植物生态学报 ›› 2017, Vol. 41 ›› Issue (6): 622-631.DOI: 10.17521/cjpe.2016.0260
收稿日期:
2017-01-03
接受日期:
2016-08-09
出版日期:
2017-06-10
发布日期:
2017-07-19
通讯作者:
张蕊
作者简介:
* 通信作者Author for correspondence (E-mail:
基金资助:
Ping SONG1, Rui ZHANG1,*(), Zhi-Chun ZHOU1, Jian-She TONG2, Hui WANG2
Received:
2017-01-03
Accepted:
2016-08-09
Online:
2017-06-10
Published:
2017-07-19
Contact:
Rui ZHANG
About author:
KANG Jing-yao(1991-), E-mail:
摘要:
土壤资源有效性在空间分布上的差异会对植物的生长发育产生重要影响。该文选择马尾松(Pinus massoniana)二代育种亲本育成的5个全同胞家系(1、25、49、52、57)为材料, 进行一个生长季的局部供氮苗木盆栽实验。实验在同质低磷和异质低磷两种低磷环境下分别设置4个供氮处理: 均匀供氮(HHH)、表层和中间层供氮(HHL)、底层供氮(LLH)和底层半侧供氮(LLH/L), 研究了模拟异质养分环境对马尾松不同家系苗木生长及根系发育的影响。结果表明: 1)与同质低磷相比, 异质低磷促进了马尾松的生长和根系发育, 其根长和根表面积分别为同质低磷下的1.95倍和2.11倍。2)局部供氮对马尾松生长的影响受土壤磷素环境影响较大, 与HHH相比, 局部供氮(HHL、LLH和LLH/L)对同质低磷下苗木的株高、地径和干物质积累量有明显的促进作用, 但在异质低磷下, 仅LLH和LLH/L处理有利于苗木地上部分的生长, HHL处理反而有抑制效应。3)在两种低磷环境下, LLH/L和LLH处理对马尾松苗木根系生长发育的促进作用显著, 尤其在异质低磷环境下的促进作用较强(LLH/L处理下根长和根表面积较HHH处理高出29.2%和32.3%), 但HHL对根长和根表面积有一定的抑制作用。4)马尾松不同家系间对不同供氮处理的响应差异显著。家系49、52和57主要通过增加根系在土壤中的分布来响应局部氮素分布的变化, 促进整株干物质量的积累; 家系25地上部分的生长随氮、磷含量的增大而增加, 但根系的增生发育对其整株生长的贡献较小; 家系1生长发育迟缓, 对局部供氮的响应较为迟钝。研究结果显示, 局部供氮较均匀供氮更有利于马尾松苗木生长, 且土壤深层施肥的促进作用更强。
宋平, 张蕊, 周志春, 童建设, 王晖. 局部供氮对低磷胁迫下马尾松不同家系生长及根系参数的影响. 植物生态学报, 2017, 41(6): 622-631. DOI: 10.17521/cjpe.2016.0260
Ping SONG, Rui ZHANG, Zhi-Chun ZHOU, Jian-She TONG, Hui WANG. Effects of localized nitrogen supply treatments on growth and root parameters in Pinus massoniana families under phosphorus deficiency. Chinese Journal of Plant Ecology, 2017, 41(6): 622-631. DOI: 10.17521/cjpe.2016.0260
土壤类型 Soil type | 全氮 Total N (g·kg-1) | 全磷 Total P (g·kg-1) | 水解氮 Hydrolysable N (mg·kg-1) | 速效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) | 有机质 Organic matter (g·kg-1) | pH值 pH value |
---|---|---|---|---|---|---|---|
酸性红壤 Acid red soil | 0.41 | 0.34 | 46.35 | 0.99 | 37.78 | 6.68 | 5.06 |
表1 盆栽土壤基质理化性质
Table 1 Soil physical and chemical properties of the substrate in the pot experiment
土壤类型 Soil type | 全氮 Total N (g·kg-1) | 全磷 Total P (g·kg-1) | 水解氮 Hydrolysable N (mg·kg-1) | 速效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) | 有机质 Organic matter (g·kg-1) | pH值 pH value |
---|---|---|---|---|---|---|---|
酸性红壤 Acid red soil | 0.41 | 0.34 | 46.35 | 0.99 | 37.78 | 6.68 | 5.06 |
图1 不同磷环境下的局部供氮处理。HHH, 均匀供氮; HHL, 表层和中间层供氮; LLH, 底层供氮; LLH/L, 底层半侧供氮。
Fig. 1 The patterns of N added under two P deficiency conditions. HHH, homogeneously high N along the soil profile; HHL, high N-high N-low N; LLH, low N-low N-high N; LLH/L, low N-low N-on side with N addition and the other side without N supply.
磷环境 P level | 性状 Trait | 氮处理 N supply treatment | 变异来源 Source of variation (F值 F value) | |||||
---|---|---|---|---|---|---|---|---|
HHH | HHL | LLH | LLH/L | 家系 Family | 氮处理 N | 家系&×氮处理 Family &× N | ||
同质低磷 Homo low P | SH (cm) | 14.42 &± 0.52b | 16.92 &± 0.54a | 14.90 &± 0.65b | 14.66 &± 0.65b | 47.73*** | 6.34*** | 2.13* |
SBD (mm) | 2.39 &± 0.10b | 2.99 &± 0.07a | 2.61 &± 0.09b | 2.61 &± 0.09b | 23.96*** | 12.50*** | 2.24* | |
SDW (g) | 1.32 &± 0.12b | 1.87 &± 0.10a | 1.44 &± 0.13b | 1.63 &± 0.12ab | 19.21*** | 6.11** | 2.74* | |
RDW (g) | 0.26 &± 0.02b | 0.37 &± 0.03a | 0.27 &± 0.02b | 0.35 &± 0.02a | 12.02*** | 7.49*** | 1.54 | |
R/S | 0.36 &± 0.03a | 0.17 &± 0.03b | 0.23 &± 0.03ab | 0.18 &± 0.03b | 12.23*** | 2.75* | 2.55* | |
RL (cm) | 192.36 &± 9.72a | 186.38 &± 11.93a | 210.54 &± 14.45a | 199.73 &± 11.92a | 12.28*** | 2.92* | 1.20 | |
RSA (cm2) | 47.37 &± 3.00b | 46.50 &± 2.56b | 61.96 &± 4.38a | 59.90 &± 3.65a | 13.14*** | 7.02*** | 1.47 | |
PC (mg&·g-1) | 0.75 &± 0.03b | 1.14 &± 0.04a | 0.87 &± 0.08ab | 0.95 &± 0.11ab | 1.02 | 0.96 | 1.02 | |
NC (mg&·g-1) | 17.02 &± 0.39b | 21.68 &± 2.64a | 18.89 &± 0.34ab | 16.18 &± 0.59b | 3.44** | 3.37* | 1.47 | |
异质低磷 Hetero low P | SH (cm) | 17.51 &± 0.74a | 13.62 &± 0.52b | 16.72 &± 0.67a | 16.13 &± 0.67a | 43.10*** | 12.58*** | 2.54* |
SBD (mm) | 3.18 &± 0.11a | 2.61 &± 0.11c | 3.11 &± 0.10ab | 2.82 &± 0.12bc | 17.46*** | 8.22*** | 2.06* | |
SDW (g) | 2.25 &± 0.19a | 1.42 &± 0.13b | 2.01 &± 0.14a | 1.96 &± 0.16a | 15.53*** | 6.34*** | 2.32* | |
RDW (g) | 0.47 &± 0.04a | 0.36 &± 0.03a | 0.42 &± 0.04a | 0.47 &± 0.06a | 13.33*** | 1.97 | 1.04 | |
R/S | 0.26 &± 0.03a | 0.34 &± 0.05a | 0.26 &± 0.02a | 0.31 &± 0.04a | 7.30*** | 0.65 | 0.49 | |
RL (cm) | 368.77 &± 27.72ab | 296.81 &± 21.57b | 399.17 &± 31.82ab | 476.60 &± 61.51a | 6.70*** | 4.13** | 1.09 | |
RSA (cm2) | 105.77 &± 7.81b | 94.15 &± 7.77b | 115.78 &± 9.16ab | 139.34 &± 18.01a | 8.22*** | 3.23* | 1.04 | |
PC (mg&·g-1) | 0.90 &± 0.03a | 1.18 &± 0.04a | 1.02 &± 0.03a | 1.11 &± 0.08a | 1.05 | 1.06 | 1.04 | |
NC (mg&·g-1) | 17.33 &± 0.39b | 18.46 &± 0.34a | 15.23 &± 0.41c | 15.17 &± 0.39c | 15.77*** | 23.80*** | 1.36 |
表2 局部供氮对马尾松生长、根系参数和氮磷含量的影响及方差分析(平均值±标准误差)
Table 2 Effects of localized N supply treatments on growth traits, root parameters and N and P concentration of Pinus massoniana (mean ± SE)
磷环境 P level | 性状 Trait | 氮处理 N supply treatment | 变异来源 Source of variation (F值 F value) | |||||
---|---|---|---|---|---|---|---|---|
HHH | HHL | LLH | LLH/L | 家系 Family | 氮处理 N | 家系&×氮处理 Family &× N | ||
同质低磷 Homo low P | SH (cm) | 14.42 &± 0.52b | 16.92 &± 0.54a | 14.90 &± 0.65b | 14.66 &± 0.65b | 47.73*** | 6.34*** | 2.13* |
SBD (mm) | 2.39 &± 0.10b | 2.99 &± 0.07a | 2.61 &± 0.09b | 2.61 &± 0.09b | 23.96*** | 12.50*** | 2.24* | |
SDW (g) | 1.32 &± 0.12b | 1.87 &± 0.10a | 1.44 &± 0.13b | 1.63 &± 0.12ab | 19.21*** | 6.11** | 2.74* | |
RDW (g) | 0.26 &± 0.02b | 0.37 &± 0.03a | 0.27 &± 0.02b | 0.35 &± 0.02a | 12.02*** | 7.49*** | 1.54 | |
R/S | 0.36 &± 0.03a | 0.17 &± 0.03b | 0.23 &± 0.03ab | 0.18 &± 0.03b | 12.23*** | 2.75* | 2.55* | |
RL (cm) | 192.36 &± 9.72a | 186.38 &± 11.93a | 210.54 &± 14.45a | 199.73 &± 11.92a | 12.28*** | 2.92* | 1.20 | |
RSA (cm2) | 47.37 &± 3.00b | 46.50 &± 2.56b | 61.96 &± 4.38a | 59.90 &± 3.65a | 13.14*** | 7.02*** | 1.47 | |
PC (mg&·g-1) | 0.75 &± 0.03b | 1.14 &± 0.04a | 0.87 &± 0.08ab | 0.95 &± 0.11ab | 1.02 | 0.96 | 1.02 | |
NC (mg&·g-1) | 17.02 &± 0.39b | 21.68 &± 2.64a | 18.89 &± 0.34ab | 16.18 &± 0.59b | 3.44** | 3.37* | 1.47 | |
异质低磷 Hetero low P | SH (cm) | 17.51 &± 0.74a | 13.62 &± 0.52b | 16.72 &± 0.67a | 16.13 &± 0.67a | 43.10*** | 12.58*** | 2.54* |
SBD (mm) | 3.18 &± 0.11a | 2.61 &± 0.11c | 3.11 &± 0.10ab | 2.82 &± 0.12bc | 17.46*** | 8.22*** | 2.06* | |
SDW (g) | 2.25 &± 0.19a | 1.42 &± 0.13b | 2.01 &± 0.14a | 1.96 &± 0.16a | 15.53*** | 6.34*** | 2.32* | |
RDW (g) | 0.47 &± 0.04a | 0.36 &± 0.03a | 0.42 &± 0.04a | 0.47 &± 0.06a | 13.33*** | 1.97 | 1.04 | |
R/S | 0.26 &± 0.03a | 0.34 &± 0.05a | 0.26 &± 0.02a | 0.31 &± 0.04a | 7.30*** | 0.65 | 0.49 | |
RL (cm) | 368.77 &± 27.72ab | 296.81 &± 21.57b | 399.17 &± 31.82ab | 476.60 &± 61.51a | 6.70*** | 4.13** | 1.09 | |
RSA (cm2) | 105.77 &± 7.81b | 94.15 &± 7.77b | 115.78 &± 9.16ab | 139.34 &± 18.01a | 8.22*** | 3.23* | 1.04 | |
PC (mg&·g-1) | 0.90 &± 0.03a | 1.18 &± 0.04a | 1.02 &± 0.03a | 1.11 &± 0.08a | 1.05 | 1.06 | 1.04 | |
NC (mg&·g-1) | 17.33 &± 0.39b | 18.46 &± 0.34a | 15.23 &± 0.41c | 15.17 &± 0.39c | 15.77*** | 23.80*** | 1.36 |
图2 局部供氮对低磷胁迫下马尾松不同家系苗木生长的影响(平均值±标准误差)。HHH, 均匀供氮; HHL, 表层和中间层供氮; LLH, 底层供氮; LLH/L, 底层半侧供氮。不同小写字母表示不同处理之间差异显著(p < 0.05)。
Fig. 2 The seedling growth traits of Pinus massoniana families in different local N supply treatments (mean ± SE). HHH, homogeneously high N along the soil profile; HHL, high N-high N-low N; LLH, low N-low N-high N; LLH/L, low N-low N-on side with N addition and the other side without N supply. Different lower letters indicate significant differences among treatments (p < 0.05).
图3 局部供氮对低磷胁迫下马尾松不同家系苗木根系参数的影响(平均值±标准误差)。HHH, 均匀供氮; HHL, 表层和中间层供氮; LLH, 底层供氮; LLH/L, 底层半侧供氮。不同小写字母表示不同处理之间差异显著(p < 0.05)。
Fig. 3 The root parameters of Pinus massoniana families in different local N supply treatments (mean ± SE). HHH, homogeneously high N along the soil profile; HHL, high N-high N-low N; LLH, low N-low N-high N; LLH/L, low N-low N-on side with N addition and the other side without N supply. Different lower letters indicate significant differences among treatments (p < 0.05).
图4 局部供氮对两种磷环境下马尾松不同家系氮、磷含量的影响(平均值±标准误差)。HHH, 均匀供氮; HHL, 表层和中间层供氮; LLH, 底层供氮; LLH/L, 底层半侧供氮。不同小写字母表示不同处理之间差异显著(p < 0.05)。不同小写字母表示不同处理之间差异显著(p < 0.05)。
Fig. 4 N concentration and P concentration of P. massoniana families in different local N supply treatments (mean ± SE). HHH, homogeneously high N along the soil profile; HHL, high N-high N-low N; LLH, low N-low N-high N; LLH/L, low N-low N-on side with N addition and the other side without N supply. Different lower letters indicate significant differences among treatments (p < 0.05).
[1] | Bilss KM, Jones RH, Mitchell RJ, Mou PP (2002). Are competitive interactions influenced by spatial nutrient heterogeneity and root foraging behavior?New Phytologist, 154, 409-417. |
[2] | Drew MC (1975). Comparison of effects of a localized supply of phosphate, nitrate, ammonium and potassium on growth of seminal root system and shoot in barley.New Phytologist, 75, 479-490. |
[3] | Duan HL, Liu JX, Deng Q, Chen XM, Zhang DQ (2009). Effects of elevated CO2 and N deposition on plant biomass accumulation and allocation in subtropical forest ecosystems: A mesocosm study. Chinese Journal of Plant Ecology,33, 570-579.(in Chinese with English abstract) )[段洪浪, 刘菊秀, 邓琦, 陈小梅, 张德强 (2009). CO2浓度升高与氮沉降对南亚热带森林生态系统植物生物量积累及分配格局的影响.植物生态学报, 33, 570-579.] |
[4] | Einsmann JC, Jones RH, Pu M, Mitchell RJ (1999). Nutrient forging traits in 10 co-occurring plant species of contrasting life forms.Journal of Ecology, 87, 609-619. |
[5] | Fransen B, de Kroon H (2001). Long-term disadvantages of selective root placement: Root proliferation and shoot biomass of two perennial grass species in a 2-year experiment.Journal of Ecology, 89, 711-722. |
[6] | Graciano C, Tanbussi EA, Castan E, Guiamet JJ (2009). Dry mass partitioning and nitrogen uptake byEucalyptus grandis plants in response to localized or mixed application of phosphorus. Plant and Soil, 319, 175-184. |
[7] | Guo DL, Mou P, Jones RH, Mitchell RJ (2002). Temporal changes in spatial patterns of soil moisture following disturbance: An experimental approach.Journal of Ecology, 90, 338-347. |
[8] | He Y, Liao H, Yan XL (2003). Localized supply of phosphorus induces root morphological and architectural changes of rice in split and stratified soil cultures.Plant and Soil, 248, 247-256. |
[9] | Hodge A (2004). The plastic plant: Root responses to heterogeneous supplies of nutrients.New Phytologist, 162, 9-24. |
[10] | Hutchings MJ, John EA (2004). The effects of environmental heterogeneity on root growth and root/shoot partitioning.Annals of Botany, 94, 1-8. |
[11] | Jackson RB, Caldwell MM (1996). Integrating resource heterogeneity and plant plasticity: Modelling nitrate and phosphate uptake in a patchy soil environment.Journal of Ecologist, 84, 891-904. |
[12] | Jing JY, Rui YK, Zhang FD, Rengel Z, Shen JB (2010). Localized application of phosphorus and ammonium improves growth of maize seedlings by stimulating root proliferation and rhizosphere acidification.Field Crops Research, 119, 355-364. |
[13] | Kanno S, Arrighi JF, Chiarenza S, Bayle V, Berthom R, Peret B, Javot H, Delannoy E, Marin E, Nakanishi TM, Thibaud MC, Nussanme L (2016). A novel role for the root cap in phosphate uptake and homeostasis. eLife, 5, e14577. doi: 10.7554/eLife.14577. |
[14] | Kronzucker HJ, Britto DT, Davenport RJ, Tester M (2001). Ammonium toxicity and the real cost of transport.Trends in Plant Science, 6, 335-337. |
[15] | Li HB, Ma QH, Li HG, Zhang FS, Rengel Z, Shen JB (2014). Root morphological responses to localized nutrient supply differ among crop species with contrasting root traits.Plant and Soil, 376, 151-163. |
[16] | Li HB, Xue MY, Lin YR, Shen JB (2013). Spatial heterogeneity of soil nutrients and root forging: Form individual to community.Journal of Plant Nutrition and Fertilizer, 19, 995-1004. (in Chinese with English abstract) )[李洪波, 薛慕瑶, 林雅茹, 申建波 (2013). 土壤养分空间异质性与根系觅食作用: 从个体到群落. 植物营养与肥料学报, 19, 995-1004.] |
[17] | Linkohr BI, Williamson LC, Fitter AH, Leyser HM (2002). Nitrate and phosphate availability and distribution have different effects on root system architecture ofArabidopsis. Plant Journal for Cell & Molecular Biology, 29, 751-760. |
[18] | Liu SE, Li YY, Fang X, Huang WJ, Long FL, Liu JX (2015). Effects of the level and regime of nitrogen addition on seedling growth of four major tree species in subtropical China. Chinese Journal of Plant Ecology, 39, 950-961. (in Chinese with English abstract) )[刘双娥, 李义勇, 方熊, 黄文娟, 龙凤玲, 刘菊秀 (2015). 不同氮添加量和添加方式对南亚热带4个主要树种幼苗生长的影响. 植物生态学报, 39, 950-961.] |
[19] | Lü CQ, Tian HQ, Huang Y (2007). Ecological effects of increased nitrogen deposition in terrestrial ecosystems.Journal of Plant Ecology (Chinese Version), 31, 205-218. (in Chinese with English abstract) )[吕超群, 田汉勤, 黄耀 (2007). 陆地生态系统氮沉降增加的生态效应. 植物生态学报, 31, 205-218.] |
[20] | Mei L, Wang ZQ, Han YZ, Gu JC, Wang XR, Cheng YH, Zhang XJ (2006). Distribution patterns of Fraxinus mandshurica root biomass, specific root length and root length density. Chinese Journal of Applied Ecology, 17, 1-4. (in Chinese with English abstract) )[梅莉, 王政权, 韩有志, 谷加存, 王向荣, 程云环, 张秀娟 (2006). 水曲柳根系生物量、比根长和根长密度的分布格局. 应用生态学报, 17, 1-4. |
[21] | Mommer L, van Ruijven J, Jansen C, van de Steeg HM, de Kroon H (2012). Interactive effects of nutrient heterogeneity and competition: Implications for root foraging theory?Functional Ecology, 26, 66-73. |
[22] | Mou P, Mitchell RJ, Jones RH (1997). Root distribution of two tree species under a heterogeneous nutrient environment.Journal Applied Ecology, 34, 645-656. |
[23] | Officer SJ, Dunbabin VM, Armstrong RD, Norton RM, Kearney GA (2009). Wheat roots proliferate in response to nitrogen and phosphorus fertilisers in Sodosol and Vertosol soils of south-eastern Australia.Australian Journal of Soil Research, 47, 91-102. |
[24] | Pang L, Zhang Y, Zhou ZC, Feng ZP, Chu DY (2014). Effects of simulated nitrogen deposition on growth and phosphorus efficiency of Pinus massoniana under low phosphorus stress. Chinese Journal of Applied Ecology, 25, 1275-1282. (in Chinese with English abstract) )[庞丽, 张一, 周志春, 丰忠平, 储徳裕 (2014). 模拟氮沉降对低磷胁迫下马尾松生长和磷效率的影响. 应用生态学报, 25, 1275-1282.] |
[25] | Qin GF, Zhou ZC (2012). Germplasm Resources of Chinese Masson Pine. China Forestry Publishing House, Beijing. (in Chinese) )[秦国峰, 周志春 (2012). 中国马尾松优良种质资源. 中国林业出版社, 北京.] |
[26] | Richardson SJ, Peltzer DA, Allen RB, McGlone MS, Parfitt RL (2004). Rapid development of phosphorus limitation in temperate rainforest along the Franz Josef soil chronosequence.Oecologia, 139, 267-276. |
[27] | Robinson D (1994). The response of plants to non-uniform supplies of nutrients.New Phytologist, 127, 635-674. |
[28] | Shen J, Li H, Neumann G, Zhang F (2005). Nutrient uptake, cluster root formation and exudation of protons and citrate in Lupinus albus as affected by localized supply of phosphorus in a split-root system. Plant Science, 168, 837-845. |
[29] | Tinker PB, Nye PH (2000). Solute Movement in the Rhizosphere. Oxford University Press, Oxford. |
[30] | Vance CP, Uhde-stone C, Allan DL (2003). Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource.New Phytologist, 57, 423-427. |
[31] | Verma S, Subehia SK, Sharma SP (2005). Phosphorus fractions in an acid soil continuously fertilized with mineral and organic fertilizers.Biology and Fertility of Soils, 41, 295-300. |
[32] | Weligama C, Tang C, Sale PWG, Conyers MK, Liu DL (2008). Localized nitrate and phosphate application enhances root proliferation by wheat and maximises rhizosphere alkalization in acid subsoil.Plant and Soil, 312, 101-115. |
[33] | Wu Q, Ding J, Yan H, Zhang SR, Fang T, Ma KP (2011). Effects of simulated precipitation and nitrogen addition on seedling growth and biomass in five tree species in Gutian Mountain, Zhejiang Province, China.Chinese Journal of Plant Ecology, 35, 256-267. (in Chinese with English abstract) )[吴茜, 丁佳, 闫慧, 张守仁, 方腾, 马克平 (2011). 模拟降水变化和土壤施氮对浙江古田山5个树种幼苗生长和生物量的影响. 植物生态学报, 35, 256-267. |
[34] | Xu XK, Han L, Luo XB (2012). Effects of stimulated nitrogen deposition on soil net nitrogen mineralization under a temperate Korean pine and broadleaf mixed forest.Climatic and Environmental Research, 17, 628-638. (in Chinese with English abstract) )[徐星凯, 韩林, 罗献宝 (2012). 模拟氮沉降对温带阔叶红松林地氮素净矿化量的影响. 气候与环境研究, 17, 628-638.] |
[35] | Yang Q, Zhang Y, Zhou ZC, Ma XH, Liu WH, Feng ZP (2011). Genetic variation in root architecture and phosphorus efficiency in response to heterogeneous phosphorus deficiency in Pinus massoniana families. Chinese Journal of Plant Ecology, 35, 1226-1235. (in Chinese with English abstract) )[杨青, 张一, 周志春, 马雪红, 刘伟宏, 丰忠平 (2011). 异质低磷胁迫下马尾松家系根构型和磷效率的遗传变异. 植物生态学报, 35, 1226-1235.] |
[36] | Zhang H, Forde BG (2000). Regulation of Arabidopsis root development by nitrate availability.Journal of Experimental Botany, 51, 51-59. |
[37] | Zhang Y, Zhou ZC, Yang Q (2013). Genetic variations in root morphology and phosphorus efficiency of Pinus massoniana under heterogeneous and homogeneous low phosphorus conditions.Plant and Soil, 364, 93-104. |
[38] | Zhou ZC, Shangguan ZP (2007). Vertical distribution of fine roots in relation to soil factors in Pinus tabulaeformis Carr. forest of the Loess Plateau of China. Plant and Soil, 291, 119-129. |
[1] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[2] | 罗斯生, 罗碧珍, 魏书精, 胡海清, 李小川, 吴泽鹏, 王振师, 周宇飞, 钟映霞. 中度强度森林火灾对马尾松次生林土壤有机碳密度的影响[J]. 植物生态学报, 2020, 44(10): 1073-1086. |
[3] | 邹显花, 胡亚楠, 韦丹, 陈思同, 吴鹏飞, 马祥庆. 磷高效利用杉木对低磷胁迫的适应性与内源激素的相关性[J]. 植物生态学报, 2019, 43(2): 139-151. |
[4] | 陈思同, 邹显花, 蔡一冰, 韦丹, 李涛, 吴鹏飞, 马祥庆. 基于 32P示踪的不同供磷环境杉木幼苗磷的分配规律分析[J]. 植物生态学报, 2018, 42(11): 1103-1112. |
[5] | 宋思梦, 张丹桔, 张健, 杨万勤, 张艳, 周扬, 李勋. 马尾松人工林林窗边缘效应对油樟化学计量特征的影响[J]. 植物生态学报, 2017, 41(10): 1081-1090. |
[6] | 汪沁, 杨万勤, 吴福忠, 张健, 谭波, 张玺涛. 马尾松人工林伐桩储量与分解特征[J]. 植物生态学报, 2016, 40(5): 458-468. |
[7] | 陈智裕, 李琦, 邹显花, 马祥庆, 吴鹏飞. 邻株竞争对低磷环境杉木幼苗光合特性及生物量分配的影响[J]. 植物生态学报, 2016, 40(2): 177-. |
[8] | 宋平, 张蕊, 张一, 周志春, 丰忠平. 模拟氮沉降对低磷胁迫下马尾松无性系细根形态和氮磷效率的影响[J]. 植物生态学报, 2016, 40(11): 1136-1144. |
[9] | 张艳, 张丹桔, 张健, 杨万勤, 邓长春, 李建平, 李勋, 唐仕姗, 张明锦. 马尾松人工林林窗大小对两种凋落叶难降解物质含量的影响[J]. 植物生态学报, 2015, 39(8): 785-796. |
[10] | 陈云玉, 熊德成, 黄锦学, 王韦韦, 胡双成, 邓飞, 许辰森, 冯建新, 史顺增, 钟波元, 陈光水. 中亚热带不同演替阶段的马尾松和米槠人工林的细根生产量研究[J]. 植物生态学报, 2015, 39(11): 1071-1081. |
[11] | 崔宁洁,张丹桔,刘洋,张健,杨万勤,欧江,张捷,宋小艳,殷睿. 马尾松人工林不同大小林窗植物多样性及其季节动态[J]. 植物生态学报, 2014, 38(5): 477-490. |
[12] | 庞丽, 张一, 周志春, 丰忠平, 储德裕. 模拟氮沉降对低磷胁迫下马尾松不同家系根系分泌和磷效率的影响[J]. 植物生态学报, 2014, 38(1): 27-35. |
[13] | 谭小梅, 周志春, 金国庆, 张一. 马尾松二代无性系种子园子代父本分析及花粉散布[J]. 植物生态学报, 2011, 35(9): 937-945. |
[14] | 张利锐, 彭艳玲, 任广朋, 周永锋, 李忠虎, 刘建全. 马尾松和黄山松两个核基因位点的群体遗传多样性和种间分化[J]. 植物生态学报, 2011, 35(5): 531-538. |
[15] | 杨青, 张一, 周志春, 马雪红, 刘伟宏, 丰忠平. 异质低磷胁迫下马尾松家系根构型和磷效率的遗传变异[J]. 植物生态学报, 2011, 35(12): 1226-1235. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19