植物生态学报 ›› 2017, Vol. 41 ›› Issue (2): 219-230.DOI: 10.17521/cjpe.2016.0161
刘盟盟1, 贾丽1, 程路芸1, 张洪芹1, 臧晓琳1, 宝音陶格涛2, 张汝民1, 高岩1,*()
收稿日期:
2016-05-07
接受日期:
2016-12-25
出版日期:
2017-02-10
发布日期:
2017-03-16
通讯作者:
高岩
作者简介:
* 通信作者Author for correspondence (E-mail:基金资助:
Meng-Meng LIU1, Li JIA1, Lu-Yun CHENG1, Hong-Qin ZHANG1, Xiao-Lin ZANG1, Taogetao BAOYIN2, Ru-Min ZHANG1, Yan GAO1,*()
Received:
2016-05-07
Accepted:
2016-12-25
Online:
2017-02-10
Published:
2017-03-16
Contact:
Yan GAO
About author:
KANG Jing-yao(1991-), E-mail: 摘要:
为了探讨放牧过程中冷蒿(Artemisia frigida)酚酸及其抗氧化酶活性对牲畜采食和践踏损伤的响应, 该研究对盆栽冷蒿幼苗枝叶采用不同程度(轻度、中度和重度)机械损伤的方式模拟放牧强度, 利用高效液相色谱技术测定了机械损伤处理6 h后冷蒿枝叶和根系9种酚酸含量的变化; 同时对多酚氧化酶(PPO)、苯丙氨酸氨裂合酶(PAL)和抗氧化酶活性进行了测定, 分析了酚酸含量与PPO和PAL活性之间的相关性。结果表明: 轻度机械损伤可以诱导冷蒿枝叶和根系中PPO、PAL和抗氧化酶迅速做出响应, 活性显著升高; 随着机械损伤强度增加, 冷蒿枝叶游离态咖啡酸、丁香酸、阿魏酸和肉桂酸含量显著增加, 与对照相比中度损伤处理分别增加了150.4%、93.5%、154.4%和121.7%, 与PAL活性呈正相关关系; 游离态绿原酸和邻苯二酚含量减少, 与对照相比重度损伤处理后降低了91.1%和69.3%, 与PPO活性呈负相关关系; 与对照相比重度损伤处理下没食子酸和原儿茶酸分别增加了280.6%和215.7%。随损伤强度增加, 根系中9种游离态酚酸含量均显著增加, 其含量均小于叶片。机械损伤导致冷蒿枝叶中游离态和结合态酚酸总量增加, 根系中结合态酚酸减少。上述结果表明机械损伤首先诱导冷蒿体内应激防御系统中抗氧化酶和酚酸合成关键酶活性升高, 然后促进抗氧化物质酚酸的积累, 调节冷蒿植株内木质素合成以及醌类和单宁形成, 增强冷蒿抗机械损伤能力和提高冷蒿的耐牧性。
刘盟盟, 贾丽, 程路芸, 张洪芹, 臧晓琳, 宝音陶格涛, 张汝民, 高岩. 冷蒿酚酸及其抗氧化防御酶活性对机械损伤的响应. 植物生态学报, 2017, 41(2): 219-230. DOI: 10.17521/cjpe.2016.0161
Meng-Meng LIU, Li JIA, Lu-Yun CHENG, Hong-Qin ZHANG, Xiao-Lin ZANG, Taogetao BAOYIN, Ru-Min ZHANG, Yan GAO. Responses of phenolic acid and defensive enzyme activities to mechanical damage in Artemisia frigida. Chinese Journal of Plant Ecology, 2017, 41(2): 219-230. DOI: 10.17521/cjpe.2016.0161
|
表一 机械损伤对冷蒿枝叶酚酸含量(μg·g-1fresh mass)的影响(平均值±标准误差,n=5)
Table 1 Effects of mechanical damage on the content of phenolic acids (μg·g-1fresh mass) in the leaves of Artemisia frigid (mean±SE, n=5)
|
|
表2 机械损伤对冷蒿根系酚酸含量(μg·g-1fresh mass)的影响(平均值±标准误差, n=5)
Table 2 Effects of mechanical damage on the content of phenolic acids (μg·g-1fresh mass) in the roots of Artemisia frigid (mean±SE, n=5)
|
图1 机械损伤对冷蒿苯丙氨酸氨裂合酶活性的影响(平均值±标准误差, n = 5)。不同大写字母表示冷蒿枝叶的差异显著, 不同小写字母表示根系的差异显著(p < 0.05, 根据LSD测验)。*, p < 0.05; **, p < 0.01。ns, 不显著。CK, 对照; LD为轻度损伤; MD为中度损伤; HD为重度损伤。
Fig. 1 Effect of mechanical damage on the activity of phenylalanine ammonia-lyase (PAL) in Artemisia frigid (mean ± SE, n = 5). Different uppercase letters indicate significant differences of leaves and different lowercase letters denote statistically significant differences of roots from Artemisia frigida (p < 0.05, according to LSD test). *, p < 0.05; **, p < 0.01; ns, non-significant. CK, control; LD, light damaging; MD, moderate damaging; HD, heavy damaging.
图2 机械损伤对冷蒿多酚氧化酶活性的影响(平均值±标准误差, n = 5)。不同大写字母表示冷蒿枝叶的差异显著, 不同小写字母表示根系的差异显著(p < 0.05, 根据LSD测验)。*, p < 0.05; **, p < 0.01。ns, 不显著。CK, 对照; LD为轻度损伤; MD为中度损伤; HD为重度损伤。
Fig. 2 Effect of mechanical damage on the activity of polyphenol oxidase (PPO) in Artemisia frigid (mean ± SE, n = 5). Different uppercase letters indicate significant differences of leaves and different lowercase letters denote statistically significant differences of roots from Artemisia frigida (p < 0.05, according to LSD test). *, p < 0.05; **, p <<0.01; ns, non-significant. CK, control; LD, light damaging; MD, moderate damaging; HD, heavy damaging.
图3 机械损伤对冷蒿抗氧化酶活性的影响(平均值±标准误差, n = 5)。不同大写字母表示冷蒿枝叶的差异显著, 不同小写字母表示根系的差异显著(p < 0.05, 根据LSD测验)。*, p < 0.05; **, p < 0.01。ns, 不显著。CK, 对照; LD为轻度损伤; MD为中度损伤; HD为重度损伤。
Fig. 3 Effect of mechanical damage on activity of antioxidant enzyme in Artemisia frigid (mean ± SE, n = 5). Different uppercase letters indicate significant differences of leaves and different lowercase letters denote statistically significant differences of roots from Artemisia frigida (p < 0.05, according to LSD test). *, p < 0.05; **, p < 0.01; ns, non-significant. CK, control; LD, light damaging; MD, moderate damaging; HD, heavy damaging.
酶 Enzyme | 没食子酸 Gallic | 原儿茶酸 Protocatechuic | 绿原酸 Chlorogenic | 邻苯二酚 Pyrocatechol | 咖啡酸 Caffeic | 丁香酸 Syringic | 对香豆酸 P-coumaric | 阿魏酸 Ferulic | 肉桂酸 Cinnamic | 合计 Sum | |
---|---|---|---|---|---|---|---|---|---|---|---|
游离酚酸 Free phenolic acid | PPO | 0.968** | 0.861** | -0.835** | -0.871** | 0.548 | 0.556 | -0.194 | 0.723* | 0.559 | 0.831** |
PAL | 0.859** | 0.763** | -0.785** | -0.793** | 0.641* | 0.531 | -0.069 | 0.690* | 0.688* | 0.752** | |
结合酚酸 Bounded phenolic acid | PPO | -0.635* | 0.564 | 0.670* | 0.742* | -0.493 | -0.050 | 0.579* | 0.487 | 0.480 | 0.559 |
PAL | -0.646* | 0.576* | 0.413 | 0.542 | -0.489 | 0.126 | 0.572 | 0.551 | 0.617* | 0.558 |
表3 冷蒿枝叶酚酸含量与酶活性之间相关性分析
Table 3 Correlation analysis between the content of phenolic acids and related enzyme activities in the leaves of Artemisia frigid
酶 Enzyme | 没食子酸 Gallic | 原儿茶酸 Protocatechuic | 绿原酸 Chlorogenic | 邻苯二酚 Pyrocatechol | 咖啡酸 Caffeic | 丁香酸 Syringic | 对香豆酸 P-coumaric | 阿魏酸 Ferulic | 肉桂酸 Cinnamic | 合计 Sum | |
---|---|---|---|---|---|---|---|---|---|---|---|
游离酚酸 Free phenolic acid | PPO | 0.968** | 0.861** | -0.835** | -0.871** | 0.548 | 0.556 | -0.194 | 0.723* | 0.559 | 0.831** |
PAL | 0.859** | 0.763** | -0.785** | -0.793** | 0.641* | 0.531 | -0.069 | 0.690* | 0.688* | 0.752** | |
结合酚酸 Bounded phenolic acid | PPO | -0.635* | 0.564 | 0.670* | 0.742* | -0.493 | -0.050 | 0.579* | 0.487 | 0.480 | 0.559 |
PAL | -0.646* | 0.576* | 0.413 | 0.542 | -0.489 | 0.126 | 0.572 | 0.551 | 0.617* | 0.558 |
酶 Enzyme | 没食子酸 Gallic | 原儿茶酸 Protocatechuic | 绿原酸 Chlorogenic | 邻苯二酚 Pyrocatechol | 咖啡酸 Caffeic | 丁香酸 Syringic | 对香豆酸 P-coumaric | 阿魏酸 Ferulic | 肉桂酸 Cinnamic | 合计 Sum | |
---|---|---|---|---|---|---|---|---|---|---|---|
游离酚酸 Free phenolic acids | PPO | 0.974** | 0.953** | 0.782** | 0.861** | 0.113 | 0.696* | 0.797** | 0.933** | 0.711** | 0.933** |
PAL | 0.678* | 0.774** | 0.478 | 0.511 | 0.254 | 0.346 | 0.483 | 0.618* | 0.473 | 0.622* | |
结合酚酸 Bounded phenolic acids | PPO | -0.757** | -0.581* | -0.977** | -0.912** | 0.419 | 0.772** | -0.938** | -0.611* | -0.529 | -0.709** |
PAL | -0.540 | -0.465 | -0.725** | -0.561 | 0.106 | 0.425 | -0.789** | -0.635* | -0.544 | -0.689* |
表4 冷蒿根系酚酸含量与酶活性之间相关性分析
Table 4 Correlation analysis between the content of phenolic acids and related enzyme activities in the roots of Artemisia frigid
酶 Enzyme | 没食子酸 Gallic | 原儿茶酸 Protocatechuic | 绿原酸 Chlorogenic | 邻苯二酚 Pyrocatechol | 咖啡酸 Caffeic | 丁香酸 Syringic | 对香豆酸 P-coumaric | 阿魏酸 Ferulic | 肉桂酸 Cinnamic | 合计 Sum | |
---|---|---|---|---|---|---|---|---|---|---|---|
游离酚酸 Free phenolic acids | PPO | 0.974** | 0.953** | 0.782** | 0.861** | 0.113 | 0.696* | 0.797** | 0.933** | 0.711** | 0.933** |
PAL | 0.678* | 0.774** | 0.478 | 0.511 | 0.254 | 0.346 | 0.483 | 0.618* | 0.473 | 0.622* | |
结合酚酸 Bounded phenolic acids | PPO | -0.757** | -0.581* | -0.977** | -0.912** | 0.419 | 0.772** | -0.938** | -0.611* | -0.529 | -0.709** |
PAL | -0.540 | -0.465 | -0.725** | -0.561 | 0.106 | 0.425 | -0.789** | -0.635* | -0.544 | -0.689* |
[1] | Adom KK, Liu RH (2002). Antioxidant activity of grains.Journal of Agricultural and Food Chemistry, 50, 6182-6187. |
[2] | Agrawal AA (2001). Phenotypic plasticity in the interaction and evolution of species.Science, 294, 321-326. |
[3] | Baque MA, Lee EJ, Paek KY (2010). Medium salt strength induced changes in growth, physiology and secondary metabolite contentin adventitious roots of Morinda citrifolia: The role of antioxidant enzymes and phenylalanine ammonia lyase.Plant Cell Reports, 29, 685-694. |
[4] | Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Analytical Biochemistry, 72, 248-254. |
[5] | Brandolini A, Castoldi P, Plizzari L, Hidalgo A (2013). Phenolic acids composition, total polyphenols content and antioxidant activity of Triticum monococcum, Triticum turgidum and Triticum aestivum: A two-years evaluation.Journal of Cereal Science, 58, 123-131. |
[6] | Campos-Vargas R, Saltveit ME (2002). Involvement of putative chemical wound signals in the induction of phenolic metabolism in wounded lettuce.Physiologia Plantarum, 114, 73-84. |
[7] | Chaman ME, Copaja SV, Argandoña VH (2003). Relationships between salicylic acid content, phenylalanine ammonialyase (PAL) activity, and resistance of barley to aphid infestation.Journal of Agricultural and Food Chemistry, 51, 2227-2231. |
[8] | Dicke M, van Poecke RM, de Boer JG (2003). Inducible indirect defence of plants: From mechanisms to ecological functions.Basic and Applied Ecology, 4, 27-42. |
[9] | Dixon RA, Paiva NL (1995). Stress induced phenylpropanoid metabolism.Plant Cell, 7, 1085-1097. |
[10] | Fu JM, Huang BG (2001). Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress.Environmental and Experimental Botany, 45, 105-114. |
[11] | Giannopolitis CN, Ries SK (1977). Superoxide dismutases I. Occurrence in higher plants.Plant Physiology, 59, 309-314. |
[12] | Gill SS, Tuteja N (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants.Plant Physiology and Biochemistry, 48, 909-930. |
[13] | Gogoi R, Singh DV, Srivastava KD (2001). Phenols as a biochemical basis of resistance in wheat against Karnal bunt.Plant Pathology, 50, 470-476. |
[14] | Haruta M, Pedersen JA, Constabel CP (2001). Polyphenol oxidase and herbivore defense in trembling aspen (Populus tremuloides): cDNA cloning, expression, and potential substrates.Physiologia Plantarum, 112, 552-558. |
[15] | Hu ZH, Yang D, Shen YB (2009). Difference of phenolic contents in leaves of Populus simonii × P. pyramidalis “Opera 8277” cuttings induced by various damages. Acta Botanica Boreali-Occidentalia Sinica, 29, 332-337. (in Chinese with English abstract)[胡增辉, 杨迪, 沈应柏 (2009). 不同损伤形式诱导合作杨叶片中酚类物质含量的差异. 西北植物学报, 29, 332-337.] |
[16] | Jiang Y, Joyce DC (2003). ABA effects on ethylene production, PAL activity, anthocyanin and phenolic contents of strawberry fruit.Plant Growth Regulation, 39, 171-174. |
[17] | Kessler A, Baldwin IT (2002). Plant responses to insect herbivory: The emerging molecular analysis.Annual Review of Plant Biology, 53, 299-328. |
[18] | Kestring D, Menezes LCCR, Tomaz CA, Lima G, Rossi MN (2009). Relationship among phenolic contents, seed predation, and physical seed traits in Mimosa bimucronata plants.Journal of Plant Biology, 52, 569-576. |
[19] | Koussevitzky S, Ne’eman E, Harel E (2004). Import of polyphenol oxidase by chloroplasts is enhanced by methyl jasmonate.Planta, 219, 412-419. |
[20] | Kováčik J, Klejdus B, Hedbavny J, Bačkor M (2010). Effect of copper and salicylic acid on phenolic metabolites and free amino acids in Scenedesmus quadricauda (Chlorophyceae).Plant Science, 178, 307-311. |
[21] | Lachman J, Amouz K, Šulc M, Orsák M, Pivec V, Hejtmánková A, Dvorák P, Cepl J (2009). Cultivar differences of total anthocyanins and anthocyanidins in red and purple- fleshed potatoes and their relation to antioxidant activity.Food Chemistry, 114, 836-843. |
[22] | Latha P, Anand T, Ragupathi N, Prakasam V, Samiyappan R (2009). Antimicrobial activity of plant extracts and induction of systemic resistance in tomato plants by mixtures of PGPR strains and Zimmu leaf extract against Alternaria solani.Biological Control, 50, 85-93. |
[23] | Li YQ, Sun YJ, Zhang TH, Zhao AF, Lian J (2011). Structural characteristics of Artemisia frigid community at different succession stages in Horqin Sandy Land.Chinese Journal of Applied Ecology, 22, 1725-1730. (in Chinese with English abstract)[李衍青, 孙英杰, 张铜会, 赵爱芬, 连杰 (2011). 科尔沁沙地不同演替阶段冷蒿群落的结构特征. 应用生态学报, 22, 1725-1730.] |
[24] | Lin KM, Ye FM, Lin Y, Li QS (2010). Research advances of phenolic functional mechanisms in soils and plants.Chinese Journal of Eco-Agriculture, 18, 1130-1137. (in Chinese with English abstract)[林开敏, 叶发茂, 林艳, 李卿叁 (2010). 酚类物质对土壤和植物的作用机制研究进展. 中国生态农业学报, 18, 1130-1137.] |
[25] | Liu NN, Tian QY, Zhang WH (2014). Comparison of adaptive strategies to phosphorus-deficient soil between dominant species Artemisia frigida and Stipa krylovii in typical steppe of Nei Mongol.Chinese Journal of Plant Ecology, 38, 905-915. (in Chinese with English abstract)[刘娜娜, 田秋英, 张文浩 (2014). 内蒙古典型草原优势种冷蒿和克氏针茅对土壤低磷环境适应策略的比较. 植物生态学报, 38, 905-915.] |
[26] | Liu R, Wang ZY, Li TT, Wang F, An J (2014). The role of chitosan in polyphenols accumulation and induction of defense enzymes in Pinus koraiensis seedlings.Chinese Journal of Plant Ecology, 38, 749-756. (in Chinese with English abstract)[刘冉, 王振宇, 李婷婷, 王芳, 安静 (2014). 壳聚糖对红松幼苗多酚积累和抗氧化防御酶的诱导作用. 植物生态学报, 38, 749-756.] |
[27] | Matkowski A (2006). Plant Phenolic Metabolites as Antioxidants and Mutagenesis Inhibitors. IOS Press, Amsterdam. |
[28] | Meng JF, Fang YL, Qin MY, Zhuang XF, Zhang ZW (2012). Varietal differences among the phenolic profiles and antioxidant properties of four cultivars of spine grape (Vitis davidii Foex) in Chongyi County (China).Food Chemistry, 134, 2049-2056. |
[29] | Nicholson RL, Hammerschmidt R (1992). Phenolic compounds and their role in disease resistance.Annual Review of Phytopathology, 30, 369-389. |
[30] | Nordberg J, Arner ES (2001). Reactive oxygen species, antioxidants, and the mammalian thioredoxin system.Free Radical Biology and Medicine, 31, 1287-1312. |
[31] | Paul S, Gooding CB (2001). Molecular cloning and characterization of banana fruit polyphenol oxidase.Planta, 213, 748-757. |
[32] | Puthoff DP, Smigocki AC (2007). Insect feeding-induced differential expression of Beta vulgaris root genes and their regulation by defense-associated signals.Plant Cell Reports, 26, 71-84. |
[33] | Robbins RJ (2003). Phenolic acids in foods: An overview of analytical methodology.Journal of Agricultural and Food Chemistry, 51, 2866-2887. |
[34] | Sharma P, Jha AB, Dubey RS, Pessarakli M (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions.Journal of Botany, 2012, 1-26. |
[35] | Tan BK, Harris ND (1995). Maillard reaction products inhibit apple polyphenoloxidase.Food Chemistry, 53, 267-273. |
[36] | van Poecke RMP, Dicke M (2004). Indirect defence of plants against herbivores: Using Arabidopsis thaliana as a model plant.Plant Biology, 6, 387-401. |
[37] | Wang J, Yang C, Han WQ, Liu ML (2003). Effects on water- soluble carbohydrate of Artemisia frigida under different defoliation intensities.Acta Ecologica Sinica, 23, 908-913. (in Chinese with English abstract)[王静, 杨持, 韩文权, 刘美玲 (2003). 刈割强度对冷蒿可溶性碳水化合物的影响. 生态学报, 23, 908-913.] |
[38] | Wang Q, Yan SC, Jin H, Wang YJ (2012). Systemic induction of defensive enzymes in needles of Larix gmelinii seedlings in wounded conditions.Journal of Northeast Forestry University, 40(9), 77-80. (in Chinese with English abstract)[王琪, 严善春, 金虎, 王艳军 (2012). 叶损伤对兴安落叶松防御酶活性的系统诱导. 东北林业大学学报, 40(9), 77-80.] |
[39] | Wang SP, Li YH, Wang YF, Chen ZZ (2001). Influence of different stocking rates on plant diversity of Artemisia frigida community in inner mongolia steppe.Acta Botanica Sinica, 43, 89-96. (in Chinese with English abstract)[汪诗平, 李永宏, 王艳芬, 陈佐忠 (2001). 不同放牧率对内蒙古冷蒿草原植物多样性的影响. 植物学报, 43, 89-96.] |
[40] | Wang W, Liu ZL, Hao DY, Liang CZ (1996). Research on the restoring succession of the degenerated grassland in Inner Mongolia II. Analysis of the restoring processes.Acta Phytoecologica Sinica, 20, 460-471. (in Chinese with English abstract)[王炜, 刘钟龄, 郝敦元, 梁存柱 (1996). 内蒙古草原退化群落恢复演替的研究II. 恢复演替时间进程的分析. 植物生态学报, 20, 460-471.] |
[41] | Winkel-Shirley B (1999). Evidence for enzyme complexes in the phenylpropanoid and flavonoid pathways.Physiologia Plantarum, 107, 142-149. |
[42] | Xu GH, Guan RF, Ye XQ, Chen JC, Liu DH (2008). Composition and distribution of phenolic acids in satsuma mandarin (Citrus unshiu Marc.) during maturity.Food Science, 29(2), 137-141. (in Chinese with English abstract)[徐贵华, 关荣发, 叶兴乾, 陈健初, 刘东红 (2008). 不同成熟期蜜桔中酚酸的组成与分布. 食品科学, 29(2), 137-141.] |
[43] | Yan SC, Yuan HE, Wang Q, Wang YJ (2010). Quantitative changes of phenolic acids in Larix gmelinii needles induced by leaf damage.Chinese Journal of Applied Ecology, 21, 1000-1006. (in Chinese with English abstract)[严善春, 袁红娥, 王琪, 王艳军 (2010). 叶损伤诱导兴安落叶松针叶中10种酚酸的变化. 应用生态学报, 21, 1000-1006.] |
[44] | Zhang JE, Liu WG, Chen JQ, Shi YC, Cai YF (2005). Effects of different cutting intensities on above- and underground growth of Stylosanthes guianensis.Chinese Journal of Applied Ecology, 16, 1740-1744. (in Chinese with English abstract)[章家恩, 刘文高, 陈景青, 施耀才, 蔡燕飞 (2005). 不同刈割强度对牧草地上部和地下部生长性状的影响. 应用生态学报, 16, 1740-1744.] |
[45] | Zhang RM, Wang YZ, Hou P, Wen GS, Gao Y (2010). Physiological responses to allelopathy of aquatic stem and leaf extract of Artemisia frigida in seedling of several pasture plants. Acta Ecologica Sinica, 30, 2197-2204. (in Chinese with English abstract)[张汝民, 王玉芝, 侯平, 温国胜, 高岩 (2010). 几种牧草幼苗对冷蒿茎叶水浸提液化感作用的生理响应. 生态学报, 30, 2197-2204.] |
[46] | Zhang RM, Zhang WG, Zuo ZJ, Li R, Wu JH, Gao Y (2014). Inhibition effects of volatile organic compounds from Artemisia frigida Willd. on the pasture grass intake by lambs.Small Ruminant Research, 121, 248-254. |
[47] | Zhao K, Baoyin T (2014). Effect of seasonal grazing use on productivity of grassland community.Chinese Journal of Grassland, 36(1), 109-115. (in Chinese with English abstract)[赵康, 宝音陶格涛 (2014). 季节性放牧利用对典型草原群落生产力的影响. 中国草地学报, 36(1), 109-115.] |
[48] | Zuo ZJ, Zhang RM, Wang Y, Wen GS, Hou P, Gao Y (2010). The composition of volatile organic compounds (VOCs) emitted from damaged Artemisia frigida Willd. plants and their effects on root growth and development of pasture plants. Acta Ecologica Sinica, 30, 5131-5139. (in Chinese with English abstract)[左照江, 张汝民, 王勇, 温国胜, 侯平, 高岩 (2010). 损伤冷蒿挥发性有机化合物(VOCs)成分分析及其对牧草根系生长发育的影响. 生态学报, 30, 5131-5139.] |
[1] | 余玉蓉, 吴浩, 高娅菲, 赵媛博, 李小玲, 卜贵军, 薛丹, 刘正祥, 武海雯, 吴林. 模拟氮沉降对鄂西南湿地泥炭藓生理及形态特征的影响[J]. 植物生态学报, 2023, 47(11): 1493-1506. |
[2] | 李崇玮, 柏新富, 陈国忠, 朱萍, 张淑婷, 侯玉平, 张兴晓. 不同恢复年限老参地土壤养分以及酚酸类代谢物含量差异[J]. 植物生态学报, 2021, 45(11): 1263-1274. |
[3] | 许红梅, 李进, 张元明. 水分条件对人工培养齿肋赤藓光化学效率及生理特性的影响[J]. 植物生态学报, 2017, 41(8): 882-893. |
[4] | 尹本丰, 张元明. 冻融过程对荒漠区不同微生境下齿肋赤藓渗透调节物含量和抗氧化酶活力的影响[J]. 植物生态学报, 2015, 39(5): 517-529. |
[5] | 朱婉芮, 汪其同, 刘梦玲, 王华田, 王延平, 张光灿, 李传荣. 酚酸和氮素交互作用下欧美杨107细根形态特征[J]. 植物生态学报, 2015, 39(12): 1198-1208. |
[6] | 刘娜娜,田秋英,张文浩. 内蒙古典型草原优势种冷蒿和克氏针茅对土壤低磷环境适应策略的比较[J]. 植物生态学报, 2014, 38(9): 905-915. |
[7] | 郭慧媛, 马元丹, 王丹, 左照江, 高岩, 张汝民, 王玉魁. 模拟酸雨对毛竹叶片抗氧化酶活性及释放绿叶挥发物的影响[J]. 植物生态学报, 2014, 38(8): 896-903. |
[8] | 刘冉, 王振宇, 李婷婷, 王芳, 安静. 壳聚糖对红松幼苗多酚积累和抗氧化防御酶的诱导作用[J]. 植物生态学报, 2014, 38(7): 749-756. |
[9] | 陈坚,李妮亚,刘强,钟才荣,黄敏,曾佳. NaCl处理下两种引进红树的光合及抗氧化防御能力[J]. 植物生态学报, 2013, 37(5): 443-453. |
[10] | 周帅, 林富平, 王玉魁, 沈应柏, 张汝民, 高荣孚, 高岩. 樟树幼苗机械损伤叶片对挥发性有机化合物及叶绿素荧光参数的影响[J]. 植物生态学报, 2012, 36(7): 671-680. |
[11] | 刘柿良, 马明东, 潘远智, 魏刘利, 何成相, 杨开茂. 不同光强对两种桤木幼苗光合特性和抗氧化系统的影响[J]. 植物生态学报, 2012, 36(10): 1062-1074. |
[12] | 王华田, 杨阳, 王延平, 姜岳忠, 王宗芹. 外源酚酸对欧美杨‘I-107’水培幼苗硝态氮吸收利用的影响[J]. 植物生态学报, 2011, 35(2): 214-222. |
[13] | 刘长成, 刘玉国, 郭柯. 四种不同生活型植物幼苗对喀斯特生境干旱的生理生态适应性[J]. 植物生态学报, 2011, 35(10): 1070-1082. |
[14] | 冯远娇, 金琼, 王建武. 机械损伤对Bt玉米化学防御的系统诱导效应[J]. 植物生态学报, 2010, 34(6): 695-703. |
[15] | 左照江, 张汝民, 王勇, 侯平, 温国胜, 高岩. 冷蒿挥发性有机化合物主要成分分析及其地上部分结构研究[J]. 植物生态学报, 2010, 34(4): 462-468. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19