植物生态学报 ›› 2014, Vol. 38 ›› Issue (1): 27-35.DOI: 10.3724/SP.J.1258.2014.00003
所属专题: 生态化学计量
庞丽1,2, 张一1,*(), 周志春1, 丰忠平3, 储德裕3
收稿日期:
2013-08-19
接受日期:
2013-12-16
出版日期:
2014-08-19
发布日期:
2014-01-15
通讯作者:
张一
作者简介:
*(E-mail:zhangyi.1978@163.com)PANG Li1,2, ZHANG Yi1,*(), ZHOU Zhi-Chun1, FENG Zhong-Ping3, CHU De-Yu3
Received:
2013-08-19
Accepted:
2013-12-16
Online:
2014-08-19
Published:
2014-01-15
Contact:
ZHANG Yi
摘要:
近年来大气氮(N)沉降的增加, 导致森林土壤中有效N含量增加、N:P发生改变, 研究N沉降对低磷(P)胁迫下林木根系分泌和P效率的影响具有重要意义。该文以马尾松(Pinus massoniana)家系作为试验材料, 设置模拟N沉降与同质低P (介质表层与深层均缺P)、异质低P (介质表层P丰富、深层缺P)耦合的二年生盆栽实验, 系统研究了模拟N沉降对低P胁迫下马尾松根系分泌性酸性磷酸酶(APase)活性、有机酸分泌以及P效率的影响。结果表明: (1)同质低P和异质低P下, 模拟N沉降均显著提高了植株N:P化学计量比、增加了P素的相对匮乏程度, 从而诱导根系增加了APase和有机酸的分泌, 而同质低P比异质低P下增加幅度更大, 其中有机酸分泌均与马尾松生长呈正相关关系, 而APase活性与P效率相关性较小; (2)同质低P下, N沉降虽然增加了根系分泌, 但未提高马尾松P素吸收和生长量, 其原因在于, 同质低P下植株N:P过高, 因而植株对N沉降敏感性低; 在异质低P下, 植株表现为N、P共同限制, 因而对N敏感性较高, N沉降增加了根系分泌, 同时提高了N和P吸收效率、增加了生物量; (3)马尾松根系分泌对模拟N沉降的响应存在较大的家系差异。同质低P下, 家系71×20的有机酸分泌和生物量对N沉降的响应幅度较大; 异质低P下, 家系36×29、71×20和73×23对N沉降的响应幅度较大。
庞丽, 张一, 周志春, 丰忠平, 储德裕. 模拟氮沉降对低磷胁迫下马尾松不同家系根系分泌和磷效率的影响. 植物生态学报, 2014, 38(1): 27-35. DOI: 10.3724/SP.J.1258.2014.00003
PANG Li, ZHANG Yi, ZHOU Zhi-Chun, FENG Zhong-Ping, CHU De-Yu. Effects of simulated nitrogen deposition on root exudates and phosphorus efficiency in Pinus massoniana families under low phosphorus stress. Chinese Journal of Plant Ecology, 2014, 38(1): 27-35. DOI: 10.3724/SP.J.1258.2014.00003
性状 Trait | 磷 P | 氮 N | 磷×氮 P × N | 家系 Family | 磷×家系 P × Family | 氮×家系 N × Family | 磷×氮×家系 P × N × Family |
---|---|---|---|---|---|---|---|
生物量 Biomass | 9.13** | 5.50* | 19.77*** | 6.26** | 0.28 | 4.12* | 5.18** |
酸性磷酸酶活性 APase activity | 93.84*** | 22.87*** | 12.66*** | 2.48 | 1.57 | 8.12*** | 3.22* |
有机酸分泌 Organic acid secretion | 2.60 | 120.90*** | 0.05 | 19.47*** | 4.58** | 16.55*** | 3.98* |
磷吸收效率 P absorption efficiency | 54.46*** | 5.14* | 26.95*** | 6.65*** | 0.79 | 3.96* | 3.89* |
磷利用效率 P utilization efficiency | 77.31*** | 4.38* | 3.88 | 2.81* | 2.09 | 2.35 | 0.42 |
氮吸收效率 N absorption efficiency | 3.89 | 35.51*** | 11.44*** | 5.75** | 0.49 | 1.76 | 2.26 |
氮利用效率 N utilization efficiency | 25.66*** | 129.2*** | 1.36 | 3.06* | 5.56** | 5.68** | 0.53 |
氮磷比 N:P | 59.02*** | 51.10*** | 10.68** | 2.54 | 0.52 | 0.83 | 0.57 |
表1 马尾松苗木生物量、根系分泌物和氮磷效率的方差分析结果
Table 1 ANOVA analysis results of biomass, root exudates, and N and P efficiency in Pinus massoniana seedlings
性状 Trait | 磷 P | 氮 N | 磷×氮 P × N | 家系 Family | 磷×家系 P × Family | 氮×家系 N × Family | 磷×氮×家系 P × N × Family |
---|---|---|---|---|---|---|---|
生物量 Biomass | 9.13** | 5.50* | 19.77*** | 6.26** | 0.28 | 4.12* | 5.18** |
酸性磷酸酶活性 APase activity | 93.84*** | 22.87*** | 12.66*** | 2.48 | 1.57 | 8.12*** | 3.22* |
有机酸分泌 Organic acid secretion | 2.60 | 120.90*** | 0.05 | 19.47*** | 4.58** | 16.55*** | 3.98* |
磷吸收效率 P absorption efficiency | 54.46*** | 5.14* | 26.95*** | 6.65*** | 0.79 | 3.96* | 3.89* |
磷利用效率 P utilization efficiency | 77.31*** | 4.38* | 3.88 | 2.81* | 2.09 | 2.35 | 0.42 |
氮吸收效率 N absorption efficiency | 3.89 | 35.51*** | 11.44*** | 5.75** | 0.49 | 1.76 | 2.26 |
氮利用效率 N utilization efficiency | 25.66*** | 129.2*** | 1.36 | 3.06* | 5.56** | 5.68** | 0.53 |
氮磷比 N:P | 59.02*** | 51.10*** | 10.68** | 2.54 | 0.52 | 0.83 | 0.57 |
性状 Trait | 同质低磷条件 Homogeneous low P condition | 异质低磷条件 Heterogeneous low P condition | |||||
---|---|---|---|---|---|---|---|
氮 N | 家系 Family | N ×家系 N × Family | 氮 N | 家系 Family | N ×家系 N × Family | ||
生物量 Biomass | 4.02 | 5.09** | 10.19*** | 15.89*** | 2.58 | 2.56 | |
酸性磷酸酶活性 APase activity | 20.93*** | 0.76 | 6.48** | 2.22 | 8.24*** | 1.67 | |
有机酸分泌 Organic acid secretion | 55.69*** | 9.61*** | 7.56*** | 66.67*** | 15.18*** | 13.79*** | |
磷吸收效率 P absorption efficiency | 9.08** | 4.18* | 4.45* | 18.19*** | 3.58* | 3.76* | |
磷利用效率 P utilization efficiency | 4.70* | 2.75 | 1.34 | 0.03 | 0.27 | 1.74 | |
氮吸收效率 N absorption efficiency | 6.46* | 3.02* | 3.97* | 29.35*** | 3.15* | 1.34 | |
氮利用效率 N utilization efficiency | 90.61*** | 1.80 | 3.64* | 45.88*** | 6.22** | 2.70 | |
氮磷比 N:P | 33.82*** | 1.61 | 0.64 | 19.01*** | 1.23 | 0.97 |
表2 同质和异质低磷条件下马尾松苗木生物量和根系分泌物的方差分析
Table 2 ANOVA results of biomass and root exudates in Pinus massoniana seedlings under homogeneous and heterogeneous low P conditions
性状 Trait | 同质低磷条件 Homogeneous low P condition | 异质低磷条件 Heterogeneous low P condition | |||||
---|---|---|---|---|---|---|---|
氮 N | 家系 Family | N ×家系 N × Family | 氮 N | 家系 Family | N ×家系 N × Family | ||
生物量 Biomass | 4.02 | 5.09** | 10.19*** | 15.89*** | 2.58 | 2.56 | |
酸性磷酸酶活性 APase activity | 20.93*** | 0.76 | 6.48** | 2.22 | 8.24*** | 1.67 | |
有机酸分泌 Organic acid secretion | 55.69*** | 9.61*** | 7.56*** | 66.67*** | 15.18*** | 13.79*** | |
磷吸收效率 P absorption efficiency | 9.08** | 4.18* | 4.45* | 18.19*** | 3.58* | 3.76* | |
磷利用效率 P utilization efficiency | 4.70* | 2.75 | 1.34 | 0.03 | 0.27 | 1.74 | |
氮吸收效率 N absorption efficiency | 6.46* | 3.02* | 3.97* | 29.35*** | 3.15* | 1.34 | |
氮利用效率 N utilization efficiency | 90.61*** | 1.80 | 3.64* | 45.88*** | 6.22** | 2.70 | |
氮磷比 N:P | 33.82*** | 1.61 | 0.64 | 19.01*** | 1.23 | 0.97 |
图1 不同N-P耦合环境下根系分泌性酸性磷酸酶(APase)活性。不同字母表示处理间差异显著(p < 0.05)。Homo-P, 同质低P; Hete-P, 异质低P。
Fig. 1 Root secreted acid phosphatase (APase) activity under different combinations of N and P treatments. Different letters indicate significant differences between treatments at p < 0.05. Homo-P, homogeneous low phosphorus; Hete-P, heterogeneous low phosphorus.
图2 不同N-P耦合条件下根系分泌性酸性磷酸酶(APase)活性的家系差异。不同字母表示同一磷素水平内不同家系间差异显著(p < 0.05)。Low-N, 低氮; High-N, 高氮; Homo-P, 同质低P; Hete-P, 异质低P。
Fig. 2 Family variations in root secreted acid phosphatase (APase) activity under different combinations of N and P treatments. Different letters indicate significant difference between families under the same P condition at p < 0.05. Low-N, low nitrogen; High-N, high nitrogen; Homo-P, homogeneous low phosphorus; Hete-P, heterogeneous low phosphorus.
磷处理 P treatment | 氮水平 N level | 家系Family | 干物质量 Dry matter mass (g) | 草酸 Oxalic acid (μmol·plant-1) | 酒石酸 Tartaric acid (μmol·plant-1) | 苹果酸 Malic acid (μmol·plant-1) | 丙二酸 Malonic acid (μmol·plant-1) | 乙酸 Acetic acid (μmol·plant-1) | 总量 Total (μmol·plant-1) |
---|---|---|---|---|---|---|---|---|---|
Homo-P | 低氮 Low-N | 36 × 29 | 2.64a | 0.37b | 0.36bc | 0.62c | - | - | 1.63c |
40 × 44 | 1.64bcd | 0.83b | - | - | - | - | 0.83c | ||
71 × 20 | 1.1d | 0.56b | 0.57bc | - | - | - | 1.14c | ||
73 × 23 | 2.57a | 1.91b | 1.44a | 1.68c | 0.28c | 1.44b | 6.75c | ||
高氮 High-N | 36 × 29 | 1.17cd | 1.00b | - | 23.82b | - | - | 24.80b | |
40 × 44 | 1.92b | 0.48b | 0.5bc | - | 0.24c | 1.88a | 3.10c | ||
71 × 20 | 1.75bc | 6.04a | 0.38bc | 46.12a | 1.56b | - | 54.10a | ||
73 × 23 | 1.91b | 2.10b | 0.74b | 42.12a | 2.97a | 1.96a | 49.88a | ||
显著性水平 Probability | 0.000 1*** | 0.006 7*** | 0.001 2*** | < 0.000 1*** | < 0.000 1*** | < 0.000 1*** | < 0.000 1*** | ||
Hete-P | 低氮 Low-N | 36 × 29 | 1.87bc | 0.77b | 0.16c | 2.74cd | 0.60de | 2.96de | 7.22c |
40 × 44 | 2.05bc | 1.09b | - | 5.72bcd | 1.52cd | 1.66e | 9.99c | ||
71 × 20 | 1.40c | 0.75b | - | - | 1.20cde | 1.65e | 3.58c | ||
73 × 23 | 1.82bc | 0.73b | 1.40bc | 3.00cd | - | 4.14cd | 9.26c | ||
高氮 High-N | 36 × 29 | 2.43b | 0.8b | 2.02b | 19.48b | - | 4.96bc | 27.20b | |
40 × 44 | 2.29bc | 0.94b | - | 6.82bcd | 2.40bc | 5.12bc | 16.26bc | ||
71 × 20 | 2.45b | 0.92b | 2.08b | 14.70bc | 3.32b | 6.94b | 27.80b | ||
73 × 23 | 3.84a | 4.42a | 7.66a | 46.80a | 8.68a | 8.82a | 77.20a | ||
显著性水平 Probability | 0.002 6*** | 0.001 2*** | < 0.000 1*** | 0.002 0*** | < 0.000 1*** | < 0.000 1*** | < 0.000 1*** |
表3 不同N-P耦合条件下马尾松苗木根系分泌的有机酸的家系差异
Table 3 Family variations in root secreted organic acids from Pinus massoniana seedlings under different combinations of N and P treatments
磷处理 P treatment | 氮水平 N level | 家系Family | 干物质量 Dry matter mass (g) | 草酸 Oxalic acid (μmol·plant-1) | 酒石酸 Tartaric acid (μmol·plant-1) | 苹果酸 Malic acid (μmol·plant-1) | 丙二酸 Malonic acid (μmol·plant-1) | 乙酸 Acetic acid (μmol·plant-1) | 总量 Total (μmol·plant-1) |
---|---|---|---|---|---|---|---|---|---|
Homo-P | 低氮 Low-N | 36 × 29 | 2.64a | 0.37b | 0.36bc | 0.62c | - | - | 1.63c |
40 × 44 | 1.64bcd | 0.83b | - | - | - | - | 0.83c | ||
71 × 20 | 1.1d | 0.56b | 0.57bc | - | - | - | 1.14c | ||
73 × 23 | 2.57a | 1.91b | 1.44a | 1.68c | 0.28c | 1.44b | 6.75c | ||
高氮 High-N | 36 × 29 | 1.17cd | 1.00b | - | 23.82b | - | - | 24.80b | |
40 × 44 | 1.92b | 0.48b | 0.5bc | - | 0.24c | 1.88a | 3.10c | ||
71 × 20 | 1.75bc | 6.04a | 0.38bc | 46.12a | 1.56b | - | 54.10a | ||
73 × 23 | 1.91b | 2.10b | 0.74b | 42.12a | 2.97a | 1.96a | 49.88a | ||
显著性水平 Probability | 0.000 1*** | 0.006 7*** | 0.001 2*** | < 0.000 1*** | < 0.000 1*** | < 0.000 1*** | < 0.000 1*** | ||
Hete-P | 低氮 Low-N | 36 × 29 | 1.87bc | 0.77b | 0.16c | 2.74cd | 0.60de | 2.96de | 7.22c |
40 × 44 | 2.05bc | 1.09b | - | 5.72bcd | 1.52cd | 1.66e | 9.99c | ||
71 × 20 | 1.40c | 0.75b | - | - | 1.20cde | 1.65e | 3.58c | ||
73 × 23 | 1.82bc | 0.73b | 1.40bc | 3.00cd | - | 4.14cd | 9.26c | ||
高氮 High-N | 36 × 29 | 2.43b | 0.8b | 2.02b | 19.48b | - | 4.96bc | 27.20b | |
40 × 44 | 2.29bc | 0.94b | - | 6.82bcd | 2.40bc | 5.12bc | 16.26bc | ||
71 × 20 | 2.45b | 0.92b | 2.08b | 14.70bc | 3.32b | 6.94b | 27.80b | ||
73 × 23 | 3.84a | 4.42a | 7.66a | 46.80a | 8.68a | 8.82a | 77.20a | ||
显著性水平 Probability | 0.002 6*** | 0.001 2*** | < 0.000 1*** | 0.002 0*** | < 0.000 1*** | < 0.000 1*** | < 0.000 1*** |
图3 不同N-P耦合处理间马尾松苗木根系分泌的有机酸总分泌量、各类有机酸分泌量。Homo-P, 同质低P; Hete-P, 异质低P。*, p < 0.05。
Fig. 3 The total and individual root secreted organic acids in Pinus massoniana seedlings under different combinations of N and P treatments. Homo-P, homogeneous low phosphorus; Hete-P, heterogeneous low phosphorus. *, p < 0.05.
磷处理 P treatment | 氮水平 N level | 干物质量 Dry matter mass (g) | 氮磷比 N:P | 磷吸收效率 Phosphorus absorption efficiency (mg·plant-1) | 磷利用效率 Phosphorus utilization efficiency (g·mg-1) | 氮吸收效率 Nitrogen absorption efficiency (mg·plant-1) | 氮利用效率 Nitrogen utilization efficiency (g·mg-1) | |
---|---|---|---|---|---|---|---|---|
根 Root | 整株 Total | |||||||
Homo-P | 低氮Low-N | 1.99b | 13.8b | 0.21c | 1.41bc | 4.89b | 19.50c | 0.42b |
Homo-P | 高氮 High-N | 1.69b | 26.7a | 0.17c | 1.02c | 6.17a | 27.25b | 0.28c |
Hete-P | 低氮Low-N | 1.78b | 9.7c | 0.33b | 1.56b | 3.45c | 15.19c | 0.46a |
Hete-P | 高氮 High-N | 2.75a | 13.3b | 0.43a | 2.81a | 3.53c | 37.28a | 0.35c |
显著性水平 Probability | 0.000 3*** | < 0.000 1*** | < 0.000 1*** | < 0.000 1*** | < 0.000 1*** | 0.000 3*** |
表4 不同N-P耦合条件下马尾松干物质量、P和N效率
Table 4 Dry matter mass, P and N efficiency in Pinus massoniana under different combinations of N and P treatments
磷处理 P treatment | 氮水平 N level | 干物质量 Dry matter mass (g) | 氮磷比 N:P | 磷吸收效率 Phosphorus absorption efficiency (mg·plant-1) | 磷利用效率 Phosphorus utilization efficiency (g·mg-1) | 氮吸收效率 Nitrogen absorption efficiency (mg·plant-1) | 氮利用效率 Nitrogen utilization efficiency (g·mg-1) | |
---|---|---|---|---|---|---|---|---|
根 Root | 整株 Total | |||||||
Homo-P | 低氮Low-N | 1.99b | 13.8b | 0.21c | 1.41bc | 4.89b | 19.50c | 0.42b |
Homo-P | 高氮 High-N | 1.69b | 26.7a | 0.17c | 1.02c | 6.17a | 27.25b | 0.28c |
Hete-P | 低氮Low-N | 1.78b | 9.7c | 0.33b | 1.56b | 3.45c | 15.19c | 0.46a |
Hete-P | 高氮 High-N | 2.75a | 13.3b | 0.43a | 2.81a | 3.53c | 37.28a | 0.35c |
显著性水平 Probability | 0.000 3*** | < 0.000 1*** | < 0.000 1*** | < 0.000 1*** | < 0.000 1*** | 0.000 3*** |
磷处理 P treatment | 氮水平 N level | 根系分泌物 Root secretion | 干物质量 Dry matter mass (g) | 磷吸收效率 Phosphorus absorption effici- ency (mg·plant-1) | 磷利用效率 Phosphorus utilization efficiency (g·mg-1) | 氮吸收效率 Nitrogen absorption efficiency (mg·plant-1) | 氮利用效率 Nitrogen utilization efficiency (g·mg-1) | N:P |
---|---|---|---|---|---|---|---|---|
Homo-P | 低氮Low-N | 分泌性APase Secretory APase | 0.416 4 | 0.220 5 | 0.324 2 | 0.527 2 | -0.364 6 | 0.574 3 |
有机酸分泌 Organic acid secretion | 0.553 9 | 0.398 8 | 0.965 0* | 0.674 9 | 0.149 8 | 0.328 8 | ||
高氮High-N | 分泌性APase Secretory APase | 0.423 9 | -0.050 1 | 0.294 2 | 0.105 6 | 0.449 0 | 0.257 4 | |
有机酸分泌 Organic acid secretion | 0.090 6 | 0.544 8 | 0.202 9 | 0.428 9 | -0.202 6 | 0.273 2 | ||
Hete-P | 低氮Low-N | 分泌性APase Secretory APase | 0.181 7 | 0.047 9 | 0.809 5* | -0.210 7 | 0.492 9 | -0.398 9 |
有机酸分泌 Organic acid secretion | 0.931 9* | 0.876 8* | 0.220 4 | 0.877 5* | -0.136 4 | 0.017 6 | ||
高氮High-N | 分泌性APase Secretory APase | -0.087 5 | 0.086 9 | -0.633 2 | 0.067 9 | -0.483 6 | -0.211 9 | |
有机酸分泌 Organic acid secretion | 0.992 5*** | 0.974 9** | -0.169 1 | 0.930 7* | -0.487 7 | -0.331 9 |
表5 不同N-P耦合条件下马尾松苗木根系分泌性酸性磷酸酶(APase)活性、有机酸总分泌量与P效率的相关系数
Table 5 Correlation coefficients between root secreted acid phosphatase (APase) activity, total amount of organic acids secreted, and P efficiency in Pinus massoniana seedlings under different combinations of N:P treatments
磷处理 P treatment | 氮水平 N level | 根系分泌物 Root secretion | 干物质量 Dry matter mass (g) | 磷吸收效率 Phosphorus absorption effici- ency (mg·plant-1) | 磷利用效率 Phosphorus utilization efficiency (g·mg-1) | 氮吸收效率 Nitrogen absorption efficiency (mg·plant-1) | 氮利用效率 Nitrogen utilization efficiency (g·mg-1) | N:P |
---|---|---|---|---|---|---|---|---|
Homo-P | 低氮Low-N | 分泌性APase Secretory APase | 0.416 4 | 0.220 5 | 0.324 2 | 0.527 2 | -0.364 6 | 0.574 3 |
有机酸分泌 Organic acid secretion | 0.553 9 | 0.398 8 | 0.965 0* | 0.674 9 | 0.149 8 | 0.328 8 | ||
高氮High-N | 分泌性APase Secretory APase | 0.423 9 | -0.050 1 | 0.294 2 | 0.105 6 | 0.449 0 | 0.257 4 | |
有机酸分泌 Organic acid secretion | 0.090 6 | 0.544 8 | 0.202 9 | 0.428 9 | -0.202 6 | 0.273 2 | ||
Hete-P | 低氮Low-N | 分泌性APase Secretory APase | 0.181 7 | 0.047 9 | 0.809 5* | -0.210 7 | 0.492 9 | -0.398 9 |
有机酸分泌 Organic acid secretion | 0.931 9* | 0.876 8* | 0.220 4 | 0.877 5* | -0.136 4 | 0.017 6 | ||
高氮High-N | 分泌性APase Secretory APase | -0.087 5 | 0.086 9 | -0.633 2 | 0.067 9 | -0.483 6 | -0.211 9 | |
有机酸分泌 Organic acid secretion | 0.992 5*** | 0.974 9** | -0.169 1 | 0.930 7* | -0.487 7 | -0.331 9 |
[1] | Cao J, Zhang FS (2000). Phosphorus uptake and utilization efficiency in seedlings of different wheat genotypes as influenced by water supply at low soil phosphorus availability. Acta Phytoecologica Sinica, 24,731-735. (in Chinese with English abstract) |
[ 曹靖, 张福锁 (2000). 低磷条件下不同基因型小麦幼苗对磷的吸收和利用效率及水分的影响. 植物生态学报, 24,731-735.] | |
[2] | Di CP, Yan XY (2010). Estimation of atmospheric nitrogen wet deposition in China mainland from based on N emission data. Journal of Agro-Environment Science, 29,1606-1611. (in Chinese with English abstract) |
[ 遆超普, 颜晓元 (2010). 基于氮排放数据的中国大陆大气氮素湿沉降量估算. 农业环境科学学报, 29,1606-1611.] | |
[3] | Duan HY, Xu FS, Wang YH (2002). The difference of root system growth and P nutrition in the seedlings of rape cultivars with different P-efficiency. Plant Nutrition and Fertilizer Science, 8,65-69. (in Chinese with English abstract) |
[ 段海燕, 徐芳森, 王运华 (2002). 甘蓝型油菜不同磷效率品种苗期根系生长及磷营养的差异. 植物营养与肥料学报, 8,65-69.] | |
[4] | Fujita Y, Robroek BJM, de Ruiter PC, Heil GW, Wassen MJ (2010). Increased N affects P uptake of eight grassland species, the role of root surface phosphatase activity. Oikos, 119,1665-1673. |
[5] |
He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 155,301-310.
URL PMID |
[6] | Li DJ, Mo JM, Fang YT (2004). Effects of simulated nitrogen deposition on growth and photosynthesis of Schima superba, Castanopsis chinensis and Cryptocarya concinna seedlings. Acta Ecologica Sinica, 24,876-882. (in Chinese with English abstract) |
[ 李德军, 莫江明, 方运霆 (2004). 模拟氮沉降对三种南亚热带树苗生长和光合作用的影响. 生态学报, 24,876-882.] | |
[7] | Li DJ, Mo JM, Fang YT (2005). Effects of simulated nitrogen deposition on biomass production and allocation in Schima superba and Cryptocarya concinna seedlings in subtropical China. Acta Phytoecologica Sinica, 29,543-549. |
[ 李德军, 莫江明, 方运霆 (2005). 模拟氮沉降对南亚热带两种乔木幼苗生物量及其分配的影响. 植物生态学报, 29,543-549.] | |
[8] | Li QK (1985). China Red Soil. Science Press, Beijing.145-146. (in Chinese) |
[ 李庆逵 (1985). 中国红壤. 科学出版社, 北京.145-146.] | |
[9] | Liang X, Liu AQ, Ma XQ, Feng LZ, Chen YL (2005). The effect of phosphorus deficiency stress on activities of acid phosphatase in different clones of Chinese fir. Acta Phytoecologica Sinica, 29,54-59. (in Chinese with English abstract) |
[ 梁霞, 刘爱琴, 马祥庆, 冯丽贞, 陈友力 (2005). 磷胁迫对不同杉木无性系酸性磷酸酶活性的影响. 植物生态学报, 29,54-59.] | |
[10] | Liao H, Yan XL (2000). Adaptive changes and genotypic variation for root architecture of common bean in response to phosphorus deficiency. Acta Botanica Sinica, 42,158-163. (in Chinese with English abstract) |
[ 廖红, 严小龙 (2000). 菜豆根构型对低磷胁迫的适应性变化及基因型差异. 植物学报, 42,158-163.] | |
[11] |
Mclachlan KD (1980). Acid phosphatase activity of intact roots and phosphorus nutrition in plants. II. Variations among wheat roots. Australian Journal of Agricultural Research, 31,441-448.
DOI URL |
[12] |
Neumann G, Römhei DV (1999). Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant and Soil, 211,121-130.
DOI URL |
[13] | Shen H, Shi WM, Wang JC, Cao ZH (2001). Study on adapta- tion mechanisms of different crops to low phosphorus stress. Plant Natrition and Fertilizen Science, 7,172-177. (in Chinese with English abstract) |
[ 沈宏, 施卫明, 王校常, 曹志洪 (2001). 不同作物对低磷胁迫的适应机理研究. 植物营养与肥料学报, 7,172-177.]
DOI URL |
|
[14] |
Sun HG, Zhang FS (2002). Effect of phosphorus deficiency on activity of acid phosphatase exuded by wheat roots. Chinese Journal of Applied Ecology, 13,379-381. (in Chinese with English abstract)
URL PMID |
[ 孙海国, 张福锁 (2002). 缺磷条件下的小麦根系酸性磷酸酶活性研究. 应用生态学报, 13,379-381.]
PMID |
|
[15] |
Wang Z, Shen J, Zhang F (2006). Cluster-root formation, carboxylate exudation and proton release of Lupinus pilosus Murr. as affected by medium pH and P deficiency. Plant and Soil, 287,247-256.
DOI URL |
[16] |
Wissuwa M (2003). How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects. Plant Physiology, 133,1947-1958.
DOI URL PMID |
[17] |
Xie YR, Zhou ZC, Liao GH, Jin GQ, Chen Y (2005). Difference of induced acid phosphate activity under low phosphorus stress of Pinus massoniana provenances. Scientia Silvae Sinicae, 41(3),58-62. (in Chinese with English abstract)
DOI URL |
[ 谢钰容, 周志春, 廖国华, 金国庆, 陈跃 (2005). 低磷胁迫下马尾松种源酸性磷酸酶活性差异. 林业科学, 41(3),58-62.]
DOI URL |
|
[18] | Yang Q, Zhang Y, Zhou ZC, Feng ZP (2012). Root architecture and phosphorus efficiency of different provenance Pinus massoniana under low phosphorous stress. Chinese Journal of Applied Ecology, 23,2339-2345. (in Chinese with English abstract) |
[ 杨青, 张一, 周志春, 丰忠平 (2012). 低磷胁迫下不同种源马尾松的根构型与磷效率. 应用生态学报, 23,2339-2345.] | |
[19] | Yang Q, Zhang Y, Zhou ZC, Ma XH, Liu WH, Feng ZP (2011). Genetic variation in root architecture and phosphorus efficiency in response to heterogeneous phosphorus deficiency in Pinus massoniana families. Chinese Journal of Plant Ecology, 35,1226-1235. (in Chinese with English abstract) |
[ 杨青, 张一, 周志春, 马雪红, 刘伟宏, 丰忠平 (2011). 异质低磷胁迫下马尾松家系根构型和磷效率的遗传变异. 植物生态学报, 35,1226-1235.] | |
[20] | Yan XL, Liao H (2007). Root Biology: Principle and Application. Science Press, Beijing. 128. (in Chinese) |
[ 严小龙, 廖红 (2007). 科学出版社,根系生物学: 原理与应用. 北京. 128.] | |
[21] | Yu L, Peng XX, Yang C, Liu YH, Fan YP (2002). Determina- tion of oxalic acid in plant tissue and root exudate by reversed phase high performance liguid chromatography. Chinese Journal of Analytical Chemistry, 30,1119-1122. (in Chinese) |
[ 俞乐, 彭新湘, 杨崇, 刘拥海, 范燕萍 (2002). 反相高效液相色谱法测定植物组织及根分泌物中草酸. 分析化学研究简报, 30,1119-1122.] | |
[22] | Zhao X, Yan XY, Xiong ZQ (2009). Spatial and temporal variation of inorganic nitrogen wet deposition to the Yangtze River Delta Region, China. Water, Air, and Soil Pollution, 203,277-289. |
[23] | Zhang Y, Zhou ZC, Yang Q (2013a). Genetic variations in root morphology and phosphorus efficiency of Pinus massoniana under heterogeneous and homogeneous low phosphorus conditions. Plant and Soil, 364,93-104. |
[24] | Zhang Y, Zhou ZC, Yang Q (2013b). Nitrogen (N) deposition impacts seedling growth of Pinus massoniana via N, P ratio effects and the modulation of adaptive responses to low P (phosphorus). PLoS ONE, 8,e79229, doi: 10.1371/journal.pone.0079229. |
[25] | Zhou ZC, Xie YR, Jin GQ, Wu JF, Wu JF, Chen Y (2003). Genetic response of Pinus massoniana provenances to phosphorus supply and nutrient characteristics of their rhizosphere soil. Scientia Silvae Sinicae, 39(6),62-67. (in Chinese with English abstract) |
[ 周志春, 谢钰容, 金国庆, 吴吉富, 陈跃 (2003). 马尾松种源对磷肥的遗传反应及根际土壤营养差异. 林业科学, 39(6),62-67.] |
[1] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[2] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[3] | 罗斯生, 罗碧珍, 魏书精, 胡海清, 李小川, 吴泽鹏, 王振师, 周宇飞, 钟映霞. 中度强度森林火灾对马尾松次生林土壤有机碳密度的影响[J]. 植物生态学报, 2020, 44(10): 1073-1086. |
[4] | 宋平, 张蕊, 周志春, 童建设, 王晖. 局部供氮对低磷胁迫下马尾松不同家系生长及根系参数的影响[J]. 植物生态学报, 2017, 41(6): 622-631. |
[5] | 宋思梦, 张丹桔, 张健, 杨万勤, 张艳, 周扬, 李勋. 马尾松人工林林窗边缘效应对油樟化学计量特征的影响[J]. 植物生态学报, 2017, 41(10): 1081-1090. |
[6] | 汪沁, 杨万勤, 吴福忠, 张健, 谭波, 张玺涛. 马尾松人工林伐桩储量与分解特征[J]. 植物生态学报, 2016, 40(5): 458-468. |
[7] | 黄菊莹, 余海龙. 四种荒漠草原植物的生长对不同氮添加水平的响应[J]. 植物生态学报, 2016, 40(2): 165-. |
[8] | 宋平, 张蕊, 张一, 周志春, 丰忠平. 模拟氮沉降对低磷胁迫下马尾松无性系细根形态和氮磷效率的影响[J]. 植物生态学报, 2016, 40(11): 1136-1144. |
[9] | 张艳, 张丹桔, 张健, 杨万勤, 邓长春, 李建平, 李勋, 唐仕姗, 张明锦. 马尾松人工林林窗大小对两种凋落叶难降解物质含量的影响[J]. 植物生态学报, 2015, 39(8): 785-796. |
[10] | 陈云玉, 熊德成, 黄锦学, 王韦韦, 胡双成, 邓飞, 许辰森, 冯建新, 史顺增, 钟波元, 陈光水. 中亚热带不同演替阶段的马尾松和米槠人工林的细根生产量研究[J]. 植物生态学报, 2015, 39(11): 1071-1081. |
[11] | 石贤萌, 杞金华, 宋亮, 刘文耀, 黄俊彪, 李苏, 卢华正, 陈曦. 哀牢山中山湿性常绿阔叶林两种优势幼苗C、N、P化学计量特征及其对N沉降增加的响应[J]. 植物生态学报, 2015, 39(10): 962-970. |
[12] | 刘娜娜,田秋英,张文浩. 内蒙古典型草原优势种冷蒿和克氏针茅对土壤低磷环境适应策略的比较[J]. 植物生态学报, 2014, 38(9): 905-915. |
[13] | 崔宁洁,张丹桔,刘洋,张健,杨万勤,欧江,张捷,宋小艳,殷睿. 马尾松人工林不同大小林窗植物多样性及其季节动态[J]. 植物生态学报, 2014, 38(5): 477-490. |
[14] | 李义勇, 黄文娟, 赵亮, 方熊, 刘菊秀. 大气CO2浓度升高和N沉降对南亚热带主要乡土树种叶片元素含量的影响[J]. 植物生态学报, 2012, 36(5): 447-455. |
[15] | 沈章军, 孙庆业, 田胜尼. 铜尾矿自然定居白茅对体内氮磷的适时分配及叶片氮磷代谢调节酶活性动态[J]. 植物生态学报, 2012, 36(2): 159-168. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19