植物生态学报 ›› 2017, Vol. 41 ›› Issue (9): 972-984.DOI: 10.17521/cjpe.2017.0105
所属专题: 生态遥感及应用
赵芸1,2, 贾荣亮1,*(), 高艳红1, 周媛媛1,2, 滕嘉玲1,2
收稿日期:
2016-05-24
修回日期:
2017-08-26
出版日期:
2017-09-10
发布日期:
2017-10-23
通讯作者:
贾荣亮
基金资助:
Yun ZHAO1,2, Rong-Liang JIA1,*(), Yan-Hong GAO1, Yuan-Yuan ZHOU1,2, Jia-Ling TENG1,2
Received:
2016-05-24
Revised:
2017-08-26
Online:
2017-09-10
Published:
2017-10-23
Contact:
Rong-Liang JIA
摘要:
生物土壤结皮(简称结皮)影响干旱沙区生态系统归一化植被指数(NDVI)。该文基于空间代时间的方法, 利用地物光谱仪采集腾格里沙漠不同始植年代(1956、1964和1973年)固沙植被区发育的5种优势结皮的NDVI数据, 分析了固沙植被演替过程中结皮NDVI的变化特征及其对降水和温度变化的响应规律, 并通过与固沙区主要地物进行比较, 评估了结皮NDVI在该沙区生态系统NDVI中的作用。结果表明: 1)随着固沙植被演替, 结皮NDVI逐渐增加。不同种类结皮NDVI相比较, 土生对齿藓(Didymodon vinealis)结皮>真藓(Bryum argenteum)结皮>混生结皮>地衣结皮>藻结皮。2)结皮NDVI受降水量、气温及二者间的交互作用影响显著, 且具有明显的季节差异。结皮NDVI与降水量及其覆盖土壤浅层含水量均呈显著线性正相关关系, 并且结皮NDVI对水分的敏感性随固沙植被演替而逐渐增加。结皮NDVI总体与日平均气温呈显著线性负相关关系, 而与结皮表面温度呈显著指数负相关关系, 并且结皮NDVI对温度的敏感性随固沙植被演替逐渐增加。结皮NDVI对温度变化的敏感性春季高于夏季, 对水分变化的敏感性夏季高于春季。3)春季降水后, 藓类结皮NDVI显著高于油蒿(Artemisia ordosica)、花棒(Hedysarum scoparium)、柠条(Caragana korshinskii)等灌木及裸沙; 夏季降水后, 结皮NDVI显著低于灌木。若考虑结皮较高的盖度, 春、夏季结皮NDVI对固沙区系统NDVI的贡献率分别为90.01%和82.53%, 均超过灌木(春季9.99%和夏季17.47%), 并且结皮对固沙区系统NDVI的贡献率随着固沙植被演替而逐渐增加, 而灌木的贡献率逐渐降低。该研究证明了在区域尺度上利用结皮NDVI并结合气象资料区分结皮演替阶段的可行性, 并为干旱沙区在区域尺度上地表生态参量遥感估算的误差分析及结皮遥感监测的时相选择提供了数据基础。
赵芸, 贾荣亮, 高艳红, 周媛媛, 滕嘉玲. 腾格里沙漠人工固沙植被演替过程中生物土壤结皮归一化植被指数的变化特征. 植物生态学报, 2017, 41(9): 972-984. DOI: 10.17521/cjpe.2017.0105
Yun ZHAO, Rong-Liang JIA, Yan-Hong GAO, Yuan-Yuan ZHOU, Jia-Ling TENG. Characteristics of normalized difference vegetation index of biological soil crust during the succession process of artificial sand-fixing vegetation in the Tengger Desert, Northern China. Chinese Journal of Plant Ecology, 2017, 41(9): 972-984. DOI: 10.17521/cjpe.2017.0105
图1 腾格里沙漠人工固沙植被演替过程中不同地物归一化植被指数(NDVI)的季节变化。1973(42)、1964(51)、1956(59)表示固沙植被建立年份(固沙年限(a))。
Fig. 1 Seasonal changes in normalized difference vegetation index (NDVI) values with the succession process of the artificial sand-fixing vegetation. 1973(42), 1964(51), 1956(59) represent year of revegetation (history of revegetation (a)).
图2 腾格里沙漠人工固沙植被演替过程生物土壤结皮归一化植被指数(NDVI)的变化特征(平均值+标准偏差)。A, 干结皮。B, 湿结皮。
Fig. 2 Changes in normalized difference vegetation index (NDVI) values of biological soil crust with the succession process of artificial sand-fixing vegetation (mean + SD). A, Dry crust. B, Wet crust.
结皮类型 Crust type | 拟合方程 Fitted curves equation | R2 | p |
---|---|---|---|
藻结皮 Algae crust | NDVI = 0.146 + 0.006P -0.002ST + 0.001A -0.001T | 0.494 | <0.01 |
地衣结皮 Lichen crust | NDVI = 0.002 + 0.021P + 0.004A + 0.002T - 0.002ST | 0.663 | <0.01 |
混生结皮 Mixed crust | NDVI = 0.163 + 0.027P - 0.002T + 0.002A - 0.002ST | 0.801 | <0.01 |
真藓结皮 Bryum argenteum crust | NDVI = 0.093 + 0.024M + 0.005A - 0.004T + 0.015P -0.002ST | 0.707 | <0.01 |
土生对齿藓结皮 Didymodon vinealis crust | NDVI = -0.057 + 0.037M + 0.007A + 0.024P | 0.819 | <0.01 |
表1 生物土壤结皮归一化植被指数(NDVI)与固沙植被演替年龄、降水量、气温、结皮表面温度及结皮覆盖土壤浅层含水量的逐步回归方程
Table 1 Stepwise regressions of the sand-fixing vegetation successional age, precipitation, daily mean temperature, surface temperature and shallow soil moisture content covered by biological soil crust with their normalized difference vegetation index (NDVI) values
结皮类型 Crust type | 拟合方程 Fitted curves equation | R2 | p |
---|---|---|---|
藻结皮 Algae crust | NDVI = 0.146 + 0.006P -0.002ST + 0.001A -0.001T | 0.494 | <0.01 |
地衣结皮 Lichen crust | NDVI = 0.002 + 0.021P + 0.004A + 0.002T - 0.002ST | 0.663 | <0.01 |
混生结皮 Mixed crust | NDVI = 0.163 + 0.027P - 0.002T + 0.002A - 0.002ST | 0.801 | <0.01 |
真藓结皮 Bryum argenteum crust | NDVI = 0.093 + 0.024M + 0.005A - 0.004T + 0.015P -0.002ST | 0.707 | <0.01 |
土生对齿藓结皮 Didymodon vinealis crust | NDVI = -0.057 + 0.037M + 0.007A + 0.024P | 0.819 | <0.01 |
春季 Spring | 夏季 Summer | |
---|---|---|
结皮表面温度 Crust surface temperature | -0.269** | -0.139** |
土壤体积含水量 Soil volumetric moisture content | 0.146 | 0.473** |
日平均气温 Daily mean temperature | -0.321** | -0.069 |
降水量 Precipitation | 0.388** | 0.629** |
表2 生物土壤结皮归一化植被指数(NDVI)与水分及温度的偏相关系数季节变化
Table 2 The partial correlation coefficient of normalized difference vegetation index (NDVI) values of biological soil crust in spring and summer
春季 Spring | 夏季 Summer | |
---|---|---|
结皮表面温度 Crust surface temperature | -0.269** | -0.139** |
土壤体积含水量 Soil volumetric moisture content | 0.146 | 0.473** |
日平均气温 Daily mean temperature | -0.321** | -0.069 |
降水量 Precipitation | 0.388** | 0.629** |
图3 腾格里沙漠人工固沙植被演替过程中生物土壤结皮归一化植被指数(NDVI)对水分的响应。A, F, 藻结皮。B, G, 地衣结皮。C, H, 混生结皮。D, I 真藓结皮。E, J 土生对齿藓结皮。降水量为观测前一日至观测时的累积降水量。1973(42)、1964(51)、1956(59)表示固沙植被建立年份(固沙年限(a))。
Fig. 3 Responses of normalized difference vegetation index (NDVI) values of biological soil crust to precipitation and shallow soil moisture content covered by biological soil crust during the succession process of artificial sand-fixing vegetation. A, F, Algae crust. B, G, Lichen crust. C, H, Mixed crust. D, I, Bryum argenteum crust. E, J, Didymodon vinealis crust. Precipitation means the cumulative precipitation during the previous 24 hours before the observation time. 1973(42), 1964(51), 1956(59) represent year of revegetation (history of revegetation (a)).
图4 腾格里沙漠人工固沙植被演替过程中生物土壤结皮归一化植被指数(NDVI)对温度的响应。A, F, 藻结皮。B, G , 地衣结皮。C, H, 混生结皮。D, I 真藓结皮。E, J 土生对齿藓结皮。1973(42)、1964(51)、1956(59)表示固沙植被建立年份(固沙年限(a))。
Fig. 4 Responses of normalized difference vegetation index (NDVI) values of biological soil crust to daily mean temperature and surface temperature during the succession process of artificial sand-fixing vegetation. A, F, Algae crust. B, G , Lichen crust. C, H, Mixed crust. D, I, Bryum argenteum crust. E, J, Didymodon vinealis crust. 1973(42), 1964(51), 1956(59) represent year of revegetation (history of revegetation (a)).
图5 腾格里沙漠人工固沙植被演替过程中生物土壤结皮及灌木对固沙区系统归一化植被指数(NDVI)的贡献率。
Fig. 5 Changes in the contribution rate of normalized difference vegetation index (NDVI) values of biological soil crust and shrubs to the regional NDVI of sand-fixing system with the succession process of artificial sand-fixing vegetation.
[1] | Bai XL, Wang Y, Xu J, Li XR, Zhang JG (2003). Characteristics of reproduction and growth of mosses in the soil crust of fixed dunes in Shapotou area.Journal of Desert Research, 23, 171-173. (in Chinese with English abstract)[白学良, 王瑶, 徐杰, 李新荣, 张景光 (2003). 沙坡头地区固定沙丘结皮层藓类植物的繁殖和生长特性研究. 中国沙漠, 23, 171-173.] |
[2] | Chamizo S, Stevens A, Cantón Y, Miralles I, Domingo F, van Wesemael B (2012). Discriminating soil crust type, development stage and degree of disturbance in semiarid environments from their spectral characteristics.European Journal of Soil Science, 63, 42-53. |
[3] | Cheng HJ, Zhang YM (2010). Environmental factors affecting soil biocrust distribution.Chinese Journal of Ecology, 29, 133-141. (in Chinese with English abstract)[程军回, 张元明 (2010). 影响生物土壤结皮分布的环境因子. 生态学杂志, 29, 133-141.] |
[4] | Chen J, Zhang MY, Wang L, Shimazaki H, Tamura M (2005). A new index for mapping lichen-dominated biological soil crusts in desert areas.Remote Sensing of Environment, 96, 165-175. |
[5] | Colesie C, Scheu S, Green TGA, Weber B, Wirth R, Büdel B (2012). The advantage of growing on moss: Facilitative effects on photosynthetic performance and growth in the cyanobacterial lichenPeltigera rufescens. Oecologia, 169, 599-607. |
[6] | Dettweiler-Robinson E, Ponzetti JM, Bakker JD (2013). Long-term changes in biological soil crust cover and composition.Ecological Processes, 2, 1-10. |
[7] | Dody A, Hakmon R, Asaf B, Zaady E (2011). Indices to monitor biological soil crust growth rate—Lab and field experiments.Natural Science, 3, 478-483. |
[8] | Eldridge DJ, Tozer ME (1997). Environmental factors relating to the distribution of terricolous bryophytes and lichens in semi-arid eastern Australia.Bryologist, 100, 28-39. |
[9] | Fang SB, Yu WG, Qi Y (2015). Spectra and vegetation index variations in moss soil crust in different seasons, and in wet and dry conditions.International Journal of Applied Earth Observation & Geoinformation, 38, 261-266. |
[10] | Fang SB, Zhang XS (2011). Impact of moss soil crust on vegetation indexes interpretation.Spectroscopy and Spectral Analysis, 31, 780-783. (in Chinese with English abstract)[房世波, 张新时 (2011). 苔藓结皮影响干旱半干旱植被指数的稳定性. 光谱学与光谱分析, 31, 780-783.] |
[11] | Feng L, Zhang JG, Zhang ZS, Guo Q, Li XR (2009). Growth and biomass allocation dynamics of Artemisia ordosica in sand-fixing vegetation of the Tengger Desert of China. Journal of Plant Ecology (Chinese Version), 33, 1132-1139. (in Chinese with English abstract)[冯丽, 张景光, 张志山, 郭群, 李新荣 (2009). 腾格里沙漠人工固沙植被中油蒿的生长及生物量分配动态. 植物生态学报, 33, 1132-1139.] |
[12] | Feng W (2014). Photosynthetic Carbon Fixation of Biological Soil Crusts in Mu Us Desert and Their Impact on Soil Carbon Emission. PhD dissertation, Beijing Forestry University, Beijing. 61-73. (in Chinese with English abstract)[冯薇 (2014). 毛乌素沙地生物结皮光合固碳过程及对土壤碳排放的影响. 博士学位论文, 北京林业大学, 北京. 61-73.] |
[13] | Feng XR, Bu CF, Hao HK, Yang YZ, Zhang GJ (2015). Research on biological soil crust extraction by spectral analysis in Mu Us Desert, China.Journal of Natural Resources, 30, 1024-1034. (in Chinese with English abstract)[冯秀绒, 卜崇峰, 郝红科, 杨延征, 张广军 (2015). 基于光谱分析的生物结皮提取研究——以毛乌素沙地为例. 自然资源学报, 30, 1024-1034.] |
[14] | Fischer T, Veste M, Eisele A, Bens O, Spyra W, Hüttl RF (2012). Small scale spatial heterogeneity of normalized difference vegetation indices (NDVIs) and hot spots of photosynthesis in biological soil crusts.Flora, 207, 159-167. |
[15] | Grote EE, Belnap J, Housman DC, Sparks JP (2010). Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: Implications for global change.Global Change Biology, 16, 2763-2774. |
[16] | Housman DC, Powers HH, Collins AD, Belnap J (2006). Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert.Journal of Arid Environments, 66, 620-634. |
[17] | Jia RL (2009). Photosynthetic Ecophysiological Characteristics of Moss Crusts in A Revegetated Area of the Tengger Desert, Northern China . PhD dissertation, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Beijing.(in Chinese with English abstract)[贾荣亮 (2009). 腾格里沙漠人工植被区藓类结皮光合生理生态学研究. 博士学位论文, 中国科学院寒区旱区环境与工程研究所, 北京.] |
[18] | Jia RL, Li XR, Liu LC, Gao YH, Li XJ (2008). Responses of biological soil crusts to sand burial in a revegetated area of the Tengger Desert, Northern China.Soil Biology & Biochemistry, 40, 2827-2834. |
[19] | Karnieli A (1997). Development and implementation of spectral crust index over dune sands.International Journal of Remote Sensing, 18, 1207-1220. |
[20] | Karnieli A (2003). Natural vegetation phenology assessment by ground spectral measurements in two semi-arid environments.International Journal of Biometeorology, 47, 179-187. |
[21] | Karnieli A, Kidron GJ, Glaesser C, Ben-Dor E (1999). Spectral characteristics of cyanobacteria soil crust in semiarid environments.Remote Sensing of Environment, 69, 67-75. |
[22] | Karnieli A, Shachak M, Tsoar H, Zaady E, Kaufman Y, Danin A, Porter W (1996) The effect of microphytes on the spectral reflectance of vegetation in semiarid regions.Remote Sensing of Environment, 57, 88-96. |
[23] | Kleiner EF (1983). Successional trends in an ungrazed, arid grassland over a decade.Journal of Range Management, 36, 114-118. |
[24] | Lange OL (2003). Photosynthesis of soil-crust biota as dependent on environmental factors. In: Belnap J, Lange OL eds. Biological Soil Crust: Structure, Function, and Management. Springer, Berlin. 217-240. |
[25] | Lange OL, Belnap J, Reichenberger H (1998). Photosynthesis of the cyanobacterial soil-crust lichen Collema tenax from arid lands in southern Utah, USA: Role of water content on light and temperature responses of CO2 exchange. Functional Ecology, 12, 195-202. |
[26] | Li SZ, Zheng HZ, Li SL, Shen BC (2008). Development characteristics of biotic crusts on Shapotou vegetated sand dunes.Chinese Journal of Ecology, 27, 1675-1679. (in Chinese with English abstract)[李守中, 郑怀舟, 李守丽, 沈宝成 (2008). 沙坡头植被固沙区生物结皮的发育特征. 生态学杂志, 27, 1675-1679.] |
[27] | Li XR (2010).Eco-hydrology of Biological Soil Crusts in Desert Regions of China. Higher Education Pressv, Beijing. (in Chinese)[李新荣 (2010). 荒漠生物土壤结皮生态与水文学研究. 高等教育出版社, 北京.] |
[28] | Li XR, Hui R, Zhao Y (2016). Eco-physiology of Biological Soil Crusts in Desert Regions of China. Higher Education Press, Beijing. (in Chinese)[李新荣, 回嵘, 赵洋 (2016). 中国荒漠生物土壤结皮生态生理学研究. 高等教育出版社, 北京.] |
[29] | Li XR, Jia RL, Chen YW, Huang L, Zhang P (2011). Association of ant nests with successional stages of biological soil crusts in the Tengger Desert, Northern China.Applied Soil Ecology, 47, 59-66. |
[30] | Li XR, Zhang JG, Liu LC, Chen HS, Shi QH (2000). Plant diversity in the process of succession of artificial vegetation type sand environment in an arid desert region of china.Acta Phytoecologica Sinica, 24, 257-261. (in Chinese with English abstract)[李新荣, 张景光, 刘立超, 陈怀顺, 石庆辉 (2000). 我国干旱沙漠地区人工植被与环境演变过程中植物多样性的研究. 植物生态学报, 24, 257-261.] |
[31] | Li XR, Zhang P, Su YG, Jia RL (2012). Carbon fixation by biological soil crusts following revegetation of sand dunes in arid desert regions of China: A four-year field study.Catena, 97, 119-126. |
[32] | Li XR, Zhang YM, Zhao YG (2009). A study of biological soil crusts: Recent development trend and prospect.Advances in Earth Science, 24, 11-24. (in Chinese with English abstract)[李新荣, 张元明, 赵允格 (2009). 生物土壤结皮研究: 进展、前沿与展望. 地球科学进展, 24, 11-24.] |
[33] | Li XR, Zhang ZS, Tan HJ, Gao YH, Liu LC, Wang XP (2014). Ecological restoration and recovery in the wind-blown sand hazard areas of northern China: Relationship between soil water and carrying capacity for vegetation in the Tengger Desert.Science China Life Sciences, 57, 539-548. |
[34] | Li XR, Zhao Y, Hui R, Su JQ, Gao YH (2014). Progress and trend of development of restoration ecology research in the arid regions of China.Progress in Geography, 33, 1435-1443. (in Chinese with English abstract)[李新荣, 赵洋, 回嵘, 苏洁琼, 高艳红 (2014). 中国干旱区恢复生态学研究进展及趋势评述. 地理科学进展, 33, 1435-1443.] |
[35] | Li XR, Zhou HY, Wang XP, Zhu YG, O’conner PJ (2003). The effects of sand stabilization and revegetation on cryptogam species diversity and soil fertility in the Tengger Desert, Northern China.Plant and Soil, 251, 237-245. |
[36] | Maestre FT, Escudero A, Martinez I, Guerrero C, Rubio A (2005). Does spatial pattern matter to ecosystem functioning? Insights from biological soil crusts.Functional Ecology, 19, 566-573. |
[37] | Pettorelli N, Vik JO, Mysterud A, Gaillard JM, Tucker CJ, Stenseth NC (2005). Using the satellite-derivedNDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution, 20, 503-510. |
[38] | Rodriguez-Caballero E, Knerr T, Weber B (2015). Importance of biocrusts in dryland monitoring using spectral indices.Remote Sensing of Environment, 170, 32-39. |
[39] | Rozenstein O, Karnieli A (2014). Identification and characterization of biological soil crusts in a sand dune desert environment across Israel-Egypt border using LWIR emittance spectroscopy.Journal of Arid Environments, 112, 75-86. |
[40] | Schmidt H, Karnieli A (2002). Analysis of the temporal and spatial vegetation patterns in a semi-arid environment observed by NOAA AVHRR imagery and spectral ground measurements.International Journal of Remote Sensing, 23, 3971-3990. |
[41] | Su YG, Li XR, Chen YW, Zhang ZS (2010). Photosynthetic characteristic of algal crusts in the desert area.Journal of Lanzhou University: Natural Sciences, 46, 1-5. (in Chinese with English abstract)[苏延桂, 李新荣, 陈应武, 张志山 (2010). 不同演替序列的藻结皮净光合速率日变化特征. 兰州大学学报: 自然科学版, 46, 1-5.] |
[42] | Tian GQ, Bai XL, Xu J, Zhang JS (2005). Morphological and structural properties as well as adaptation of mosses in microbiotic soil crusts on fixed dunes.Journal of Desert Research, 25, 249-255. (in Chinese with English abstract)[田桂泉, 白学良, 徐杰, 张建升 (2005). 固定沙丘生物结皮层藓类植物形态结构及其适应性研究. 中国沙漠, 25, 249-255.] |
[43] | Tong QX, Zhang B, Zheng LF (2006). Hyperspectral Remote Sensing. Higher Education Press,Beijing. 246-283. (in Chinese)[童庆禧, 张兵, 郑兰芬 (2006). 高光谱遥感——原理,技术与应用. 高等教育出版社, 北京. 246-283.] |
[44] | Ustin SL, Valko PG, Kefauver SC, Santos MJ, Zimpfer JF, Smith SD (2009). Remote sensing of biological soil crust under simulated climate change manipulations in the Mojave Desert.Remote Sensing of Environment, 113, 317-328. |
[45] | Wang XQ, Zhang YM, Wang YC, Wan JP, Xu M (2006). Eco-environment change of biological crusts on longitudinal dune surface in Gurbantunggut Desert.Journal of Desert Research, 26, 711-716. (in Chinese with English abstract)[王雪芹, 张元明, 王远超, 万金平, 徐曼 (2006). 古尔班通古特沙漠生物结皮小尺度分异的环境特征. 中国沙漠, 26, 711-716.] |
[46] | Wang XQ, Zhang YM, Zhang WM, Yang DL (2011). The aerodynamic roughness length of biological soil crusts: A case study of Gurbantunggut Desert.Acta Ecologica Sinica, 31, 4153-4160. (in Chinese with English abstract)[王雪芹, 张元明, 张伟民, 杨东亮 (2011). 生物结皮粗糙特征——以古尔班通古特沙漠为例. 生态学报, 31, 4153-4160.] |
[47] | Wang Y, Zhao YG, Yao CZ, Zhang PP (2014). Surface roughness characteristics of biological soil crusts and its influencing factors in the Hilly Loess Plateau region, China.Chinese Journal of Applied Ecology, 25, 647-656. (in Chinese with English abstract)[王媛, 赵允格, 姚春竹, 张培培 (2014). 黄土丘陵区生物土壤结皮表面糙度特征及影响因素. 应用生态学报, 25, 647-656.] |
[48] | Weber B, Hill J (2016). Remote sensing of biological soil crusts at different scales. In: Weber B, Büdel B, Belnap J eds. Biological Soil Crusts: An Organizing Principle in Drylands. Springer, Cham,Switzerland. 215-232. |
[49] | Weber B, Olehowski C, Knerr T, Hill J, Deutschewitz K, Wessels DCJ, Eitel B, Büdel B (2008). A new approach for mapping of biological soil crusts in semidesert areas with hyperspectral imagery.Remote Sensing of Environment, 112, 2187-2201. |
[50] | Wu L (2012). On the Formation Process of Lichen Soil Crust and Their Photosynthetic Physiology. PhD dissertation, Institute of Hydrobiology, Chinese Academy of Sciences, Beijing. 23-38. (in Chinese with English abstract)[吴丽 (2012). 地衣结皮形成的生物学过程及其光合生理研究. 博士学位论文, 中国科学院水生生物研究所, 北京. 23-38.] |
[51] | Xu J, Bai XL, Tian GQ, Huang J, Zhang D, Feng XH (2005). Ecological function of mosses in biotic crusts on fixed dunes on Tengger Desert and its relation with soil factors.Journal of Desert Research, 25, 234-242. (in Chinese with English abstract)[徐杰, 白学良, 田桂泉, 黄洁, 张镝, 冯晓慧 (2005). 腾格里沙漠固定沙丘结皮层藓类植物的生态功能及与土壤环境因子的关系. 中国沙漠, 25, 234-242.] |
[52] | Yao DL, Li JC, Du Y, Li XR, Zhang JG (2002). A land-atmosphere coupling model and mechanism of the crust layer and evolution of canopy in artificial vegetation area of Shapoto.Acta Ecologica Sinica, 22, 452-460. (in Chinese with English abstract)[姚德良, 李家春, 杜岳, 李新荣, 张景光 (2002). 沙坡头人工植被区陆气耦合模式及生物结皮与植被演变的机理研究. 生态学报, 22, 452-460.] |
[53] | Zaady E, Bouskila A (2002). Lizard burrows association with successional stage of biological soil crusts in an arid sandy region.Journal of Arid Environments, 50, 235-246. |
[54] | Zaady E, Karnieli A, Shachak M (2007). Applying a field spectroscopy technique for assessing successional trends of biological soil crusts in a semi-arid environment.Journal of Arid Environments, 70, 463-477. |
[55] | Zaady E, Kuhn U, Wilske B, Sandoval-Soto L, Kesselmeier J (2000). Patterns of CO2 exchange in biological soil crusts of successional age.Soil Biology & Biochemistry, 32, 959-966. |
[56] | Zhang J, Zhang YM (2014). Diurnal variations of chlorophyll fluorescence and CO2 exchange of biological soil crusts in different successional stages in the Gurbantunggut Desert of northwestern China.Ecological Research, 29, 289-298. |
[57] | Zhang YM, Pan HX, Pan BR (2004). Distribution characteristics of biological crust on sand dune surface in Gurbantunggut Desert, Xinjiang.Journal of Soil and Water Conservation, 18(4), 61-64. (in Chinese with English abstract)[张元明, 潘惠霞, 潘伯荣 (2004). 古尔班通古特沙漠不同地貌部位生物结皮的选择性分布. 水土保持学报, 18(4), 61-64.] |
[58] | Zhao Y, Jia RL, Teng JL, Jia WX, Gao YH (2017). Response of biological soil crust coverage to wind-blown sand burial during the succession of the artificially sand-fixing vegetation in the Tengger Desert, Northern China.Acta Ecologica Sinica, 37, 6138-6148. (in Chinese with English abstract)[赵芸, 贾荣亮, 滕嘉玲, 贾文雄, 高艳红 (2017). 腾格里沙漠人工固沙植被演替生物土壤结皮盖度对沙埋的响应. 生态学报, 37, 6138-6148.] |
[59] | Zhao YG, Xu MX, Belnap J (2010). Response of biocrusts’ photosynthesis to environmental factors: A possible explanation of the spatial distribution of biocrusts in the Hilly Loess Plateau region of China.Acta Ecologica Sinica, 17, 4668-4675. (in Chinese with English abstract)[赵允格, 许明祥, Jayne Belnap (2010). 生物结皮光合作用对光温水的响应及其对结皮空间分布格局的解译——以黄土丘陵区为例. 生态学报, 17, 4668-4675.] |
[60] | Zhao YS, Chen DM, Yang LM, Zhou XT, Li XM, Tang WZ (2003). Principle and Method of Analysis of Remote Sensing Application. Science Press, Beijing. 366-409. (in Chinese)[赵英时, 陈冬梅, 杨立明, 周心铁, 李小文, 唐文周 (2003). 遥感应用分析原理与方法. 科学出版社, 北京. 366-409.] |
[1] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[2] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[3] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[4] | 陈雪萍, 赵学勇, 张晶, 王瑞雄, 卢建男. 基于地理探测器的科尔沁沙地植被NDVI时空变化特征及其驱动因素[J]. 植物生态学报, 2023, 47(8): 1082-1093. |
[5] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[6] | 张敏, 桑英, 宋金凤. 水培富贵竹的根压及其影响因素[J]. 植物生态学报, 2023, 47(7): 1010-1019. |
[7] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[8] | 李卫英, 章正仁, 辛雅萱, 王飞, 辛培尧, 高洁. 云南松、思茅松和卡西亚松天然种群间的针叶表型变异[J]. 植物生态学报, 2023, 47(6): 833-846. |
[9] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[10] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[11] | 张潇, 武娟娟, 贾国栋, 雷自然, 张龙齐, 刘锐, 吕相融, 代远萌. 降水控制对侧柏液流变化特征及其水分来源的影响[J]. 植物生态学报, 2023, 47(11): 1585-1599. |
[12] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
[13] | 缪丽娟, 张宇阳, 揣小伟, 包刚, 何昱, 朱敬雯. 亚洲旱区草地NDVI对气候变化的响应及滞后效应[J]. 植物生态学报, 2023, 47(10): 1375-1385. |
[14] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[15] | 朱明阳, 林琳, 佘雨龙, 肖城材, 赵通兴, 胡春相, 赵昌佑, 王文礼. 云南轿子山不同海拔急尖长苞冷杉径向生长动态及其低温阈值[J]. 植物生态学报, 2022, 46(9): 1038-1049. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19