). Soil microbial responses to experimental warming and clipping in a tallgrass prairie. Global Change Biology, 11, 266-277. |
[40] | Zhao CZ, Liu Q (2009). Growth and physiological responses of Picea asperata seedlings to elevated temperature and to nitrogen fertilization. Acta Physiologiae Plantarum, 31, 163-173. |
[41] |
Zheng XH, Fu CB, Xu XK, Yan XD, Huang Y, Han SH, Hu F, Chen GX (2002). The Asian nitrogen cycle case study. Ambio, 31, 79-87.
DOI URL PMID |
[42] | Zogg GP, Zak DR, Pregitzer KS, Burton AJ (2000). Microbial immobilization and the retention of anthropogenic nitrate in a northern hardwood forest. Ecology, 81, 1858-1866. |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 索南吉, 李博文, 吕汪汪, 王文颖, 拉本, 陆徐伟, 宋扎磋, 陈程浩, 苗琪, 孙芳慧, 汪诗平. 增温增水情景下钉柱委陵菜物候序列的变化及其抗冻性[J]. 植物生态学报, 2024, 48(2): 158-170. |
[3] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[4] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[5] | 郭敏, 罗林, 梁进, 王彦杰, 赵春章. 冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J]. 植物生态学报, 2023, 47(6): 882-894. |
[6] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[7] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[8] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[9] | 何茜, 冯秋红, 张佩佩, 杨涵, 邓少军, 孙小平, 尹华军. 基于叶片和土壤酶化学计量的川西亚高山岷江冷杉林养分限制海拔变化规律[J]. 植物生态学报, 2023, 47(12): 1646-1657. |
[10] | 袁春阳, 李济宏, 韩鑫, 洪宗文, 刘宣, 杜婷, 游成铭, 李晗, 谭波, 徐振锋. 树种对土壤微生物生物量碳氮的影响: 同质园实验[J]. 植物生态学报, 2022, 46(8): 882-889. |
[11] | 钟楠蝶, 王力, 肖杰, 王琼. 增温条件下花粉来源对红雉凤仙花生殖成功的影响[J]. 植物生态学报, 2022, 46(4): 416-427. |
[12] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[13] | 韩聪, 刘鹏, 母艳梅, 原媛, 郝少荣, 田赟, 查天山, 贾昕. 黑沙蒿灌丛生态系统碳平衡对昼夜非对称增温的响应[J]. 植物生态学报, 2022, 46(12): 1473-1485. |
[14] | 高德才, 白娥. 冻融循环期间土壤氧化亚氮排放影响因素[J]. 植物生态学报, 2021, 45(9): 1006-1023. |
[15] | 聂秀青, 王冬, 周国英, 熊丰, 杜岩功. 三江源地区高寒湿地土壤微生物生物量碳氮磷及其化学计量特征[J]. 植物生态学报, 2021, 45(9): 996-1005. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19