植物生态学报 ›› 2014, Vol. 38 ›› Issue (9): 905-915.DOI: 10.3724/SP.J.1258.2014.00085
• 研究论文 • 下一篇
收稿日期:
2014-04-04
接受日期:
2014-07-10
出版日期:
2014-04-04
发布日期:
2014-09-22
通讯作者:
田秋英
基金资助:
LIU Na-Na1,2,TIAN Qiu-Ying1,*(),ZHANG Wen-Hao1
Received:
2014-04-04
Accepted:
2014-07-10
Online:
2014-04-04
Published:
2014-09-22
Contact:
TIAN Qiu-Ying
摘要:
为探究典型草原植物长期共存的生理生态机制, 以典型草原的优势物种克氏针茅(Stipa krylovii)和冷蒿(Artemisia frigida)为材料, 采用基质培养方法, 通过比较不同供磷浓度对二者生物量、根系形态、质子分泌、酸性磷酸酶和有机酸分泌以及磷吸收利用效率的影响, 探讨克氏针茅和冷蒿对土壤磷缺乏的适应策略。研究结果表明: 冷蒿主要通过根系分泌酸性磷酸酶和酸化根际来适应低磷环境; 而克氏针茅主要是通过根系分泌有机酸(主要是苹果酸)来适应土壤磷缺乏。在低磷条件下, 克氏针茅和冷蒿的磷吸收效率没有显著差异, 但克氏针茅的磷利用效率显著高于冷蒿。随着供磷浓度增加, 二者的磷吸收速率增加, 磷利用效率降低。在生物量、地上部分性状以及根系生长方面, 克氏针茅和冷蒿对磷供给的响应都表现先增长后降低的趋势; 克氏针茅的生物量在外源供0.25 mmol·L-1磷时达到最大, 而冷蒿的生物量在外源供0.50 mmol·L-1磷时达到最大, 表明冷蒿对磷的生理需求高于克氏针茅。因此, 克氏针茅和冷蒿具备各自不同的适应土壤有效磷缺乏的生理策略, 这可能是它们在土壤贫瘠的温带典型草原长期共存的重要机制。
刘娜娜,田秋英,张文浩. 内蒙古典型草原优势种冷蒿和克氏针茅对土壤低磷环境适应策略的比较. 植物生态学报, 2014, 38(9): 905-915. DOI: 10.3724/SP.J.1258.2014.00085
LIU Na-Na,TIAN Qiu-Ying,ZHANG Wen-Hao. Comparison of adaptive strategies to phosphorus-deficient soil between dominant species Artemisia frigida and Stipa krylovii in typical steppe of Nei Mongol. Chinese Journal of Plant Ecology, 2014, 38(9): 905-915. DOI: 10.3724/SP.J.1258.2014.00085
图1 冷蒿和克氏针茅在不同磷浓度处理下的生物量、根冠比、株高、分支数和分蘖数(平均值±标准误差, n = 4)。不同字母表示磷处理间差异显著(p < 0.05)。*表示相同磷浓度下物种之间差异显著(p < 0.05), **表示相同磷浓度下物种之间差异极显著(p < 0.01)。
Fig. 1 Biomass, root/shoot ratio, plant height, branch numbers and tiller numbers in Artemisia frigida and Stipa krylovii grown under varying concentrations of phosphorus (P) supply (mean ± SE, n = 4). Different letters indicate significant differences among phosphorus treatments (p < 0.05). * and ** indicate significant difference between species under the same phosphorus level at p < 0.05 and p < 0.01, respectively.
物种 Species | 供P浓度 P concentration (mmol·L-1) | 植株P浓度 P concentration (mg·g-1) | 植株P累积量 P accumulation (μg·plant-1) | 平均吸P速率Average P uptake rate (ng P·cm-1·d-1) | P利用效率 P utilization efficiency (mg·mg-1 P) | |||
---|---|---|---|---|---|---|---|---|
地上 Aboveground | 地下 Belowground | 地上 Aboveground | 地下 Belowground | |||||
冷蒿 Artemisia frigida | 0.00 | 1.52 ± 0.05d | 1.26 ± 0.04d | 151.07 ± 17.79c | 32.28 ± 2.07c | 5.25 ± 0.64c | 605.14 ± 8.49a | |
0.25 | 2.84 ± 0.25c | 2.88 ± 0.32c | 530.09 ± 35.03bc | 102.03 ± 13.25bc | 14.53 ± 2.97bc | 290.37 ± 20.45b | ||
0.50 | 3.63 ± 0.13b | 4.29 ± 0.35b | 850.36 ± 255.08b | 182.84 ± 2.35b | 19.27 ± 5.89b | 255.86 ± 103.43b | ||
5.00 | 7.17 ± 0.24a | 17.31 ± 0.67a | 1 348.18 ± 295.44a | 530.41 ± 97.69a | 73.14 ± 11.60a | 97.78 ± 4.22c | ||
克氏针茅 Stipa krylovii | 0.00 | 1.09 ± 0.09c** | 0.63 ± 0.06c** | 51.25 ± 5.23d** | 13.58 ± 2.82c** | 4.75 ± 0.38c | 1 076.84 ± 60.87a** | |
0.25 | 2.72 ± 0.29b | 2.59 ± 0.30b | 249.55 ± 5.43c** | 77.47 ± 9.99b | 25.20 ± 2.65b** | 251.52 ± 27.23b | ||
0.50 | 2.77 ± 0.23b* | 2.54 ± 0.24bc** | 263.18 ± 3.96b* | 88.49 ± 9.23b** | 29.70 ± 5.49b | 233.77 ± 7.14b | ||
5.00 | 4.19 ± 0.66a** | 14.92 ± 0.26a** | 275.19 ± 3.79a** | 295.33 ± 39.26a* | 61.80 ± 1.72a | 95.49 ± 8.54c |
表1 不同供磷(P)浓度下, 冷蒿和克氏针茅的植株P浓度、植株P累积量, 平均吸P速率、P利用效率(平均值±标准误差, n = 4)
Table 1 Phosphorus (P) concentration, P accumulation, average P uptake rate and P utilization efficiency in Artemisia frigida and Stipa krylovii under different concentrations of P supply (mean ± SE, n = 4)
物种 Species | 供P浓度 P concentration (mmol·L-1) | 植株P浓度 P concentration (mg·g-1) | 植株P累积量 P accumulation (μg·plant-1) | 平均吸P速率Average P uptake rate (ng P·cm-1·d-1) | P利用效率 P utilization efficiency (mg·mg-1 P) | |||
---|---|---|---|---|---|---|---|---|
地上 Aboveground | 地下 Belowground | 地上 Aboveground | 地下 Belowground | |||||
冷蒿 Artemisia frigida | 0.00 | 1.52 ± 0.05d | 1.26 ± 0.04d | 151.07 ± 17.79c | 32.28 ± 2.07c | 5.25 ± 0.64c | 605.14 ± 8.49a | |
0.25 | 2.84 ± 0.25c | 2.88 ± 0.32c | 530.09 ± 35.03bc | 102.03 ± 13.25bc | 14.53 ± 2.97bc | 290.37 ± 20.45b | ||
0.50 | 3.63 ± 0.13b | 4.29 ± 0.35b | 850.36 ± 255.08b | 182.84 ± 2.35b | 19.27 ± 5.89b | 255.86 ± 103.43b | ||
5.00 | 7.17 ± 0.24a | 17.31 ± 0.67a | 1 348.18 ± 295.44a | 530.41 ± 97.69a | 73.14 ± 11.60a | 97.78 ± 4.22c | ||
克氏针茅 Stipa krylovii | 0.00 | 1.09 ± 0.09c** | 0.63 ± 0.06c** | 51.25 ± 5.23d** | 13.58 ± 2.82c** | 4.75 ± 0.38c | 1 076.84 ± 60.87a** | |
0.25 | 2.72 ± 0.29b | 2.59 ± 0.30b | 249.55 ± 5.43c** | 77.47 ± 9.99b | 25.20 ± 2.65b** | 251.52 ± 27.23b | ||
0.50 | 2.77 ± 0.23b* | 2.54 ± 0.24bc** | 263.18 ± 3.96b* | 88.49 ± 9.23b** | 29.70 ± 5.49b | 233.77 ± 7.14b | ||
5.00 | 4.19 ± 0.66a** | 14.92 ± 0.26a** | 275.19 ± 3.79a** | 295.33 ± 39.26a* | 61.80 ± 1.72a | 95.49 ± 8.54c |
图2 不同供磷浓度对冷蒿和克氏针茅总根长、侧根长、主根长、比根长的影响(平均值±标准误差, n = 4)。不同字母表示磷处理间差异显著(p < 0.05)。*表示相同磷浓度下物种之间差异显著(p < 0.05), **表示相同磷浓度下物种之间差异极显著(p < 0.01)。
Fig. 2 Effects of different concentrations of phosphorus (P) supply on total root length, lateral root length, primary root length, and specific root length in Artemisia frigida and Stipa krylovii (mean ± SE, n = 4). Different letters indicate significant differences among treatments at p < 0.05. * and ** indicate significant differences between species under the same phosphorus levels at p < 0.05 and p < 0.01.
图3 不同供磷(P)浓度对冷蒿(A)和克氏针茅(B)根际酸化的影响。根系周围变黄色表明根际酸化, 紫色表明根际碱化。
Fig. 3 Effects of different concentrations of phosphorus (P) supply on rhizospheric acidification in Artemisia frigida (A) and Stipa krylovii (B). The yellow and purple around roots indicate acidification and alkalization, respectively, of the rhizosphere.
图4 不同供磷浓度下冷蒿和克氏针茅根系有机酸与酸性磷酸酶的分泌(平均值±标准误差, n = 4)。不同字母表示磷处理间差异显著(p < 0.05), *表示相同磷浓度下物种之间差异显著(p < 0.05); **表示相同磷浓度下物种之间差异极显著(p < 0.01)。
Fig. 4 Exudation of organic acid and acid phosphatase from roots of Artemisia frigida and Stipa krylovii under varying concentrations of phosphorus (P) supply (mean ± SE, n = 4). Different letters indicate significant differences among treatments (p < 0.05). * and ** indicate significant differences between species under the same phosphorus levels at p < 0.05 and p < 0.01, respectively.
[1] | Aerts R (1996). Nutrient resorption from senescing leaves of perennials: Are there general patterns? Journal of Ecology, 84, 597-608. |
[2] | Aerts R, Chapin III FS (2000). The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67. |
[3] |
Azizi T, Finnegan PM, Lambers H, Jost R (2013). Organ-specific phosphorus-allocation patterns and transcript profiles linked to phosphorus efficiency in two contrasting wheat genotypes. Plant, Cell & Environment, 37, 943-960.
DOI URL PMID |
[4] | Barber SA, Mackay AD (1986). Root growth and phosphorus and potassium uptake by two corn genotypes in the field. Fertilizer Research, 10, 217-230. |
[5] | Cao LM, Pan XH (2002). A preliminary study on the tolerant mechanism of rice (Oryza sativa L.) cultivars to low phosphorus. Acta Agronomica Sinica, 28, 260-264. (in Chinese with English abstract) |
[ 曹黎明, 潘晓华 (2002). 水稻耐低磷机理的初步研究. 作物学报, 28, 260-264.] | |
[6] |
Cheng LY, Bucciarelli B, Shen JB, Allan D, Vance CP (2011). Update on white lupin cluster root acclimation to phosphorus deficiency. Plant Physiology, 156, 1025-1032.
DOI URL PMID |
[7] |
Chen YF, Wang Y, Wu WH (2008). Membrane transporters for nitrogen, phosphate and potassium uptake in plants. Journal of Integrative Plant Biology, 50, 835-848.
DOI URL PMID |
[8] |
Delhaize E, Ryan PR, Randall PJ (1993). Aluminium tolerance in wheat ( Triticum aestivum L.) II. Aluminium-stimulated excretion of malic acid from root apices. Plant Physiology, 103, 695-702.
URL PMID |
[9] |
Fang Y, Xun F, Bai WM, Zhang WH, Li LH (2012). Long-term nitrogen addition leads to loss of species richness due to litter accumulation and soil acidification in a temperate steppe. PLoS ONE, 7(10), e47369.
DOI URL PMID |
[10] | Geng Y, Wu Y, He JS (2011). Relationship between leaf phosphorus concentration and soil phosphorus availability across Inner Mongolia grassland. Chinese Journal of Plant Ecology, 35, 1-8. (in Chinese with English abstract) |
[ 耿燕, 吴漪, 贺金生 (2011). 内蒙古草地叶片磷含量与土壤有效磷的关系. 植物生态学报, 35, 1-8.] | |
[11] | Gong XY, Chen Q, Dittert K, Taube F, Lin S (2011). Nitrogen, phosphorus and potassium nutritional status of semiarid steppe grassland in Inner Mongolia. Plant and Soil, 340, 265-278. |
[12] | Guo YJ, Ni Y, Han JG, Han L (2009). Effects of steppe cultivation and Alfalfa plantation on the availability of soil phosphorus. Journal of Soil and Water Conservation, 23, 88-92. (in Chinese with English abstract) |
[ 郭彦军, 倪郁, 韩建国, 韩龙 (2009). 开垦草原与种植紫花苜蓿对土壤磷素有效性的影响. 水土保持学报, 23, 88-92.] | |
[13] |
Hamburger D, Rezzonico E, MacDonald-Comber Petetot J, Somerville C, Poirier Y (2002). Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem. The Plant Cell, 14, 889-902.
URL PMID |
[14] |
Haran S, Logendra S, Seskar M, Bratanova M, Raskin I (2000) Characterization of Arabidopsis acid phosphatase promoter and regulation of acid phosphatase expression. Plant Physiology, 124, 615-626.
DOI URL PMID |
[15] | He XD, Cong PF, Gao YB, Lu JG, Wang HT, Xue PP, Zhang X (2006). Study on drought resistance of four herbs using pressure-volume curve. Acta Scientiarum Naturalium Universitatis Nankaiensis, 39(3), 16-22. (in Chinese with English abstract) |
[ 何兴东, 丛培芳, 高玉葆, 卢建国, 王海涛, 薛苹苹, 张旭 (2006). 利用压力-容积曲线研究四种草本植物的抗旱性. 南开大学学报(自然科学版), 39(3), 16-22.] | |
[16] |
Hill JO, Simpson RJ, Moore AD, Chapman DF (2006). Morphology and response of roots of pasture species to phosphorus and nitrogen nutrition. Plant and Soil, 286, 7-19.
DOI URL |
[17] |
Hinsinger P (2001). Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil, 237, 173-195.
DOI URL |
[18] |
Hodge A (2004). The plastic plant, root responses to heterogeneous supplies of nutrients. New Phytologist, 162, 9-24.
DOI URL |
[19] | Huang JY, Yuan ZY, Li LH (2009). Changes in [N], [P] and specific leaf area of green leaves of Leymus chinensis along nitrogen, phosphorus and water gradients. Chinese Journal of Plant Ecology, 33, 442-448. (in Chinese with English abstract) |
[ 黄菊莹, 袁志友, 李凌浩 (2009). 羊草绿叶氮、磷浓度和比叶面积沿氮、磷和水分梯度的变化. 植物生态学报, 33, 442-448.] | |
[20] |
Jones DL, Darrah PR (1994) Role of root derived organic acids in the mobilization of nutrients in the rhizosphere. Plant and Soil, 166, 247-257.
DOI URL |
[21] |
Lan M, Comerford NB, Fox TR (1995). Organic anions effect on phosphorus release from spodic horizons. Soil Science Society of America Journal, 59, 1745-1749.
DOI URL |
[22] | Li JH, Li ZQ (2002). Clonal morphological plasticity and biomass allocation pattern of Artemisia frigida and Potentilla acaulls under different grazing intensities. Acta Phytoecologica Sinica, 26, 435-440. (in Chinese with English abstract) |
[ 李金花, 李镇清 (2002). 不同放牧强度下冷蒿、星毛委陵菜的形态可塑性及生物量分配格局. 植物生态学报, 26, 435-440.] | |
[23] |
Liu Y, Mi GH, Chen FJ, Zhang JH, Zhang FS (2004). Rhizosphere effect and root growth of two maize ( Zea mays L.) genotypes with contrasting P efficiency at low P availability. Plant Science, 167, 217-223.
DOI URL |
[24] |
Lynch JP, Brown KM (2001). Topsoil foraging―an architect- ural adaptation of plants to low phosphorus availability. Plant and Soil, 237, 225-237.
DOI URL |
[25] |
Miller SS, Liu JQ, Allan DL, Menzhuber CJ, Fedorova M, Vance CP (2001). Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin. Plant Physiology, 127, 594-606.
URL PMID |
[26] |
Neumann G, Martinoia E (2002). Cluster roots―an under- ground adaptation for survival in extreme environments. Trends in Plant Science, 7, 162-167.
DOI URL PMID |
[27] |
Neumann G, Römheld V (1999). Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant and Soil, 211, 121-130.
DOI URL |
[28] |
Nuruzzaman M, Lambers H, Bolland MDA, Veneklaas EJ (2006). Distribution of carboxylates and acid phosphatase and depletion of different phosphorus fraction in the rhizosphere of a cereal and three grain legumes. Plant and Soil, 281, 109-120.
DOI URL |
[29] |
Playsted CWS, Johnston ME, Ramage CM, Edward DG Cawthray GR, Lambers H (2006). Functional significance of dauciform roots: exudation of carboxylates and acid phosphatase under phosphorus deficiency in Caustis blakei(Cyperaceae). New Phytologist, 170, 491-500.
DOI URL PMID |
[30] |
Poirier Y, Bucher M (2002). Phosphate transport and homeostasis in Arabidopsis. Arabidopsis Book, 1, e0024.
URL PMID |
[31] | Ramaekers L, Remans R, Rao MI, Blair WM, Vanderleyden J (2010). Strategies for improving phosphorus acquisition efficiency of crop plants. Fields Crop Research, 117, 169-176. |
[32] |
Ren HY, Xu ZW, Huang JH, Clark C, Chen SP, Han XG (2011). Nitrogen and water addition reduce leaf longevity of steppe species. Annals of Botany, 107, 145-155.
DOI URL |
[33] |
Richardson AE, Hocking PJ, Simpson RJ, George TS (2009). Plant mechanisms to optimize access to soil phosphorus. Crop and Pasture Science, 60, 124-143.
DOI URL |
[34] |
Rose TJ, Liu L, Wissuwa M (2013). Improving phosphorus efficiency in cereal crops: Is breeding for reduced grain phosphorus concentration part of the solution? Frontiers in Plant Science, 4, 1-6.
DOI URL PMID |
[35] | Ryan PR, Delhaize E, Jones D (2001). Function and mechanism of organic anion exudation from plant roots. Annual Review of Plant Physiology, 52, 527-560. |
[36] |
Schachtman DP, Reid RJ, Ayling SM (1998). Update on phosphorus uptake. Phosphorus uptake by plants: from soil to cell. Plant Physiology, 116, 447-453.
DOI URL PMID |
[37] | Shen JB, Zhang FS, Huang Q, Mao DR (1998). Determination of organic acids in root exudates by high performance li- quid chromatography. I. Development and assessment of chromatographic conditions for organic acid determina- tion. Pedosphere, 8, 97-104 |
[38] |
Tadano T, Sakai H (1991). Secretion of acid phosphatase by the roots of several crop species under phosphorus deficient conditions. Soil Science and Plant Nutrition, 37, 129-140.
DOI URL |
[39] |
Teng W, Deng Y, Chen XP, Xu XF, Chen RY, Lü Y, Zhao YY, Zhao XQ, He X, Li B, Tong YP, Zhang FS, Li ZS (2013). Characterization of root response to phosphorus supply from morphology to gene analysis in field-grown wheat. Journal of Experimental Botany, 64, 1403-1411.
DOI URL PMID |
[40] | Tomasi N, Kretzschmar T, Espen L, Weisskopf L, Fuglsang AT, Palmgren MG, Neumann G, Varanini Z, Pinton R, Martinoia E, Cesco S (2009). Plasma membrane H+- ATPase-dependent citrate exudation from cluster roots of phosphate-deficient white lupin. Plant, Cell & Environ- ment, 32, 465-475. |
[41] |
Vance CP, Uhde-Stone C, Allan DL (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 157, 423-447.
DOI URL |
[42] | Wang JL, Gao YB, Bai Y, Zhao NX (2005). A comparision of adaptive responses to PEG osmotic stress between Stipa grandis and S. krylovii. Acta Scientiarum Naturalium Universitatis Nankaiensis (Natural Science Edition), 38(4), 127-131. (in Chinese with English abstract) |
[ 王金龙, 高玉葆, 白宇, 赵念席 (2005). 大针茅(Stipa grandis)和克氏针茅(S. krylovii)对PEG渗透胁迫适应性反应的比较研究. 南开大学学报(自然科学版), 38(4), 127-131.] | |
[43] | Wang J, Yang C (2002). A study of cold resistance physiological characteristic of Artemisia frigida. Acta Scientiarum Naturalium Universitatis Neimongol, 33, 673-676. (in Chinese with English abstract) |
[ 王静, 杨持 (2002). 冷蒿抗寒生理特性的研究. 内蒙古大学学报(自然科学版), 33, 673-676.] | |
[44] | Wang SQ, Han XZ, Li XH, Yan J, Qiao YF (2010). Root morphology of soybean ( Glycine max L.) under phosphorus deficiency stress. System Sciences and Comprehensive Studies in Agriculture, 26(2), 193-196. (in Chinese with English abstract) |
[ 王树起, 韩晓增, 李晓慧, 严君, 乔云发 (2010). 缺磷胁迫下的大豆根系形态特征研究. 农业系统科学与综合研究, 26(2), 193-196.] | |
[45] |
Wasaki J, Omura M, Ando M, Shinano T, Osaki M, Tadano T (1999). Secreting portion of acid phosphatase in roots of Lupin ( Lupinus albus L.) and a key signal for the secretion from the roots. Soil Science and Plant Nutrition, 45, 937-945.
DOI URL |
[46] |
Wasaki J, Yamamura T, Shinano T, Osaki M (2003). Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiency. Plant and Soil, 248, 129-136.
DOI URL |
[47] |
Williamson LC, Ribrioux SPCP, Fitter AH, Leyser HMO (2001). Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiology, 126, 875-882.
DOI URL PMID |
[48] |
Yan F, Zhu YY, Müller C, Zörb C, Schubert S (2002). Adaptation of H+-Pumping and plasma membrane H+-ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiology, 129, 50-63.
DOI URL PMID |
[49] |
Yang HJ, Wu MY, Liu WX, Zhang Z, Zhang NL, Wan SQ (2011). Community structure and composition in response to climate change in a temperate steppe. Global Change Biology, 17, 452-465.
DOI URL |
[50] | Zhang H, Li X, Jiang FH, Lin GH, Du LH (2005). Effects of different water supply on the reproduction of Stipa krylovii and Artemisia frigida populations in degraded steppe. Acta Agrestia Sinica, 13(2), 106-110. (in Chinese with English abstract) |
[ 张昊, 李鑫, 姜凤和, 林国辉, 杜丽华 (2005). 水分对克氏针茅和冷蒿生殖生长的影响. 草地学报, 13(2), 106-110.] | |
[51] | Zhou HY (2002). Drought-resistant mechanism of two edificatos in Horqin Sandy Land of northeast China. Bulletin of Botanical Research, 22, 51-55. (in Chinese with English abstract) |
[ 周海燕 (2002). 中国东北科尔沁沙地两种建群植物的抗旱机理. 植物研究, 22, 51-55.] | |
[52] |
Zhou LL, Cao J, Zhang FS, Li L (2009). Rhizosphere acidification of faba bean, soybean and maize. Science of the Total Environment, 407, 4356-4362.
URL PMID |
[1] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[2] | 马炬峰, 辛敏, 徐陈超, 祝琬莹, 毛传澡, 陈欣, 程磊. 丛枝菌根真菌与氮添加对不同根形态基因型水稻氮吸收的影响[J]. 植物生态学报, 2021, 45(7): 728-737. |
[3] | 刘盟盟, 贾丽, 程路芸, 张洪芹, 臧晓琳, 宝音陶格涛, 张汝民, 高岩. 冷蒿酚酸及其抗氧化防御酶活性对机械损伤的响应[J]. 植物生态学报, 2017, 41(2): 219-230. |
[4] | 陈冠陶, 彭勇, 郑军, 李顺, 彭天驰, 邱细容, 涂利华. 氮添加对亚热带次生常绿阔叶林扁刺栲细根生物量、寿命和形态的短期影响[J]. 植物生态学报, 2017, 41(10): 1041-1050. |
[5] | 朱婉芮, 汪其同, 刘梦玲, 王华田, 王延平, 张光灿, 李传荣. 酚酸和氮素交互作用下欧美杨107细根形态特征[J]. 植物生态学报, 2015, 39(12): 1198-1208. |
[6] | 李悦, 刘颖慧, 申卫军, 徐霞, 田玉强. 内蒙古克氏针茅草原土壤异养呼吸对土壤温度和水分变化的响应[J]. 植物生态学报, 2014, 38(3): 238-248. |
[7] | 庞丽, 张一, 周志春, 丰忠平, 储德裕. 模拟氮沉降对低磷胁迫下马尾松不同家系根系分泌和磷效率的影响[J]. 植物生态学报, 2014, 38(1): 27-35. |
[8] | 沈章军, 孙庆业, 田胜尼. 铜尾矿自然定居白茅对体内氮磷的适时分配及叶片氮磷代谢调节酶活性动态[J]. 植物生态学报, 2012, 36(2): 159-168. |
[9] | 左照江, 张汝民, 王勇, 侯平, 温国胜, 高岩. 冷蒿挥发性有机化合物主要成分分析及其地上部分结构研究[J]. 植物生态学报, 2010, 34(4): 462-468. |
[10] | 张峰, 周广胜, 王玉辉. 内蒙古克氏针茅草原植物物候及其与气候因子关系[J]. 植物生态学报, 2008, 32(6): 1312-1322. |
[11] | 梁霞,刘爱琴,马祥庆,冯丽贞,陈友力. 磷胁迫对不同杉木无性系酸性磷酸酶活性的影响[J]. 植物生态学报, 2005, 29(1): 54-59. |
[12] | 李金花, 李镇清. 不同放牧强度下冷蒿(Artemisia frigida )、星毛委陵菜(Potentilla acaulis)的形态可塑[J]. 植物生态学报, 2002, 26(4): 435-440. |
[13] | 白永飞. 降水量季节分配对克氏针茅草原群落初级生产力的影响[J]. 植物生态学报, 1999, 23(2): 155-160. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19