植物生态学报 ›› 2021, Vol. 45 ›› Issue (9): 1006-1023.DOI: 10.17521/cjpe.2021.0040
收稿日期:
2021-01-29
接受日期:
2021-05-09
出版日期:
2021-09-20
发布日期:
2021-11-18
通讯作者:
白娥
作者简介:
*(baie612@nenu.edu.cn)基金资助:
Received:
2021-01-29
Accepted:
2021-05-09
Online:
2021-09-20
Published:
2021-11-18
Contact:
BAI E
Supported by:
摘要:
全球气候变化可能会提高冻融循环时间、强度以及频率, 从而可能显著影响土壤氧化亚氮(N2O)排放。N2O是一种重要的温室气体, 但目前对冻融循环期间土壤N2O排放规律以及影响因素的了解还有限。为此, 该研究采用整合分析方法, 从已发表文献中收集了30篇关于冻融循环对土壤N2O通量和累积排放量影响的文献, 探究冻融循环在不同生态系统对N2O排放的影响, 从试验设置、土壤基本理化性质以及冻融循环格局等角度全面综合地探究其排放影响因素。该研究得出, 冻融循环能显著增加N2O通量、N2O累积排放量和硝化作用速率, 全球平均增幅分别为72.34%、143.25%和124.63%; 冻融循环也可增加反硝化作用速率, 全球平均增幅为162.56%; 与之相反, 冻融循环显著减少微生物生物量氮含量, 全球平均减幅为6.39%。不同生态系统土壤水热条件和基本理化性质差异可显著影响冻融循环对N2O排放的影响。当年平均气温超过5 ℃时, 冻融循环作用可显著提高N2O通量104.13%, 显著高于年平均气温为0-5 ℃ (25.56%)和小于0 ℃ (55.29%)时; 土壤湿度大于70%时, N2O通量增加109.17%, 显著高于土壤湿度为50%-70% (65.67%)和小于50% (20.37%)时的通量。土壤黏粒和养分含量越高的土壤区域, 冻融循环对N2O排放的提高幅度越大。在有植物存在时, 冻融循环可显著提高土壤N2O通量达91.21%, 高于无植物存在时的54.43%。土壤过筛和在冻融循环期间采集土壤都会增加冻融循环对N2O排放的影响。另外, 融化时间长, 冻结强度大和冻融循环频率高均可显著提高土壤N2O累积排放量对冻融循环的响应。当冻结温度低于-10 ℃时, 冻融循环对土壤N2O排放通量的增幅可达100.73%, 显著高于在冻结温度为-10- -5 ℃ (47.74%)和高于-5 ℃ (70.25%)时。主要原因是冻结强度高可促进土壤微生物和土壤结构释放更多的养分, 从而提高N2O的产生和排放。该研究结果有助于更好地理解土壤N2O对冻融循环的响应及其影响因素, 为更准确地预测未来全球气候变化对N2O排放影响提供科学数据支撑。
高德才, 白娥. 冻融循环期间土壤氧化亚氮排放影响因素. 植物生态学报, 2021, 45(9): 1006-1023. DOI: 10.17521/cjpe.2021.0040
GAO De-Cai, BAI E. Influencing factors of soil nitrous oxide emission during freeze-thaw cycles. Chinese Journal of Plant Ecology, 2021, 45(9): 1006-1023. DOI: 10.17521/cjpe.2021.0040
图1 冻融循环对土壤氧化亚氮(N2O)通量、N2O累积排放量、微生物生物量氮含量、硝化和反硝化作用速率的影响。误差棒表示95%置信区间, 误差棒后面数值代表变量观察数。虚线表示效应值为0。
Fig. 1 Effects of freeze-thaw cycles on soil nitrous oxide (N2O) flux, cumulative N2O emissions, microbial biomass nitrogen (MBN) content, nitrification, and denitrification rates. Error bars stand for 95% confidence intervals. Values next to the error bars represent the number of observations of the variable. Dashed line indicates that there is no effect.
图3 冻融循环对土壤氧化亚氮(N2O)通量和N2O累积排放量的影响。这些变量被分成不同组, 包括年平均气温、试验方法、生态系统类型、土壤处理、植物的存在、采土时期、冻结温度以及土壤湿度。误差棒表示95%置信区间, 误差棒后面数值代表变量观察数。虚线表示效应值为0。
Fig. 3 Effects of freeze-thaw cycles on soil nitrous oxide (N2O) flux and cumulative N2O emissions. The variables are categorized into different groups according to mean annual temperature, experimental method, ecosystem type, soil treatment, presence of plant, period of sampling soil, temperature of freezing, and soil moisture. Error bars stand for 95% confidence intervals. The values next to the error bars represent the number of observations of the variable. Dashed line indicates that there is no effect. FT represents the freeze-thaw period.
图4 冻融循环对土壤氧化亚氮(N2O)通量的效应值(ln R (N2O flux))与年降水量(MAP)(A)和年平均气温(MAT)(B)之间的相关关系。
Fig. 4 Relationships between the effect size of freeze-thaw cycles on soil nitrous oxide (N2O) flux (ln R (N2O flux)) and mean annual precipitation (MAP)(A) and mean annual temperature (MAT)(B).
图5 冻融循环对土壤氧化亚氮(N2O)通量的效应值(ln R (N2O flux))与土壤基本理化性质之间的相关关系。本图只列出有显著相关关系的理化性质, 没有相关关系的见附件I。
Fig. 5 Relationships between the effect size of freeze-thaw cycles on soil nitrous oxide (N2O) flux (ln R (N2O flux)) and basic physical and chemical characteristics of soils. Those with significant relationships were shown in this figure, but those with non-significant relationships were shown in Appendix I.
图6 冻融循环对土壤氧化亚氮(N2O)通量的效应值(ln R (N2O flux))与冻融循环对反硝化作用速率的效应值(ln R (Denitrification))(A)和冻融循环对硝化作用速率的效应值(ln R (Nitrification))(B)之间相关关系。
Fig. 6 Relationships between the effect size of freeze-thaw cycles on soil nitrous oxide (N2O) flux (ln R (N2O flux)) and the effect size of freeze-thaw cycle on denitrification rate (ln R (Denitrification))(A) and the effect size of freeze-thaw cycles on nitrification rate (ln R (Nitrification))(B).
图7 冻融循环对土壤氧化亚氮(N2O)通量的效应值(ln R (N2O flux))(A, B, C)和N2O累积排放量的效应值(ln R (Cumulative N2O emissions))(D, E, F)与冻融循环时间、温度以及频率之间的相关性。本图只列出有显著相关关系的理化性质, 没有相关关系的见附件II。
Fig. 7 Relationships between the effect size of freeze-thaw cycles on soil nitrous oxide (N2O) flux (ln R (N2O flux))(A, B, C) and cumulative N2O emissions (ln R (Cumulative N2O emissions))(D, E, F) and the duration, temperature, and frequency of freeze-thaw cycles. Those with significant relationships were shown in this figure, but those with non-significant relationships were shown in Appendix II.
[1] |
Abalos D, Brown SE, Vanderzaag AC, Gordon RJ, Dunfield KE, Wagner-Riddle C (2016). Micrometeorological measurements over 3 years reveal differences in N2O emissions between annual and perennial crops. Global Change Biology, 22, 1244-1255.
DOI PMID |
[2] | Abalos D, van Groenigen JW, de Deyn GB, (2018). What plant functional traits can reduce nitrous oxide emissions from intensively managed grasslands? Global Change Biology, 24, 248-258. |
[3] |
Alvarez R, Santanatoglia OJ, Garcîa R (1995). Effect of temperature on soil microbial biomass and its metabolic quotient in situ under different tillage systems. Biology and Fertility of Soils, 19, 227-230.
DOI URL |
[4] |
Bai E, Li SL, Xu WH, Li W, Dai WW, Jiang P (2013). A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytologist, 199, 441-451.
DOI URL |
[5] | Cai YJ, Ding WX, Xiang J (2012). Mechanisms of nitrous oxide and nitric oxide production in soils: a review. Soils, 44, 712-718. |
蔡延江, 丁维新, 项剑 (2012). 土壤N2O和NO产生机制研究进展. 土壤, 44, 712-718.] | |
[6] |
Campbell JL, Socci AM, Templer PH (2014). Increased nitrogen leaching following soil freezing is due to decreased root uptake in a northern hardwood forest. Global Change Biology, 20, 2663-2673.
DOI PMID |
[7] |
Chen WJ, Gong L, Liu YT (2018). Effects of seasonal snow cover on decomposition and carbon, nitrogen and phosphorus release of Picea schrenkiana leaf litter in Mt. Tianshan, Northwest China. Chinese Journal of Plant Ecology, 42, 487-497.
DOI URL |
[ 陈文静, 贡璐, 刘雨桐 (2018). 季节性雪被对天山雪岭云杉凋落叶分解和碳氮磷释放的影响. 植物生态学报, 42, 487-497.]
DOI |
|
[8] |
Chen Y, Tessier S, Mackenzie AF, Laverdière MR (1995). Nitrous oxide emission from an agricultural soil subjected to different freeze-thaw cycles. Agriculture Ecosystems & Environment, 55, 123-128.
DOI URL |
[9] | Chen Z, Yang SQ, Zhang QW, Zhou HK, Jing X, Zhang AP, Han RY, Yang ZL (2016). Effects of freeze-thaw cycles on soil nitrogen loss and availability. Acta Ecologica Sinica, 36, 1083-1094. |
[ 陈哲, 杨世琦, 张晴雯, 周华坤, 井新, 张爱平, 韩瑞芸, 杨正礼 (2016). 冻融对土壤氮素损失及有效性的影响. 生态学报, 36, 1083-1094.] | |
[10] |
Congreves KA, Wagner-Riddle C, Si BC, Clough TJ (2018). Nitrous oxide emissions and biogeochemical responses to soil freezing-thawing and drying-wetting. Soil Biology & Biochemistry, 117, 5-15.
DOI URL |
[11] |
Cui Q, Song CC, Wang XW, Shi FX, Wang LL, Guo YD (2016). Rapid N2O fluxes at high level of nitrate nitrogen addition during freeze-thaw events in boreal peatlands of Northeast China. Atmospheric Environment, 135, 1-8.
DOI URL |
[12] |
Dai Z, Yu M, Chen H, Zhao H, Huang Y, Su W, Xia F, Chang SX, Brookes PC, Dahlgren RA, Xu J (2020). Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems. Global Change Biology, 26, 5267-5276.
DOI URL |
[13] |
Fazzolari É, Nicolardot B, Germon JC (1998). Simultaneous effects of increasing levels of glucose and oxygen partial pressures on denitrification and dissimilatory nitrate reduction to ammonium in repacked soil cores. European Journal of Soil Biology, 34, 47-52.
DOI URL |
[14] |
Fitzhugh RD, Driscoll CT, Groffman PM, Tierney GL, Fahey TJ, Hardy JP (2001). Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem. Biogeochemistry, 56, 215-238.
DOI URL |
[15] |
Freppaz M, Williams BL, Edwards AC, Scalenghe R, Zanini E (2007). Simulating soil freeze/thaw cycles typical of winter alpine conditions: implications for N and P availability. Applied Soil Ecology, 35, 247-255.
DOI URL |
[16] |
Gao DC, Zhang L, Liu J, Peng B, Fan ZZ, Dai WW, Jiang P, Bai E (2018). Responses of terrestrial nitrogen pools and dynamics to different patterns of freeze-thaw cycle: a meta-analysis. Global Change Biology, 24, 2377-2389.
DOI URL |
[17] | Gao YH, Zeng XY, Xie QY, Ma XX (2015). Release of carbon and nitrogen from alpine soils during thawing periods in the eastern Qinghai-Tibet Plateau. Water, Air & Soil Pollution, 226, 1-9. |
[18] |
Goldberg SD, Borken W, Gebauer G (2010). N2O emission in a Norway spruce forest due to soil frost: concentration and isotope profiles shed a new light on an old story. Biogeochemistry, 97, 21-30.
DOI URL |
[19] |
Goldberg SD, Muhr J, Borken W, Gebauer G (2008). Fluxes of climate-relevant trace gases between a Norway spruce forest soil and atmosphere during repeated freeze-thaw cycles in mesocosms. Journal of Plant Nutrition and Soil Science, 171, 729-739.
DOI URL |
[20] |
Groffman PM, Hardy JP, Driscoll CT, Fahey TJ (2006). Snow depth, soil freezing, and fluxes of carbon dioxide, nitrous oxide and methane in a northern hardwood forest. Global Change Biology, 12, 1748-1760.
DOI URL |
[21] |
Groffman PM, Hardy JP, Fashu-Kanu S, Driscoll CT, Cleavitt NL, Fahey TJ, Fisk MC (2011). Snow depth, soil freezing and nitrogen cycling in a northern hardwood forest landscape. Biogeochemistry, 102, 223-238.
DOI URL |
[22] |
Grogan P, Michelsen A, Ambus P, Jonasson S (2004). Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms. Soil Biology & Biochemistry, 36, 641-654.
DOI URL |
[23] |
Han CL, Gu YJ, Kong M, Hu LW, Jia Y, Li FM, Sun GJ, Siddique KHM (2018). Responses of soil microorganisms, carbon and nitrogen to freeze-thaw cycles in diverse land-use types. Applied Soil Ecology, 124, 211-217.
DOI URL |
[24] |
Hedges LV, Gurevitch J, Curtis PS (1999). The meta-analysis of response ratios in experimental ecology. Ecology, 80, 1150-1156.
DOI URL |
[25] |
Henry HAL (2007). Soil freeze-thaw cycle experiments: trends, methodological weaknesses and suggested improvements. Soil Biology & Biochemistry, 39, 977-986.
DOI URL |
[26] |
Hu HW, Chen DL, He JZ (2015). Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiology Reviews, 39, 729-749.
DOI URL |
[27] | IPCC (2014). Climate Change 2014: Mitigation of Climate Change. Cambridge University Press, Cambridge. |
[28] |
Katayanagi N, Hatano R (2012). N2O emissions during the freezing and thawing periods from six fields in a livestock farm, southern Hokkaido, Japan. Soil Science and Plant Nutrition, 58, 261-271.
DOI URL |
[29] |
Kettunen R, Saarnio S (2013). Biochar can restrict N2O emissions and the risk of nitrogen leaching from an agricultural soil during the freeze-thaw period. Agricultural and Food Science, 22, 373-379.
DOI URL |
[30] |
Koponen HT, Jaakkola T, Keinänen-Toivola MM, Kaipainen S, Tuomainen J, Servomaa K, Martikainen PJ (2006). Microbial communities, biomass, and activities in soils as affected by freeze thaw cycles. Soil Biology & Biochemistry, 38, 1861-1871.
DOI URL |
[31] |
Ludwig B, Wolf I, Teepe R (2004). Contribution of nitrification and denitrification to the emission of N2O in a freeze-thaw event in an agricultural soil. Journal of Plant Nutrition and Soil Science, 167, 678-684.
DOI URL |
[32] |
Maljanen M, Kohonen AR, VirkajaäRvi P, Martikainen PJ (2007). Fluxes and production of N2O, CO2 and CH4 in boreal agricultural soil during winter as affected by snow cover. Tellus B: Chemical and Physical Meteorology, 59, 853-859.
DOI URL |
[33] |
Maljanen M, Virkajarvi P, Hytonen J, Oquist M, Sparrman T, Martikainen PJ (2009). Nitrous oxide production in boreal soils with variable organic matter content at low temperature- snow manipulation experiment. Biogeosciences, 6, 2461-2473.
DOI URL |
[34] |
Matzner E, Borken W (2008). Do freeze-thaw events enhance C and N losses from soils of different ecosystems? A review. European Journal of Soil Science, 59, 274-284.
DOI URL |
[35] |
Mergel A, Schmitz O, Mallmann T, Bothe H (2001). Relative abundance of denitrifying and dinitrogen-fixing bacteria in layers of a forest soil. FEMS Microbiology Ecology, 36, 33-42.
PMID |
[36] |
Mørkved PT, Dörsch P, Henriksen TM, Bakken LR (2006). N2O emissions and product ratios of nitrification and denitrification as affected by freezing and thawing. Soil Biology & Biochemistry, 38, 3411-3420.
DOI URL |
[37] |
Neilsen CB, Groffman PM, Hamburg SP, Driscoll CT, Fahey TJ, Hardy JP (2001). Freezing effects on carbon and nitrogen cycling in northern hardwood forest soils. Soil Science Society of America Journal, 65, 1723-1730.
DOI URL |
[38] |
Nottingham AT, Bååth E, Reischke S, Salinas N, Meir P (2019). Adaptation of soil microbial growth to temperature: using a tropical elevation gradient to predict future changes. Global Change Biology, 25, 827-838.
DOI PMID |
[39] |
Öquist MG, Nilsson M, Sörensson F, Kasimir-Klemedtsson Å, Persson T, Weslien P, Klemedtsson L (2004). Nitrous oxide production in a forest soil at low temperatures- Processes and environmental controls. FEMS Microbiology Ecology, 49, 371-378.
DOI URL |
[40] |
Oztas T, Fayetorbay F (2003). Effect of freezing and thawing processes on soil aggregate stability. Catena, 52, 1-8.
DOI URL |
[41] |
Pelster DE, Chantigny MH, Rochette P, Angers DA, Laganière J, Zebarth B, Goyer C (2013). Crop residue incorporation alters soil nitrous oxide emissions during freeze-thaw cycles. Canadian Journal of Soil Science, 93, 415-425.
DOI URL |
[42] |
Pelster DE, Chantigny MH, Rochette P, Bertrand N, Angers DA, Zebarth BJ, Goyer C, Naeth MA (2019). Rates and intensity of freeze-thaw cycles affect nitrous oxide and carbon dioxide emissions from agricultural soils. Canadian Journal of Soil Science, 99, 472-484.
DOI |
[43] |
Priemé A, Christensen S (2001). Natural perturbations, drying-wetting and freezing-thawing cycles, and the emission of nitrous oxide, carbon dioxide and methane from farmed organic soils. Soil Biology & Biochemistry, 33, 2083-2091.
DOI URL |
[44] | Ravishankara AR, Daniel JS, Portmann RW (2009). Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science, 26, 123-125. |
[45] |
Reinmann AB, Templer PH (2016). Reduced winter snowpack and greater soil frost reduce live root biomass and stimulate radial growth and stem respiration of red maple (Acer rubrum) trees in a mixed-hardwood forest. Ecosystems, 19, 129-141.
DOI URL |
[46] |
Reinmann AB, Templer PH, Campbell JL (2012). Severe soil frost reduces losses of carbon and nitrogen from the forest floor during simulated snowmelt: a laboratory experiment. Soil Biology & Biochemistry, 44, 65-74.
DOI URL |
[47] |
Rogelj J, Meinshausen M, Knutti R (2012). Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nature Climate Change, 2, 248-253.
DOI URL |
[48] | Rosenberg MS, Adams DC, Gurevitch J (2000). MetaWin: Statistical Software for Meta-analysis. Sinauer Associates, Sunderland, USA. |
[49] |
Ruan L, Robertson GP (2017). Reduced snow cover increases wintertime nitrous oxide (N2O) emissions from an agricultural soil in the upper U.S. Midwest. Ecosystems, 20, 917-927.
DOI URL |
[50] |
Sánchez-García M, Roig A, Sánchez-Monedero MA, Cayuela ML (2014). Biochar increases soil N2O emissions produced by nitrification-mediated pathways. Frontiers in Environmental Science, 2, 25. DOI: 10.3389/fenvs.2014.00025.
DOI |
[51] |
Sawicka JE, Robador A, Hubert C, Jørgensen BB, Brüchert V (2010). Effects of freeze-thaw cycles on anaerobic microbial processes in an Arctic intertidal mud flat. The ISME Journal, 4, 585-594.
DOI URL |
[52] |
Sehy U, Dyckmans J, Ruser R, Munch JC (2004). Adding dissolved organic carbon to simulate freeze-thaw related N2O emissions from soil. Journal of Plant Nutrition and Soil Science, 167, 471-478.
DOI URL |
[53] |
Seitzinger S, Harrison JA, Böhlke JK, Bouwman AF, Lowrance R, Peterson B, Tobias C,van Drecht G (2006). Denitrification across landscapes and waterscapes: a synthesis. Ecological Applications, 16, 2064-2090.
DOI URL |
[54] | Song Y, Yu XF, Zou YC, Wang GP, Zhang LL (2016). Progress of freeze-thaw effects on carbon, nitrogen and phosphorus cyclings in soils. Soils and Crops, 5, 78-90. |
[ 宋阳, 于晓菲, 邹元春, 王国平, 张琳琳 (2016). 冻融作用对土壤碳、氮、磷循环的影响. 土壤与作物, 5, 78-90.] | |
[55] |
Song Y, Zou YC, Wang GP, Yu XF (2017). Altered soil carbon and nitrogen cycles due to the freeze-thaw effect: a meta-analysis. Soil Biology & Biochemistry, 109, 35-49.
DOI URL |
[56] |
van Bochove E, Prevost D, Pelletier F (2000). Effects of freeze-thaw and soil structure on nitrous oxide produced in a clay soil. Soil Science Society of America Journal, 64, 1638-1643.
DOI URL |
[57] |
Wagner-Riddle C, Congreves KA, Abalos D, Berg AA, Brown SE, Ambadan JT, Gao X, Tenuta M (2017). Globally important nitrous oxide emissions from croplands induced by freeze-thaw cycles. Nature Geoscience, 10, 279-283.
DOI |
[58] |
Wagner-Riddle C, Rapai J, Warland J, Furon A (2010). Nitrous oxide fluxes related to soil freeze and thaw periods identified using heat pulse probes. Canadian Journal of Soil Science, 90, 409-418.
DOI URL |
[59] |
Walker VK, Palmer GR, Voordouw G (2006). Freeze-thaw tolerance and clues to the winter survival of a soil community. Applied and Environmental Microbiology, 72, 1784-1792.
DOI URL |
[60] |
Wertz S, Goyer C, Zebarth BJ, Tatti E, Burton DL, Chantigny MH, Filion M (2016). The amplitude of soil freeze-thaw cycles influences temporal dynamics of N2O emissions and denitrifier transcriptional activity and community composition. Biology and Fertility of Soils, 52, 1149-1162.
DOI URL |
[61] |
Wieder WR, Cleveland CC, Townsend AR (2011). Throughfall exclusion and leaf litter addition drive higher rates of soil nitrous oxide emissions from a lowland wet tropical forest. Global Change Biology, 17, 3195-3207.
DOI URL |
[62] |
Wu X, Brüeggemann N, Butterbach-Bahl K, Fu B, Liu G (2014a). Snow cover and soil moisture controls of freeze-thaw-related soil gas fluxes from a typical semi-arid grassland soil: a laboratory experiment. Biology and Fertility of Soils, 50, 295-306.
DOI URL |
[63] |
Wu X, Li T, Wang DB, Wang FF, Fu BJ, Liu GH, Lv YH (2020a). Soil properties mediate the freeze-thaw-related soil N2O and CO2 emissions from temperate grasslands. Catena, 195, 104797. DOI: 10.1016/j.catena.2020.104797.
DOI URL |
[64] | Wu X, Liu HF, Zhang LN, Fu BJ, Li ZS, Wang QB, Liu GH (2014b). Effects of snow cover and soil moisture on CO2 and N2O fluxes from typical semi-arid grassland soil subjected to freeze-thaw cycles. Acta Ecologica Sinica, 34, 5484-5493. |
[ 伍星, 刘慧峰, 张令能, 傅伯杰, 李宗善, 汪庆兵, 刘国华 (2014b). 雪被和土壤水分对典型半干旱草原土壤冻融过程中CO2和N2O排放的影响. 生态学报, 34, 5484-5493.] | |
[65] |
Wu X, Wang FF, Li T, Fu BJ, Lv Y, Liu GH (2020b). Nitrogen additions increase N2O emissions but reduce soil respiration and CH4 uptake during freeze-thaw cycles in an alpine meadow. Geoderma, 363, 114157.
DOI URL |
[66] |
Xiao L, Zhang Y, Li P, Xu GC, Shi P, Zhang Y (2019). Effects of freeze-thaw cycles on aggregate-associated organic carbon and glomalin-related soil protein in natural- succession grassland and Chinese pine forest on the Loess Plateau. Geoderma, 334, 1-8.
DOI |
[67] |
Yanai Y, Hirota T, Iwata Y, Nemoto M, Nagata O, Koga N (2011). Accumulation of nitrous oxide and depletion of oxygen in seasonally frozen soils in northern Japan- Snow cover manipulation experiments. Soil Biology & Biochemistry, 43, 1779-1786.
DOI URL |
[68] |
Yanai Y, Toyota K, Okazaki M (2004). Effects of successive soil freeze-thaw cycles on soil microbial biomass and organic matter decomposition potential of soils. Soil Science and Plant Nutrition, 50, 821-829.
DOI URL |
[69] |
Yanai Y, Toyota K, Okazaki M (2007). Response of denitrifying communities to successive soil freeze-thaw cycles. Biology and Fertility of Soils, 44, 113-119.
DOI URL |
[70] | Yang HL, Qin JH, Sun H (2010). A review: response of soil CO2 and N2O emissions to freeze-thaw pattern change. Soils, 42, 519-525. |
[ 杨红露, 秦纪洪, 孙辉 (2010). 冻融交替对土壤CO2及N2O释放效应的研究进展. 土壤, 42, 519-525.] | |
[71] |
Yang KJ, Yang WQ, Tan Y, He RY, Zhuang LY, Li ZJ, Tan B, Xu ZF (2017). Short-term responses of winter soil respiration to snow removal in a Picea asperata forest of western Sichuan. Chinese Journal of Plant Ecology, 41, 964-971.
DOI URL |
[ 杨开军, 杨万勤, 谭羽, 贺若阳, 庄丽燕, 李志杰, 谭波, 徐振锋 (2017). 川西亚高山云杉林冬季土壤呼吸对雪被去除的短期响应. 植物生态学报, 41, 964-971.]
DOI |
|
[72] |
Yao Z, Wu X, Wolf B, Dannenmann M, Butterbach-Bahl K, Brueggemann N, Chen W, Zheng X (2010). Soil-atmosphere exchange potential of NO and N2O in different land use types of Inner Mongolia as affected by soil temperature, soil moisture, freeze-thaw, and drying- wetting events. Journal of Geophysical Research-Atmospheres, 115, D17116. DOI: 10.1029/2009JD013528.
DOI URL |
[73] | Yin SX, Shen QR, Tang Y, Cheng LM (1998). Reduction of nitrate to ammonium in selected paddy soils of China. Pedosphere, 8, 221-228. |
[74] |
Yu XF, Zhang YX, Zhao HM, Lu XG, Wang GP (2010). Freeze-thaw effects on sorption/desorption of dissolved organic carbon in wetland soils. Chinese Geographical Science, 20, 209-217.
DOI URL |
[75] |
Zhang XY, Wang W, Chen WL, Zhang NL, Zeng H (2014). Comparison of seasonal soil microbial process in snow-covered temperate ecosystems of northern China. PLOS ONE, 9, e92985. DOI: 10.1371/journal.pone.0092985.
DOI URL |
[76] |
Zhou W, Chen H, Zhou L, Lewis BJ, Ye Y, Tian J, Li G, Dai L (2011). Effect of freezing-thawing on nitrogen mineralization in vegetation soils of four landscape zones of Changbai Mountain. Annals of Forest Science, 68, 943-951.
DOI URL |
[1] | 袁春阳, 李济宏, 韩鑫, 洪宗文, 刘宣, 杜婷, 游成铭, 李晗, 谭波, 徐振锋. 树种对土壤微生物生物量碳氮的影响: 同质园实验[J]. 植物生态学报, 2022, 46(8): 882-889. |
[2] | 聂秀青, 王冬, 周国英, 熊丰, 杜岩功. 三江源地区高寒湿地土壤微生物生物量碳氮磷及其化学计量特征[J]. 植物生态学报, 2021, 45(9): 996-1005. |
[3] | 倪铭, 张曦月, 姜超, 王鹤松. 中国西南部地区植被对极端气候事件的响应[J]. 植物生态学报, 2021, 45(6): 626-640. |
[4] | 王毅, 孙建, 叶冲冲, 曾涛. 气候因子通过土壤微生物生物量氮促进青藏高原高寒草地地上生态系统功能[J]. 植物生态学报, 2021, 45(5): 434-443. |
[5] | 李志民, 王传宽. 木本植物木质部的冻融栓塞应对研究进展[J]. 植物生态学报, 2019, 43(8): 635-647. |
[6] | 李品, 木勒德尔•吐尔汗拜, 田地, 冯兆忠. 全球森林土壤微生物生物量碳氮磷化学计量的季节动态[J]. 植物生态学报, 2019, 43(6): 532-542. |
[7] | 王祥, 朱亚琼, 郑伟, 关正翾, 盛建东. 昭苏山地草甸4种典型土地利用方式下的土壤呼吸特征[J]. 植物生态学报, 2018, 42(3): 382-396. |
[8] | 王薪琪, 韩轶, 王传宽. 帽儿山不同林龄落叶阔叶林土壤微生物生物量及其季节动态[J]. 植物生态学报, 2017, 41(6): 597-609. |
[9] | 尹本丰, 张元明. 冻融过程对荒漠区不同微生境下齿肋赤藓渗透调节物含量和抗氧化酶活力的影响[J]. 植物生态学报, 2015, 39(5): 517-529. |
[10] | 张彬,朱建军,刘华民,潘庆民. 极端降水和极端干旱事件对草原生态系统的影响[J]. 植物生态学报, 2014, 38(9): 1008-1018. |
[11] | 肖群英, 尹春英, 濮晓珍, 乔明锋, 刘庆. 川西亚高山季节性冻土期针叶林主要树种叶片和细根的生态生理特征[J]. 植物生态学报, 2014, 38(4): 343-354. |
[12] | 刘洋, 张健, 闫帮国, 黄旭, 徐振锋, 吴福忠. 青藏高原东缘高山森林-苔原交错带土壤微生物生物量碳、氮和可培养微生物数量的季节动态[J]. 植物生态学报, 2012, 36(5): 382-392. |
[13] | 夏磊, 吴福忠, 杨万勤. 季节性冻融期间土壤动物对岷江冷杉凋落叶质量损失的贡献[J]. 植物生态学报, 2011, 35(11): 1127-1135. |
[14] | 熊沛, 徐振锋, 林波, 刘庆. 岷江上游华山松林冬季土壤呼吸对模拟增温的短期响应[J]. 植物生态学报, 2010, 34(12): 1369-1376. |
[15] | 陈智, 尹华军, 卫云燕, 刘庆. 夜间增温和施氮对川西亚高山针叶林土壤有效氮和微生物特性的短期影响[J]. 植物生态学报, 2010, 34(11): 1254-1264. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19