植物生态学报 ›› 2015, Vol. 39 ›› Issue (5): 517-529.DOI: 10.17521/cjpe.2015.0050
收稿日期:
2014-10-24
接受日期:
2015-01-10
出版日期:
2015-05-01
发布日期:
2015-05-26
作者简介:
*作者简介:E-mail:
基金资助:
YIN Ben-Feng1,2, ZHANG Yuan-Ming1*()
Received:
2014-10-24
Accepted:
2015-01-10
Online:
2015-05-01
Published:
2015-05-26
About author:
# Co-first authors
摘要:
齿肋赤藓(Syntrichia caninervis)作为典型的耐旱藓类, 广泛分布于世界干旱和半干旱荒漠地区, 是古尔班通古特沙漠生物土壤结皮中的优势藓类植物。该沙漠冬季具有稳定的降雪, 初春的积雪融化为植物的生长提供了良好的水热条件。荒漠藓类植物叶片仅具一层细胞, 对外界环境的变化十分敏感, 有关荒漠藓类植物在冬季和早春地表冻融交替过程中如何适应环境剧烈变化的研究鲜见报道。该研究探讨了生长于3种不同微生境(活灌丛、枯死灌丛和裸露地)下的齿肋赤藓, 经由冬季低温冻结到早春融雪复水再到春季中旬自然干燥过程中的生理生化变化特征。结果表明: 不同冻融期、微生境及二者的交互作用能够显著影响齿肋赤藓的渗透调节物质(游离脯氨酸、可溶性糖、可溶性蛋白)含量、丙二醛(MDA)含量、抗氧化酶活性(过氧化氢酶(CAT)、过氧化物酶(POD)和超氧化物歧化酶(SOD)活性)。冬季低温冻结期的极端低温和春季中旬的干燥环境使得齿肋赤藓可溶性糖和MDA含量, 以及3种抗氧化酶活性均显著高于早春融雪期, 可溶性蛋白含量显著低于融雪期。同时, 在融雪期灌丛遮阴所形成的“冷岛效应”使得生长于灌丛下的齿肋赤藓植株可溶性糖和MDA含量显著高于枯死灌丛和裸露地。但灌丛的存在也为春季中旬干旱无雨期齿肋赤藓提供了一个相对良好(含水量高)的生活环境, 其下齿肋赤藓的渗透调节物含量和抗氧化酶活性均显著低于其他两个生境。在整个冻融过程中裸露地齿肋赤藓的3种抗氧化酶活性均显著高于灌丛下, 这可能是由于生活于裸露地的苔藓有更强的耐胁迫特性。
尹本丰, 张元明. 冻融过程对荒漠区不同微生境下齿肋赤藓渗透调节物含量和抗氧化酶活力的影响. 植物生态学报, 2015, 39(5): 517-529. DOI: 10.17521/cjpe.2015.0050
YIN Ben-Feng,ZHANG Yuan-Ming. Impacts of freeze-thaw processes on antioxidant activities and osmolyte contents of Syntrichia caninervis under different desert microhabitats. Chinese Journal of Plant Ecology, 2015, 39(5): 517-529. DOI: 10.17521/cjpe.2015.0050
图1 古尔班通古特沙漠3种不同微生境下生长的齿肋赤藓。A, 裸露地。B, 死灌丛。C, 活灌丛。
Fig. 1 Syntrichia caninervis grown under three microhabitats in Gurbantünggüt Desert. A, Exposed ground. B, Dead shrub. C, Live shrub.
图2 古尔班通古特沙漠三种不同微生境下齿肋赤藓植株。A, 裸露地。B, 死灌丛。C, 活灌丛。
Fig. 2 Syntrichia caninervis shoots collected from three microhabitats in Gurbantünggüt Desert. A, Exposed ground. B, Dead shrub. C, Live shrub.
项目 Item | 活灌丛 Alive shrub | 死灌丛 Dead shrub | 裸露地 Exposed area |
---|---|---|---|
有机碳 Organic matter (g·kg-1) | 3.721 ± 0.318a | 3.898 ± 0.737a | 2.300 ± 0.574b |
全氮 Total nitrogen (g·kg-1) | 0.475 ± 0.073a | 0.495 ± 0.048a | 0.301 ± 0.047b |
全磷 Total phosphorus (g·kg-1) | 0.400 ± 0.014ab | 0.445 ± 0.013a | 0.394 ± 0.059b |
全钾 Total potassium (g·kg-1) | 13.119 ± 0.249a | 12.977 ± 0.127a | 12.194 ± 0.136b |
总盐 Total salt (g·kg-1) | 0.576 ± 0.018a | 0.567 ± 0.079a | 0.514 ± 0.045a |
pH值 pH value | 7.936 ± 0.031a | 7.672 ± 0.036b | 7.652 ± 0.262b |
电导率 Electrical conductivity (μs·cm-1) | 0.131 ± 0.009a | 0.129 ± 0.008a | 0.125 ± 0.016a |
冻结期温度(日均温) Temperature in freezing periods (℃) | -9.36 | -11.09 | -11.67 |
融雪期温度(日均温) Temperature in snow melting periods (℃) | -2.18 | 2.81 | 2.82 |
春季中旬干旱无雨期温度(日均温) Temperature in dry environment (℃) | 9.76 | 11.64 | 11.64 |
表1 不同微生境下土壤理化性质的比较(平均值±标准偏差)
Table 1 Comparison of soil physical and chemical properties among different microhabitats (mean ± SD)
项目 Item | 活灌丛 Alive shrub | 死灌丛 Dead shrub | 裸露地 Exposed area |
---|---|---|---|
有机碳 Organic matter (g·kg-1) | 3.721 ± 0.318a | 3.898 ± 0.737a | 2.300 ± 0.574b |
全氮 Total nitrogen (g·kg-1) | 0.475 ± 0.073a | 0.495 ± 0.048a | 0.301 ± 0.047b |
全磷 Total phosphorus (g·kg-1) | 0.400 ± 0.014ab | 0.445 ± 0.013a | 0.394 ± 0.059b |
全钾 Total potassium (g·kg-1) | 13.119 ± 0.249a | 12.977 ± 0.127a | 12.194 ± 0.136b |
总盐 Total salt (g·kg-1) | 0.576 ± 0.018a | 0.567 ± 0.079a | 0.514 ± 0.045a |
pH值 pH value | 7.936 ± 0.031a | 7.672 ± 0.036b | 7.652 ± 0.262b |
电导率 Electrical conductivity (μs·cm-1) | 0.131 ± 0.009a | 0.129 ± 0.008a | 0.125 ± 0.016a |
冻结期温度(日均温) Temperature in freezing periods (℃) | -9.36 | -11.09 | -11.67 |
融雪期温度(日均温) Temperature in snow melting periods (℃) | -2.18 | 2.81 | 2.82 |
春季中旬干旱无雨期温度(日均温) Temperature in dry environment (℃) | 9.76 | 11.64 | 11.64 |
图3 冻融期不同微生境下齿肋赤藓植株含水量的比较(平均值±标准偏差)。不同小写字母和大写字母分别表示不同微生境下和不同冻融期齿肋赤藓植株含水量差异显著(p < 0.05)。
Fig. 3 Comparison of water content in Syntrichia caninervis shoots from different microhabitats and freezing-thawing periods (mean ± SD). Different lowercase and capital letters denote statistically significant differences in water content (p < 0.05) between microhabitats and periods, respectively.
因子 Factor | 脯氨酸含量 Proline content | 可溶性糖含量 Soluble sugar content | 可溶性蛋白含量 Soluble proteins content | 丙二醛含量 MDA content | 超氧化物歧化 酶活性 SOD activity | 过氧化物 酶活性 POD activity | 过氧化氢 酶活性 CAT activity |
---|---|---|---|---|---|---|---|
微生境 Microhabitats | 37.695** | 1.841 | 41.663** | 5.488* | 122.556** | 45.145** | 22.239** |
冻融期 Freezing-thawing periods | 266.579** | 919.016** | 325.679** | 1153.946** | 494.308** | 152.878** | 105.681** |
微生境×冻融期 Microhabitats × freezing-thawing periods | 40.255** | 27.920** | 3.475* | 7.710** | 50.115** | 15.406** | 3.869* |
表2 不同冻融期不同微生境下齿肋赤藓生化特征重复测量结果的方差分析
Table 2 Repeated measures ANOVA on the effects of microhabitats and Freezing-thawing periods on physiological and biochemical characteristics in Syntrichia caninervis
因子 Factor | 脯氨酸含量 Proline content | 可溶性糖含量 Soluble sugar content | 可溶性蛋白含量 Soluble proteins content | 丙二醛含量 MDA content | 超氧化物歧化 酶活性 SOD activity | 过氧化物 酶活性 POD activity | 过氧化氢 酶活性 CAT activity |
---|---|---|---|---|---|---|---|
微生境 Microhabitats | 37.695** | 1.841 | 41.663** | 5.488* | 122.556** | 45.145** | 22.239** |
冻融期 Freezing-thawing periods | 266.579** | 919.016** | 325.679** | 1153.946** | 494.308** | 152.878** | 105.681** |
微生境×冻融期 Microhabitats × freezing-thawing periods | 40.255** | 27.920** | 3.475* | 7.710** | 50.115** | 15.406** | 3.869* |
图4 冻融期不同微生境下齿肋赤藓脯氨酸、可溶性糖和可溶性蛋白含量的比较(平均值±标准偏差)。不同小写字母和大写字母分别表示不同微生境下和不同冻融期齿肋赤藓渗透调节物质含量差异显著(p < 0.05)。
Fig. 4 Comparison of the contents of compatible solutes (osmoprotectants) in Syntrichia caninervis shoots from different microhabitats and freezing-thawing periods (mean ± SD). Different lowercase and capital letters denote statistically significant differences in solutes (p < 0.05) between microhabitats and periods, respectively.
图5 冻融期不同微生境下齿肋赤藓丙二醛(MDA)含量的比较(平均值±标准偏差)。不同小写字母和大写字母分别表示不同微生境下和不同冻融期齿肋赤藓MDA含量差异显著(p < 0.05)。
Fig. 5 Comparison of the content of malonyldialdehyde (MDA) in Syntrichia caninervis shoots from different microhabitats and freezing-thawing periods (mean ± SD). Different lowercase and capital letters denote statistically significant differences in MDA (p < 0.05) between microhabitats and periods, respectively.
图6 冻融期不同微生境下齿肋赤藓过氧化物酶(POD)、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性的比较(平均值±标准偏差)。不同小写字母和大写字母分别表示不同微生境下和不同冻融期齿肋赤藓抗氧化酶活性差异显著(p < 0.05)。
Fig. 6 Comparisons of the activities of peroxidase (POD), superoxide dismutase (SOD), catalase (CAT) in Syntrichia caninervis shoots from different microhabitats and freezing-thawing periods (mean ± SD). Different lowercase and capital letters denote statistically significant differences in enzyme activities (p < 0.05) between microhabitats and periods, respectively.
变量 Variable | 脯氨酸含量 Proline content | 可溶性糖含量 Soluble sugar content | 可溶性蛋白含量 Soluble proteins content | 丙二醛含量 MDA content | 超氧化物歧化 酶活性 SOD activity | 过氧化物 酶活性 POD activity | 过氧化氢 酶活性 CAT activity |
---|---|---|---|---|---|---|---|
冬季低温冻结期 Freezing period | |||||||
含水量 Water content | -0.191 | 0.737** | 0.861** | -0.051 | -0.915** | -0.800** | -0.803** |
温度 Temperature | -0.191 | 0.730** | 0.861** | 0.052 | -0.899** | -0.767** | -0.797** |
融雪期 Snow melting period | |||||||
含水量 Water content | 0.172 | 0.462 | 0.515* | 0.747** | -0.457 | -0.668** | -0.479 |
温度 Temperature | -0.008 | -0.907** | -0.696** | -0.635* | 0.437 | 0.755** | 0.644* |
春季中旬干旱无雨期 Dry environment | |||||||
含水量 Water content | -0.812** | -0.676** | 0.747** | -0.764** | -0.696** | -0.758** | -0.830** |
温度 Temperature | 0.802** | 0.601* | -0.688** | 0.707** | 0.710** | 0.767** | 0.809** |
表3 不同微生境下齿肋赤藓生化特征在不同冻融期与温度和含水量之间的相关系数
Table 3 Correlation coefficients among physiological traits in Syntrichhia caninervis shoots and environmental factors in different microhabitats during the freezing-thawing periods
变量 Variable | 脯氨酸含量 Proline content | 可溶性糖含量 Soluble sugar content | 可溶性蛋白含量 Soluble proteins content | 丙二醛含量 MDA content | 超氧化物歧化 酶活性 SOD activity | 过氧化物 酶活性 POD activity | 过氧化氢 酶活性 CAT activity |
---|---|---|---|---|---|---|---|
冬季低温冻结期 Freezing period | |||||||
含水量 Water content | -0.191 | 0.737** | 0.861** | -0.051 | -0.915** | -0.800** | -0.803** |
温度 Temperature | -0.191 | 0.730** | 0.861** | 0.052 | -0.899** | -0.767** | -0.797** |
融雪期 Snow melting period | |||||||
含水量 Water content | 0.172 | 0.462 | 0.515* | 0.747** | -0.457 | -0.668** | -0.479 |
温度 Temperature | -0.008 | -0.907** | -0.696** | -0.635* | 0.437 | 0.755** | 0.644* |
春季中旬干旱无雨期 Dry environment | |||||||
含水量 Water content | -0.812** | -0.676** | 0.747** | -0.764** | -0.696** | -0.758** | -0.830** |
温度 Temperature | 0.802** | 0.601* | -0.688** | 0.707** | 0.710** | 0.767** | 0.809** |
1 | Benassi M, Stark LR, Brinda JC, McLetchie DN, Bonine M, Mishler BD (2011). Plant size, sex expression and sexual reproduction along an elevation gradient in a desert moss.The Bryologist, 114, 277-288. |
2 | Bhyan SB, Minami A, Kaneko Y, Suzuki S, Arakawa K, Sakata Y, Takezawa D (2012). Cold acclimation in the moss Physcomitrella patens involves abscisic acid-dependent signaling.Journal of Plant Physiology, 169, 137-145. |
3 | Bjerke JW (2011). Winter climate change: Ice encapsulation at mild subfreezing temperatures kills freeze-tolerant lichens.Environmental and Experimental Botany, 72, 404-408. |
4 | Bjerke JW, Bokhorst S, Zielke M, Callaghan TV, Bowles FW, Phoenix GK (2011). Contrasting sensitivity to extreme winter warming events of dominant sub-Arctic heathland bryophyte and lichen species.Journal of Ecology, 99, 1481-1488. |
5 | Brown JH, Ernest SKM (2002). Rain and rodents: Complex dynamics of desert consumers although water is the pri- mary limiting resource in desert ecosystems, the relationship between rodent population dynamics and precipitation is complex and nonlinear.BioScience, 52, 979-987. |
6 | Chen WJ, Zhang N, Hang LL, Wang Y, Ji MC (2013). Influence of shading during the processes of drought stress and re-watering on the physiological and biochemical characteristics of Haplocladium microphyllum.Chinese Journal of Applied Ecology, 24, 57-62(in Chinese with English abstract). |
[陈文佳, 张楠, 杭璐璐, 王媛, 季梦成 (2013). 干旱胁迫与复水过程中遮光对细叶小羽藓的生理生化影响. 应用生态学报, 24, 57-62.] | |
7 | Choudhury S, Panda SK (2005). Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under chromium and lead phytotoxicity.Water, Air, and Soil Pollution, 167, 73-90. |
8 | Crowe JH, Carpenter JF, Crowe LM (1998). The role of vitrification in anhydrobiosis.Annual Review of Physiology, 60, 73-103. |
9 | Fan LL, Ma J, Wu LF, Xu GQ, Li Y, Tang LS (2012). Response of the herbaceous layer to snow variability at the south margin of the Gurbantonggut desert of China.Chinese Journal of Plant Ecology, 36, 126-135(in Chinese with English abstract). |
[范连连, 马健, 吴林峰, 徐贵青, 李彦, 唐立松 (2012). 古尔班通古特沙漠南缘草本层对积雪变化的响应. 植物生态学报, 36, 126-135.] | |
10 | Fan SL, Yuan ZH, Feng LJ, Wang XH, Ding XM, Zhen HL (2011). Effects of drought stress on physiological and biochemical parameters of Dahlia pinnata.Chinese Journal of Applied Ecology, 22, 651-657(in Chinese with English abstract). |
[范苏鲁, 苑兆和, 冯立娟, 王晓慧, 丁雪梅, 甄红丽 (2011). 干旱胁迫对大丽花生理生化指标的影响. 应用生态学报, 22, 651-657.] | |
11 | Gonzalez CM, Pignata ML (1994). The influence of air pollution on soluble proteins, chlorophyll degradation, MDA, sulphur and heavy metals in a transplanted lichen.Chemistry and Ecology, 9, 105-113. |
12 | Harper KT, Belnap J (2001). The influence of biological soil crusts on mineral uptake by associated vascular plants.Journal of Arid Environments, 47, 347-357. |
13 | Herrnstadt I, Kidron GJ (2005). Reproductive strategies of Bryum dunense in three microhabitats in the Negev Desert.The Bryologist, 108, 101-109. |
14 | Hui R, Li XR, Jia RL, Zhao X, Liu YM, Chen CY (2012). Effects of enhanced UV-B radiation on physiological characteristics of Bryum argenteum.Chinese Journal of Ecology, 31, 38-43(in Chinese with English abstract). |
[回嵘, 李新荣, 贾荣亮, 赵昕, 刘艳梅, 陈翠云 (2012). 增强 UV-B 辐射对真藓结皮生理特性的影响. 生态学杂志, 31, 38-43.] | |
15 | Huxman TE, Smith MD, Fay PA, Knapp AK, Shaw MR, Loik ME, Smith SD, Tissue DT, Zak JC, Weltzin JF (2004). Convergence across biomes to a common rain-use efficiency.Nature, 429, 651-654. |
16 | Kappen L, Valladares F (2007). Opportunistic growth and des- iccation tolerance: The ecological success of poikilohy- drous autotrophs.Functional Plant Ecology, 2, 7-67. |
17 | Kidron GJ, Vonshak A, Abeliovich A (2009). Microbiotic crusts as biomarkers for surface stability and wetness duration in the Negev Desert.Earth Surface Processes and Landforms, 34, 1594-1604. |
18 | Lange OL (2003). Photosynthetic productivity of the epilithic lichen Lecanora muralis: Long-term field monitoring of CO2 exchange and its physiological interpretation: III. Diel, seasonal, and annual carbon budgets.Flora-Mor- phology, Distribution, Functional Ecology of Plants, 198, 277-292. |
19 | Lassouane N, Aïd F, Lutts S (2013). Water stress impact on young seedling growth of Acacia arabica.Acta Physiologiae Plantarum, 35, 2157-2169. |
20 | Lenne T, Bryant G, Hocart CH, Huang CX, Ball MC (2010). Freeze avoidance: A dehydrating moss gathers no ice.Plant, Cell & Environment, 33, 1731-1741. |
21 | Mallón R, Barros P, Luzardo A, González ML (2007). Encapsulation of moss buds: An efficient method for the in vitro conservation and regeneration of the endangered moss Splachnum ampullaceum.Plant Cell, Tissue and Organ Culture, 88, 41-49. |
22 | Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003). Pho- tosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress.Environmental and Experimental Botany, 49, 69-76. |
23 | Monreal J, Jiménez E, Remesal E, Morillo-Velarde R, García-Mauriño S, Echevarría C (2007). Proline content of sugar beet storage roots: Response to water deficit and nitrogen fertilization at field conditions.Environmental and Experimental Botany, 60, 257-267. |
24 | Munné-Bosch S, Jubany-Marí T, Alegre L (2003). Enhanced photo-and antioxidative protection, and hydrogen peroxide accumulation in drought-stressed Cistus clusii and Cistus albidus plants.Tree Physiology, 23, 1-12. |
25 | Nagao M, Oku K, Minami A, Mizuno K, Sakurai M, Arakawa K, Fujikawa S, Takezawa D (2006). Accumulation of theanderose in association with development of freezing tolerance in the moss Physcomitrella patens.Phytochemistry, 67, 702-709. |
26 | Oliver MJ, Wood AJ, O’Mahony P (1997). How some plants recover from vegetative desiccation: A repair based strategy.Acta Physiologiae Plantarum, 19, 419-425. |
27 | Pintado A, Sancho LG, Green T, Blanquer JM, Lázaro R (2005). Functional ecology of the biological soil crust in semiarid SE Spain: Sun and shade populations of Diploschistes diacapsis (Ach.) Lumbsch.The Lichenologist, 37, 425-432. |
28 | Reynolds LA, McLetchie DN (2011). Short distances between extreme microhabitats do not result in ecotypes in Syntrichia caninervis.Journal of Bryology, 33, 148-153. |
29 | Robinson SA, Turnbull JD, Lovelock CE (2005). Impact of changes in natural ultraviolet radiation on pigment composition, physiological and morphological characteristics of the Antarctic moss, Grimmia antarctici.Global Change Biology, 11, 476-489. |
30 | Sgherri CLM, Loggini B, Puliga S, Navari-Izzo F (1994). Antioxidant system in Sporobolus stapfianus: Changes in response to desiccation and rehydration.Phytochemistry, 35, 561-565. |
31 | Sha W, Wang H, Shi S (2010). Effects of rewatering on the physio-biochemical indexes of Racomitrium japonicum in long-time drought.Journal of Wuhan Botanical Research, 28, 246-249(in Chinese with English abstract). |
[沙伟, 王欢, 师帅 (2010). 旱后复水对东亚砂藓生理生化指标的影响. 武汉植物学研究, 28, 246-249.] | |
32 | Shen L, Guo SL, Yang W, Cao T, Glime JM (2011). Physiological responses of Hypnum fertile Sendtn. (Musci: Hypnaceae) to short-term extreme temperature stress.Bulletin of Botanical Research, 31, 40-48(in English with Chinese abstract). |
[沈蕾, 郭水良, 杨武, 曹同, Glime JM (2011). 多蒴灰藓(苔藓植物门: 藓纲)对短期极端温度的生理响应. 植物研究, 31, 40-48.] | |
33 | Shi Y, Yang XJ, Zhao X, Li XR (2012a). Responses of signal transduction substances of Didymodon vinealis and Bryum argenteum in biological soil crust to gradual drought stress.Chinese Journal of Ecology, 31, 1136-1142(in Chinese with English abstract). |
[石勇, 杨小菊, 赵昕, 李新荣 (2012a). 逐渐干旱胁迫下生物土壤结皮中土生对齿藓和真藓信号转导物质的响应. 生态学杂志, 31, 1136-1142.] | |
34 | Shi Y, Zhao X, Jia RL, Li XR (2012b). The reactive oxygen species scavenging mechanism of Bryum argenteum and Didymodon vinealis in biological soil crusts under gradual drought stress.Journal of Desert Research, 32, 683-690(in Chinese with English abstract). |
[石勇, 赵昕, 贾荣亮, 李新荣 (2012b). 逐渐干旱胁迫下生物土壤结皮中真藓和土生对齿藓的活性氧清除机制. 中国沙漠, 32, 683-690.] | |
35 | Stark LR, McLetchie DN, Eppley SM (2010). Sex ratios and the shy male hypothesis in the moss Bryum argenteum (Bryaceae).The Bryologist, 113, 788-797. |
36 | Su YG, Wu L, Zhou ZB, Liu YB, Zhang YM (2013). Carbon flux in deserts depends on soil cover type: A case study in the Gurbantunggut desert, North China.Soil Biology and Biochemistry, 58, 332-340. |
37 | Sun SQ, He M, Cao T, Zhang YC, Han W (2009). Response mechanisms of antioxidants in bryophyte (Hypnum plumaeforme) under the stress of single or combined Pb and/or Ni.Environmental Monitoring and Assessment, 149, 291-302. |
38 | Tao Y, Zhang YM (2012). Effects of leaf hair points on dew deposition and rainfall evaporation rates in moss crusts dominated by Syntrichia caninervis, Gurbantunggut desert, northwestern China.Acta Ecologica Sinica, 32, 7-16(in Chinese with English abstract). |
[陶冶, 张元明 (2012). 叶片毛尖对齿肋赤藓结皮凝结水形成及蒸发的影响. 生态学报, 32, 7-16.] | |
39 | Wu HL, Wu XL, Li ZH, Duan LS, Zhang MC (2012). Physiological evaluation of drought stress tolerance and recovery in cauliflower (Brassica oleracea L.) seedlings treated with methyl jasmonate and coronatine.Journal of Plant Growth Regulation, 31, 113-123. |
40 | Wu N, Wei ML, Zhang YM (2009). Membrane permeability of Syntrichia caninervis in response to dehydration and rehydration in biological soil crust.Progress in Nature Science, 19, 942-951(in Chinese). |
[吴楠, 魏美丽, 张元明 (2009). 生物土壤结皮中刺叶赤藓质膜透性对脱水, 复水过程的响应. 自然科学进展, 19, 942-951.] | |
41 | Wu N, Zhang YM, Downing A, Aanderud ZT, Tao Y, Williams S (2014). Rapid adjustment of leaf angle explains how the desert moss, Syntrichia caninervis, copes with multiple resource limitations during rehydration.Functional Plant Biology, 41, 168-177. |
42 | Xiang J, Zhao F, Fang YP, Chen J (2010). Effects of calcium and water stress on physiological and biochemical indexes of bryophytes.Environmental Science & Technology, 33, 70-74(in Chinese with English abstract). |
[项俊, 赵芳, 方元平, 陈娟 (2010). 水分和钙胁迫对苔藓植物生理生化指标的影响. 环境科学与技术, 33, 70-74.] | |
43 | Xu J, Bai XL, Tian GQ, Yao YP, Gao TY (2005). Study on moss, the content of amino acid, the feature of nutritive elements and its resistance to draught in the biotic crusts in arid and semi-arid regions.Acta Ecologica Sinica, 25, 1247-1255(in Chinese with English abstract). |
[徐杰, 白学良, 田桂泉, 姚一萍, 高天云 (2005). 干旱半干旱地区生物结皮层藓类植物氨基酸和营养物质组成特征及适应性分析. 生态学报, 25, 1247-1255.] | |
44 | Xu SJ (2007). Reproduction Characteristics of the Typical Desert Moss and Mechanisms of Physiological and Biochemical Tolerance to Environmental Dehydration and Thermistress. PhD dissertation, Shanghai Jiaotong University, Shanghai(in Chinese with English abstract) . |
[许书军 (2007). 典型荒漠苔藓人工繁殖特征与抗御干热环境胁迫的生理生化机制研究. 博士学位论文, 上海交通大学, 上海.] | |
45 | Yin BF, Zhang YM (2014). Physiological and biochemical response of Syntrichia caninervis at a snowfall event in different desert habitats.Chinese Journal of Plant Ecology, 38, 978-989(in Chinese with English abstract). |
[尹本丰, 张元明 (2014). 荒漠区不同微生境下齿肋赤藓对一次降雪的生理生化响应. 植物生态学报, 38, 978-989.] | |
46 | Zhang J, Zhang YM (2011). Effects of freezing and thawing on chlorophyll fluorescence of Syntrichia caninervis in biological soil crusts.Journal of Desert Research, 31, 1479-1487. |
(in Chinese with English abstract) [张静, 张元明 (2011). 冻融过程对生物结皮中齿肋赤藓叶绿素荧光特性的影响. 中国沙漠, 31, 1479-1487.] | |
47 | Zhang J, Zhang YM (2014). Influence of simulated rainfall on the physiological characteristics of Syntrichia caninervis.Journal of Desert Research, 34, 433-440(in Chinese with English abstract). |
[张静, 张元明 (2014). 模拟降雨对齿肋赤藓(Syntrichia caninervis)生理特性的影响. 中国沙漠, 34, 433-440.] | |
48 | Zhang JX, Kirkham MB (1994). Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species.Plant and Cell Physiology, 35, 785-791. |
49 | Zhang YF, Wang XP, Hu R, Pan YX (2013). Effects of shrubs and precipitation on spatial-temporal variation of soil temperature at the microhabitats induced by desert shrubs.Journal of Desert Research, 33, 536-542(in Chinese with English abstract). |
[张亚峰, 王新平, 虎瑞, 潘颜霞 (2013). 荒漠灌丛微生境土壤温度的时空变异特征——灌丛与降水的影响. 中国沙漠, 33, 536-542.] | |
50 | Zhang YM (2005). Microstructure and development characters in early stage of biological soil crust of desert.Chinese Science Bulletin, 50 42-47(in Chinese). |
[张元明 (2005). 荒漠地表生物土壤结皮的微结构及其早期发育特征. 科学通报, 50, 42-47.] | |
51 | Zhang YM, Chen J, Wang L, Wang XQ, Gu ZH (2007). The spatial distribution patterns of biological soil crusts in the Gurbantunggut Desert, Northern Xinjiang, China.Journal of Arid Environments, 68, 599-610. |
52 | Zhang YM, Pan HX, Pan BR (2004). Distribution characteristics of biological soil crust on sand dune surface in Gurbantunggut Desert, Xinjiang.Journal of Soil and Water Conservation, 18(4), 61-64 . |
[张元明, 潘惠霞, 潘伯荣 (2004). 古尔班通古特沙漠不同地貌部位生物结皮的选择性分布. 水土保持学报, 18(4), 61-64.] | |
53 | Zheng YP, Zhao JC, Zhang BC, Zhang YM (2009). Mor- phological and structural adaptation and characteristics of protonemal development of Syntrichia caninervis in the mosses crust layer.Journal of Desert Research, 29, 878-884(in Chinese with English abstract). |
[郑云普, 赵建成, 张丙昌, 张元明 (2009). 荒漠藓类结皮层中齿肋赤藓形态结构适应性及其原丝体发育特征. 中国沙漠, 29, 878-884.] | |
54 | Zhou HF, Zhou BJ, Dai Q (2010). Observational analysis of rime condensation on plants over the Gurbantunggut desert in China.Advances in Water Science, 21, 56-62(in Chinese with English abstract). |
[周宏飞, 周宝佳, 代琼 (2010). 古尔班通古特沙漠植物雾凇凝结特征. 水科学进展, 21, 56-62.] | |
55 | Zhu Z, Jiang JY, Jiang CJ, Li W (2011). Effects of low temperature stress on SOD activity, soluble protein content and soluble sugar content in Camellia sinensis leaves.Journal of Anhui Agricultural University, 38, 24-26(in Chinese with English abstract). |
[朱政, 蒋家月, 江昌俊, 李雯 (2011). 低温胁迫对茶树叶片SOD、可溶性蛋白和可溶性糖含量的影响. 安徽农业大学学报, 38, 24-26.] |
[1] | 李小玲, 朱道明, 余玉蓉, 吴浩, 牟利, 洪柳, 刘雪飞, 卜贵军, 薛丹, 吴林. 模拟氮沉降对鄂西南贫营养泥炭地两种藓类植物生长与分解的影响[J]. 植物生态学报, 2023, 47(5): 644-659. |
[2] | 余玉蓉, 吴浩, 高娅菲, 赵媛博, 李小玲, 卜贵军, 薛丹, 刘正祥, 武海雯, 吴林. 模拟氮沉降对鄂西南湿地泥炭藓生理及形态特征的影响[J]. 植物生态学报, 2023, 47(11): 1493-1506. |
[3] | 马和平, 王瑞红, 屈兴乐, 袁敏, 慕金勇, 李金航. 不同生境对藏东南地面生苔藓多样性和生物量的影响[J]. 植物生态学报, 2022, 46(5): 552-560. |
[4] | 王艺宸, 邓芝燕, 张守信, 肖楚楚, 冯广, 龙文兴, 刘积史. 海南热带云雾林附生维管植物对宿主的选择性[J]. 植物生态学报, 2022, 46(4): 405-415. |
[5] | 张庆, 尹本丰, 李继文, 陆永兴, 荣晓莹, 周晓兵, 张丙昌, 张元明. 荒漠藓类植物死亡对表层土壤酶活性的影响[J]. 植物生态学报, 2022, 46(3): 350-361. |
[6] | 赵河聚, 岳艳鹏, 贾晓红, 成龙, 吴波, 李元寿, 周虹, 赵雪彬. 模拟增温对高寒沙区生物土壤结皮-土壤系统呼吸的影响[J]. 植物生态学报, 2020, 44(9): 916-925. |
[7] | 刘凌, 樊英杰, 宋晓彤, 李敏, 邵小明, 王晓蕊. 色季拉山不同腐解等级华山松倒木上的苔藓植物组合[J]. 植物生态学报, 2020, 44(8): 842-853. |
[8] | 蒙文萍, 戴全厚, 冉景丞. 苔藓植物岩溶作用研究进展[J]. 植物生态学报, 2019, 43(5): 396-407. |
[9] | 皮春燕, 刘鑫, 王喆, 包维楷. 苔藓-蓝藻共生体关系与固氮能力研究进展[J]. 植物生态学报, 2018, 42(4): 407-418. |
[10] | 赵芸, 贾荣亮, 高艳红, 周媛媛, 滕嘉玲. 腾格里沙漠人工固沙植被演替过程中生物土壤结皮归一化植被指数的变化特征[J]. 植物生态学报, 2017, 41(9): 972-984. |
[11] | 许红梅, 李进, 张元明. 水分条件对人工培养齿肋赤藓光化学效率及生理特性的影响[J]. 植物生态学报, 2017, 41(8): 882-893. |
[12] | 刘盟盟, 贾丽, 程路芸, 张洪芹, 臧晓琳, 宝音陶格涛, 张汝民, 高岩. 冷蒿酚酸及其抗氧化防御酶活性对机械损伤的响应[J]. 植物生态学报, 2017, 41(2): 219-230. |
[13] | 尹本丰, 张元明, 娄安如. 灌丛移除对荒漠齿肋赤藓越冬过程中生理生化特性的影响[J]. 植物生态学报, 2016, 40(7): 723-734. |
[14] | 姜炎彬, 邵小明. 叶附生苔植物物种多样性分布格局及生态成因[J]. 植物生态学报, 2016, 40(5): 523-532. |
[15] | 徐冰鑫, 胡宜刚, 张志山, 陈永乐, 张鹏, 李刚. 模拟增温对荒漠生物土壤结皮-土壤系统CO2、CH4和N2O通量的影响[J]. 植物生态学报, 2014, 38(8): 809-820. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19