植物生态学报 ›› 2015, Vol. 39 ›› Issue (8): 785-796.DOI: 10.17521/cjpe.2015.0075
所属专题: 凋落物
张艳1, 张丹桔1, 张健1,2*(), 杨万勤1, 邓长春1, 李建平1, 李勋1, 唐仕姗1, 张明锦1
收稿日期:
2015-01-29
接受日期:
2015-05-29
出版日期:
2015-08-01
发布日期:
2015-08-17
作者简介:
*作者简介:E-mail:
基金资助:
ZHANG Yan1, ZHANG Dan-Ju1, ZHANG Jian1,2,*(), YANG Wan-Qin1, DENG Chang-Chun1, LI Jian-Ping1, LI Xun1, TANG Shi-Shan1, ZHANG Ming-Jin1
Received:
2015-01-29
Accepted:
2015-05-29
Online:
2015-08-01
Published:
2015-08-17
Contact:
Jian ZHANG
About author:
# Co-first authors
摘要:
林窗通过改变森林微环境及土壤环境而影响凋落物难降解物质的降解, 目前关于人工林林窗对凋落物分解过程中难降解物质影响的研究较少。该文采用凋落物分解袋法, 以马尾松(Pinus massoniana)人工林人工砍伐形成的7个不同面积的林窗(G1: 100 m2、G2: 225 m2、G3: 400 m2、G4: 625 m2、G5: 900 m2、G6: 1225 m2、G7: 1600 m2)为研究对象, 以林下为对照, 研究了林窗大小对两种乡土树种——樟(Cinnamomum camphora)和红椿(Toona ciliata)凋落叶分解过程中难降解物质(木质素、纤维素、总酚、缩合单宁)含量的影响。结果表明: 1)林窗大小对林窗中心红椿凋落叶缩合单宁、总酚、木质素的含量有显著影响, 对其纤维素含量和樟凋落叶中4种难降解物质含量均无显著影响。随着林窗面积的增大, 红椿凋落叶中除纤维素含量外的其余3种难降解物质含量, 中小型林窗(G1-G5, G1: 100 m2, G2: 225 m2, G3:400 m2, G4: 625 m2, G5: 900 m2)低于大型林窗(G6、G7, G6: 1225 m2, G7: 1600 m2)。2)林窗不同位置, 只有红椿凋落叶中缩合单宁含量林窗中心显著低于边缘, 其余难降解物质含量和樟凋落叶中4种难降解物质含量均无显著差异。樟凋落叶的木质素含量在G3林窗显著低于林下; 红椿凋落叶除纤维素含量外的其余难降解物质含量, 中小型林窗从林窗中心到边缘均显著低于林下。3)随着分解时间的延长, 两种凋落叶都表现出缩合单宁、纤维素含量降低, 木质素含量升高, 总酚含量先升高后降低的变化趋势。研究结果表明: 中小型林窗(100-900 m2)较大面积林窗干扰更有利于凋落叶中难降解物质的降解, 而林窗内的环境异质性应该是凋落物中难分解物质分解动态的主要调控因子, 并且这种效应依赖于初始凋落物质量。
张艳, 张丹桔, 张健, 杨万勤, 邓长春, 李建平, 李勋, 唐仕姗, 张明锦. 马尾松人工林林窗大小对两种凋落叶难降解物质含量的影响. 植物生态学报, 2015, 39(8): 785-796. DOI: 10.17521/cjpe.2015.0075
ZHANG Yan,ZHANG Dan-Ju,ZHANG Jian,YANG Wan-Qin,DENG Chang-Chun,LI Jian-Ping,LI Xun,TANG Shi-Shan,ZHANG Ming-Jin. Effects of forest gap size on litter recalcitrant components of two tree species in Pinus massoniana plantations. Chinese Journal of Plant Ecology, 2015, 39(8): 785-796. DOI: 10.17521/cjpe.2015.0075
林窗 Gap | 面积 Area (m2) | 海拔 Altitude (m) | 坡度 Slope (°) | 坡向 Aspect | 土壤全碳 Total C in soil (g·kg-1) | 土壤全氮 Total N in soil (g·kg-1) | pH值 pH value | 土壤容重 Bulk density in soil (g·cm-3) | 土壤最大持水量 Maximum moisture capacity in soil (g·kg-1) |
---|---|---|---|---|---|---|---|---|---|
G1 | 100 | 423 | 24.5 | SW | 10.67 ± 3.99 | 0.60 ± 0.21 | 4.1 ± 0.1 | 1.40 ± 0.14 | 435.5 ± 40.3 |
G2 | 225 | 438 | 26.0 | SE | 12.05 ± 3.51 | 0.58 ± 0.12 | 4.2 ± 0.3 | 1.20 ± 0.09 | 393.7 ± 31.9 |
G3 | 400 | 408 | 23.5 | SE | 10.90 ± 0.76 | 0.56 ± 0.06 | 4.2 ± 0.2 | 1.28 ± 0.08 | 394.1 ± 65.1 |
G4 | 625 | 424 | 24.0 | SE | 10.24 ± 1.47 | 0.53 ± 0.15 | 4.1 ± 0.1 | 1.35 ± 0.11 | 326.1 ± 68.2 |
G5 | 900 | 441 | 21.5 | S | 12.44 ± 1.21 | 0.67 ± 0.12 | 4.3 ± 0.2 | 1.41 ± 0.11 | 388.1 ± 75.1 |
G6 | 1 225 | 418 | 27.0 | SE | 16.58 ± 1.54 | 0.60 ± 0.05 | 4.4 ± 0.3 | 1.31 ± 0.17 | 416.2 ± 32.9 |
G7 | 1 600 | 430 | 26.0 | SE | 9.10 ± 1.37 | 0.53 ± 0.12 | 4.0 ± 0.1 | 1.29 ± 0.26 | 326.6 ± 21.1 |
CK | - | 427 | 23.0 | SE | 13.77 ± 4.08 | 0.66 ± 0.22 | 4.6 ± 0.2 | 1.41 ± 0.04 | 363.0 ± 54.7 |
表1 样地基本概况(平均值±标准误差)
Table 1 The basic information of sampling plots (mean ± SE)
林窗 Gap | 面积 Area (m2) | 海拔 Altitude (m) | 坡度 Slope (°) | 坡向 Aspect | 土壤全碳 Total C in soil (g·kg-1) | 土壤全氮 Total N in soil (g·kg-1) | pH值 pH value | 土壤容重 Bulk density in soil (g·cm-3) | 土壤最大持水量 Maximum moisture capacity in soil (g·kg-1) |
---|---|---|---|---|---|---|---|---|---|
G1 | 100 | 423 | 24.5 | SW | 10.67 ± 3.99 | 0.60 ± 0.21 | 4.1 ± 0.1 | 1.40 ± 0.14 | 435.5 ± 40.3 |
G2 | 225 | 438 | 26.0 | SE | 12.05 ± 3.51 | 0.58 ± 0.12 | 4.2 ± 0.3 | 1.20 ± 0.09 | 393.7 ± 31.9 |
G3 | 400 | 408 | 23.5 | SE | 10.90 ± 0.76 | 0.56 ± 0.06 | 4.2 ± 0.2 | 1.28 ± 0.08 | 394.1 ± 65.1 |
G4 | 625 | 424 | 24.0 | SE | 10.24 ± 1.47 | 0.53 ± 0.15 | 4.1 ± 0.1 | 1.35 ± 0.11 | 326.1 ± 68.2 |
G5 | 900 | 441 | 21.5 | S | 12.44 ± 1.21 | 0.67 ± 0.12 | 4.3 ± 0.2 | 1.41 ± 0.11 | 388.1 ± 75.1 |
G6 | 1 225 | 418 | 27.0 | SE | 16.58 ± 1.54 | 0.60 ± 0.05 | 4.4 ± 0.3 | 1.31 ± 0.17 | 416.2 ± 32.9 |
G7 | 1 600 | 430 | 26.0 | SE | 9.10 ± 1.37 | 0.53 ± 0.12 | 4.0 ± 0.1 | 1.29 ± 0.26 | 326.6 ± 21.1 |
CK | - | 427 | 23.0 | SE | 13.77 ± 4.08 | 0.66 ± 0.22 | 4.6 ± 0.2 | 1.41 ± 0.04 | 363.0 ± 54.7 |
图1 四川省宜宾市研究区域内样地凋落叶的温度动态。CK, 林下对照; G1、G2、G3、G4、G5、G6、G7分别代表100 m2、225 m2、400 m2、625 m2、900 m2、1 225 m2、1 600 m2的林窗。GC, 林窗中心; GE, 林窗边缘。
Fig. 1 Temporal variations of temperature in litterbags for each sampling plot. CK, closed canopy as control; G1, G2, G3, G4, G5, G6, and G7 represent gaps of different sizes in the order of 100 m2, 225 m2, 400 m2, 625 m2, 900 m2, 1 225 m2, and 1600 m2, respectively. GC, gap center; GE, gap edge.
林窗 Gap | 2013-11-17 - 2013-12-17 | 2013-12-17 - 2014-02-17 | 2014-02-17 - 2014-05-17 | 2014-05-17 - 2014-08-17 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
GC | GE | GC | GE | GC | GE | GC | GE | ||||
CK | 11.14 | 11.14 | 8.05 | 8.05 | 15.85 | 15.85 | 21.98 | 21.98 | |||
G1 | 12.46 | 12.15 | 9.04 | 8.58 | 17.76 | 17.97 | 23.95 | 22.75 | |||
G2 | 11.41 | 12.12 | 7.90 | 7.83 | 16.45 | 16.90 | 22.15 | 22.16 | |||
G3 | 11.68 | 12.40 | 8.61 | 8.89 | 17.77 | 16.39 | 23.71 | 21.32 | |||
G4 | 12.43 | 12.92 | 9.40 | 9.63 | 18.90 | 16.30 | 24.41 | 21.79 | |||
G5 | 11.92 | 11.14 | 8.64 | 7.90 | 16.77 | 15.87 | 22.75 | 21.12 | |||
G6 | 12.73 | 14.33 | 9.05 | 10.45 | 19.85 | 18.71 | 24.50 | 23.96 | |||
G7 | 13.04 | 14.07 | 9.34 | 10.47 | 16.85 | 16.19 | 22.07 | 22.12 |
表2 不同分解阶段不同大小林窗凋落叶的平均温度(℃)
Table 2 The mean temperature in litterbags for different gap sizes at different time periods (℃)
林窗 Gap | 2013-11-17 - 2013-12-17 | 2013-12-17 - 2014-02-17 | 2014-02-17 - 2014-05-17 | 2014-05-17 - 2014-08-17 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
GC | GE | GC | GE | GC | GE | GC | GE | ||||
CK | 11.14 | 11.14 | 8.05 | 8.05 | 15.85 | 15.85 | 21.98 | 21.98 | |||
G1 | 12.46 | 12.15 | 9.04 | 8.58 | 17.76 | 17.97 | 23.95 | 22.75 | |||
G2 | 11.41 | 12.12 | 7.90 | 7.83 | 16.45 | 16.90 | 22.15 | 22.16 | |||
G3 | 11.68 | 12.40 | 8.61 | 8.89 | 17.77 | 16.39 | 23.71 | 21.32 | |||
G4 | 12.43 | 12.92 | 9.40 | 9.63 | 18.90 | 16.30 | 24.41 | 21.79 | |||
G5 | 11.92 | 11.14 | 8.64 | 7.90 | 16.77 | 15.87 | 22.75 | 21.12 | |||
G6 | 12.73 | 14.33 | 9.05 | 10.45 | 19.85 | 18.71 | 24.50 | 23.96 | |||
G7 | 13.04 | 14.07 | 9.34 | 10.47 | 16.85 | 16.19 | 22.07 | 22.12 |
物种 Species | C (g·kg-1) | N (g·kg-1) | P (g·kg-1) | 总酚 Total phenol (g·kg-1) | 缩合单宁 Condensed tannins (g·kg-1) | 木质素 Lignin (g·kg-1) | 纤维素 Cellulose (g·kg-1) |
---|---|---|---|---|---|---|---|
红椿 Toona ciliata | 674.51 ± 10.53A | 58.14 ± 1.68A | 1.67 ± 0.09A | 29.60 ± 0.79A | 3.67 ± 0.22B | 70.1 ± 13.0B | 106.7 ± 7.10B |
樟 Cinnamomum camphora | 554.55 ± 19.14B | 36.01 ± 2.61B | 0.85 ± 0.01B | 14.70 ± 0.96B | 14.4 ± 18.0A | 214.05 ± 3.61A | 189.90 ± 25.5A |
表3 凋落叶养分和难降解物质初始含量(平均值±标准误差)
Table 3 Initial contents of C, N, P and recalcitrant components in litters (mean ± SE)
物种 Species | C (g·kg-1) | N (g·kg-1) | P (g·kg-1) | 总酚 Total phenol (g·kg-1) | 缩合单宁 Condensed tannins (g·kg-1) | 木质素 Lignin (g·kg-1) | 纤维素 Cellulose (g·kg-1) |
---|---|---|---|---|---|---|---|
红椿 Toona ciliata | 674.51 ± 10.53A | 58.14 ± 1.68A | 1.67 ± 0.09A | 29.60 ± 0.79A | 3.67 ± 0.22B | 70.1 ± 13.0B | 106.7 ± 7.10B |
樟 Cinnamomum camphora | 554.55 ± 19.14B | 36.01 ± 2.61B | 0.85 ± 0.01B | 14.70 ± 0.96B | 14.4 ± 18.0A | 214.05 ± 3.61A | 189.90 ± 25.5A |
位置 Positions | 分解时间 Decomposition time (d) | 缩合单宁 Condensed tannins (g·kg-1) | 总酚 Total phenol (g·kg-1) | 木质素 Lignin (g·kg-1) | 纤维素 Cellulose (g·kg-1) |
---|---|---|---|---|---|
GC | 30 | 6.006** | -20.507** | 16.402** | 7.960** |
90 | 4.215** | -18.649** | 23.926** | 6.395** | |
180 | 7.979** | -7.687** | 17.272** | 6.275** | |
270 | 8.536** | 7.344** | 2.514** | 9.165** | |
GE | 30 | 7.696** | -19.183** | 17.031** | 7.593** |
90 | 0.262** | -22.250** | 21.326** | 6.054** | |
180 | 6.080** | -10.222** | 7.791** | 5.069** | |
270 | 2.377** | 11.263** | 11.122** | 9.986** | |
CK | 30 | 2.994* | -24.952** | -0.436 | 0.752 |
90 | 0.709 | -19.510** | 6.972* | 1.765 | |
180 | 1.035 | -5.670* | 9.120** | 6.819** | |
270 | 0.143 | 4.042* | 20.254** | 2.975 |
表4 不同分解阶段两种凋落叶难降解物质含量的独立样本t检验
Table 4 Independent sample t-test analysis on the content of litter recalcitrant components for two species for different decomposition periods
位置 Positions | 分解时间 Decomposition time (d) | 缩合单宁 Condensed tannins (g·kg-1) | 总酚 Total phenol (g·kg-1) | 木质素 Lignin (g·kg-1) | 纤维素 Cellulose (g·kg-1) |
---|---|---|---|---|---|
GC | 30 | 6.006** | -20.507** | 16.402** | 7.960** |
90 | 4.215** | -18.649** | 23.926** | 6.395** | |
180 | 7.979** | -7.687** | 17.272** | 6.275** | |
270 | 8.536** | 7.344** | 2.514** | 9.165** | |
GE | 30 | 7.696** | -19.183** | 17.031** | 7.593** |
90 | 0.262** | -22.250** | 21.326** | 6.054** | |
180 | 6.080** | -10.222** | 7.791** | 5.069** | |
270 | 2.377** | 11.263** | 11.122** | 9.986** | |
CK | 30 | 2.994* | -24.952** | -0.436 | 0.752 |
90 | 0.709 | -19.510** | 6.972* | 1.765 | |
180 | 1.035 | -5.670* | 9.120** | 6.819** | |
270 | 0.143 | 4.042* | 20.254** | 2.975 |
图2 不同大小林窗中心、林窗边缘, 樟、红椿凋落叶难降解物质含量动态(平均值±标准误差)。上排不同小写字母表示不同分解阶段之间差异显著(p < 0.05); 下排不同小写字母表示不同林窗之间差异显著(p < 0.05)。CK、GC、GE、G1、G2、G3、G4、G5、G6、G7分别代表100 m2、225 m2、400 m2、625 m2、900 m2、1 225 m2、1 600 m2的林窗。
Fig. 2 Change of recalcitrant components in Cinnamomum camphora and Toona ciliate foliar litter between gap center and edge (mean ± SE). Different lowercase letters represent significant differences between decomposition periods (upper panel) and gaps (lower panel) (p < 0.05). CK, GC, GE, G1, G2, G3, G4, G5, G6, and G7 represent gaps of different sizes in the order of 100 m2, 225 m2, 400 m2, 625 m2, 900 m2, 1 225 m2, and 1 600 m2, respectively.
物种 Species | 位置 Positions | 影响因素 Impact factors | 缩合单宁 Condensed tannins | 总酚 Total phenol | 木质素 Lignin | 纤维素 Cellulose | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | ||||||
樟 Cinnamomum camphora | GC | G | 1.794 | 0.117 | 0.850 | 0.537 | 1.565 | 0.127 | 1.559 | 0.176 | |||
T | 7.769 | <0.01 | 53.553 | <0.01 | 4.986 | <0.01 | 67.587 | <0.01 | |||||
G × T | 2.331 | <0.01 | 2.260 | <0.05 | 3.377 | <0.01 | 2.760 | <0.01 | |||||
GE | G | 0.825 | 0.554 | 0.674 | 0.671 | 1.928 | 0.092 | 0.464 | 0.832 | ||||
T | 14.704 | <0.01 | 31.162 | <0.01 | 13.840 | <0.01 | 9.240 | <0.01 | |||||
G × T | 1.050 | 0.424 | 1.324 | 0.209 | 1.558 | 0.105 | 1.653 | 0.078 | |||||
红椿 Toona ciliata | GC | G | 2.500 | <0.05 | 6.126 | <0.01 | 15.176 | <0.01 | 0.909 | 0.495 | |||
T | 44.060 | <0.01 | 215.101 | <0.01 | 206.146 | <0.01 | 25.992 | <0.01 | |||||
G × T | 3.360 | <0.01 | 2.581 | <0.01 | 16.608 | <0.01 | 1.165 | 0.321 | |||||
GE | G | 1.261 | 0.290 | 2.673 | 0.052 | 3.639 | <0.01 | 0.795 | 0.578 | ||||
T | 13.987 | <0.01 | 196.983 | <0.01 | 49.604 | <0.01 | 7.018 | <0.01 | |||||
G × T | 3.740 | <0.01 | 1.721 | 0.063 | 2.433 | <0.01 | 0.393 | 0.983 |
表5 林窗面积、采样时间及交互作用对两种凋落叶难降解物质含量的影响
Table 5 Effects of gap sizes, sampling time, and the interaction of them on the content of litter recalcitrant components for two species
物种 Species | 位置 Positions | 影响因素 Impact factors | 缩合单宁 Condensed tannins | 总酚 Total phenol | 木质素 Lignin | 纤维素 Cellulose | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | ||||||
樟 Cinnamomum camphora | GC | G | 1.794 | 0.117 | 0.850 | 0.537 | 1.565 | 0.127 | 1.559 | 0.176 | |||
T | 7.769 | <0.01 | 53.553 | <0.01 | 4.986 | <0.01 | 67.587 | <0.01 | |||||
G × T | 2.331 | <0.01 | 2.260 | <0.05 | 3.377 | <0.01 | 2.760 | <0.01 | |||||
GE | G | 0.825 | 0.554 | 0.674 | 0.671 | 1.928 | 0.092 | 0.464 | 0.832 | ||||
T | 14.704 | <0.01 | 31.162 | <0.01 | 13.840 | <0.01 | 9.240 | <0.01 | |||||
G × T | 1.050 | 0.424 | 1.324 | 0.209 | 1.558 | 0.105 | 1.653 | 0.078 | |||||
红椿 Toona ciliata | GC | G | 2.500 | <0.05 | 6.126 | <0.01 | 15.176 | <0.01 | 0.909 | 0.495 | |||
T | 44.060 | <0.01 | 215.101 | <0.01 | 206.146 | <0.01 | 25.992 | <0.01 | |||||
G × T | 3.360 | <0.01 | 2.581 | <0.01 | 16.608 | <0.01 | 1.165 | 0.321 | |||||
GE | G | 1.261 | 0.290 | 2.673 | 0.052 | 3.639 | <0.01 | 0.795 | 0.578 | ||||
T | 13.987 | <0.01 | 196.983 | <0.01 | 49.604 | <0.01 | 7.018 | <0.01 | |||||
G × T | 3.740 | <0.01 | 1.721 | 0.063 | 2.433 | <0.01 | 0.393 | 0.983 |
物种 Species | 位置 Position | 缩合单宁 Condensed tannins (g·kg-1) | 总酚 Total phenol (g·kg-1) | 木质素 Lignin (g·kg-1) | 纤维素 Cellulose (g·kg-1) |
---|---|---|---|---|---|
樟 Cinnamonum camphora | GC | 4.431 ± 1.50a | 6.896 ± 2.06a | 295.056 ± 47.16b | 156.247 ± 41.23a |
GE | 4.157 ± 1.80a | 7.141 ± 2.19a | 305.455 ± 60.37ab | 155.730 ± 48.89a | |
CK | 4.140 ± 1.49a | 7.266 ± 2.71a | 315.632 ± 46.46a | 174.366 ± 76.70a | |
红椿 Toona ciliata | GC | 2.369 ± 0.93c | 17.308 ± 9.46b | 143.995 ± 80.54b | 89.303 ± 45.93a |
GE | 2.824 ± 0.62b | 17.136 ± 9.16b | 147.101 ± 52.99b | 82.573 ± 30.67a | |
CK | 3.459 ± 0.50a | 22.029 ± 11.79a | 186.601 ± 71.29a | 91.674 ± 44.52a |
表6 马尾松人工林林窗中心、边缘和林下两种凋落叶难降解物质含量的比较(平均值±标准误差)
Table 6 Contents of litter recalcitrant components for two species at gap center, edge and under closed canopy (mean ± SE)
物种 Species | 位置 Position | 缩合单宁 Condensed tannins (g·kg-1) | 总酚 Total phenol (g·kg-1) | 木质素 Lignin (g·kg-1) | 纤维素 Cellulose (g·kg-1) |
---|---|---|---|---|---|
樟 Cinnamonum camphora | GC | 4.431 ± 1.50a | 6.896 ± 2.06a | 295.056 ± 47.16b | 156.247 ± 41.23a |
GE | 4.157 ± 1.80a | 7.141 ± 2.19a | 305.455 ± 60.37ab | 155.730 ± 48.89a | |
CK | 4.140 ± 1.49a | 7.266 ± 2.71a | 315.632 ± 46.46a | 174.366 ± 76.70a | |
红椿 Toona ciliata | GC | 2.369 ± 0.93c | 17.308 ± 9.46b | 143.995 ± 80.54b | 89.303 ± 45.93a |
GE | 2.824 ± 0.62b | 17.136 ± 9.16b | 147.101 ± 52.99b | 82.573 ± 30.67a | |
CK | 3.459 ± 0.50a | 22.029 ± 11.79a | 186.601 ± 71.29a | 91.674 ± 44.52a |
1 | Arunachalam A, Arunachalam K (2000). Influence of gap size and soil properties on microbial biomass in a subtropical humid forest of north-east India.Plant and Soil, 223, 187-195. |
2 | Austin AT, Ballaré CL (2010). Dual role of lignin in plant litter decomposition in terrestrial ecosystems.Proceedings of the National Academy of Sciences of the United States of America, 107, 4618-4622. |
3 | Berendse F, Bobbink R, Rouwenhorst G (1989). A comparative study on nutrient cycling in wet heathland ecosystems. II. Litter decomposition and nutrient mineralization.Oecologia, 78, 338-348. |
4 | Berg B, Johansson MB, Meentemeyer V (2000). Litter decomposition in a transect of Norway spruce forests: Substrate quality and climate control.Canadian Journal of Forest Research, 30, 1136-1147. |
5 | Berg B, Lundmark JE (1987). Decomposition of needle litter in lodgepole pine and Scots pine monocultures—A comparison.Scandinavian Journal of Forest Research, 2, 3-12. |
6 | Booker FL, Maier CA (2001). Atmospheric carbon dioxide, irrigation, and fertilization effects on phenolic and nitrogen concentrations in loblolly pine (Pinus taeda) needles.Tree Physiology, 21, 609-616. |
7 | Cai XY, Fan HL, Hong T, Hong W, Wu CZ, Wang PL, Wang HC, Lin QQ (2007). Edge effect of gaps in Cunninghamia lanceolata plantation in Ancaoxia, Fujian Province.Journal of Tropical and Subtropical Botany, 15, 229-236.(in Chinese with English abstract) |
[蔡小英, 范海兰, 洪滔, 洪伟, 吴承祯, 王萍兰, 王洪翠, 林琴琴 (2007). 福建安曹下丰产杉木人工林林窗边缘效应的研究. 热带亚热带植物学报, 15, 229-236.] | |
8 | Chen H (1999). Root Decomposition in Three Coniferous Forests: Effects of Substrate Quality, Temperature, and Moisture. PhD dissertation, Oregon State University, Spokane, USA. |
9 | Couteaux MM, Bottner P, Berg B (1995). Litter decomposition, climate and liter quality.Trends in Ecology & Evolution, 10, 63-66. |
10 | Cui NJ, Liu Y, Zhang J, Yang WQ, Ou J, Zhang J, Deng CC, Li JP (2014). Effects of forest gap on plant diversity of Pinus massoniana plantations.Chinese Journal of Applied and Environmental Biology, 20, 8-14.(in Chinese with English abstract) |
[崔宁洁, 刘洋, 张健, 杨万勤, 欧江, 张捷, 邓长春, 李建平 (2014). 林窗对马尾松人工林植物多样性的影响. 应用与环境生物学报, 20, 8-14.] | |
11 | Day TA, Zhang ET, Ruhland CT (2007). Exposure to solar UV-B radiation accelerates mass and lignin loss of Larrea tridentata litter in the Sonoran Desert.Plant Ecology, 193, 185-194. |
12 | Denslow JS, Spies T (1990). Canopy gaps in forest ecosystems: An introduction.Canadian Journal of Forest Research, 20, 619. |
13 | Duan WB, Wang J, Li Y (2008). Micro climatic characteristics of different size gaps in Pinus koraiensis-dominated broad leaved mixed forests.Chinese Journal of Applied Ecology, 19, 2561-2566.(in Chinese with English abstract) |
[段文标, 王晶, 李岩 (2008). 红松阔叶混交林不同大小林隙小气候特征. 应用生态学报, 19, 2561-2566.] | |
14 | Feng ZW, Cao HF, Zhou XP (1999). Effects of Acid Deposition on Ecological Environment and Its Restoration. China Environmental Science Press, Beijing. 300-312. |
(in Chinese) [冯宗炜, 曹洪法, 周修萍 (1999). 酸沉降对生态环境的影响及其生态恢复. 中国环境科学出版社, 北京. 300-312.] | |
15 | Fioretto A, Di Nardo C, Papa S, Fuggi A (2005). Lignin and cellulose degradation and nitrogen dynamics during decomposition of three leaf litter species in a Mediterranean ecosystem.Soil Biology & Biochemistry, 37, 1083-1091. |
16 | Gálhidy L, Mihók B, Hagyó A, Rajkai K, Standovár T (2006). Effects of gap size and associated changes in light and soil moisture on the understorey vegetation of a Hungarian beech forest.Plant Ecology, 183, 133-145. |
17 | Gallo ME, Porras-Alfaro A, Odenbach KJ, Sinsabaugh RL (2009). Photoacceleration of plant litter decomposition in an arid environment.Soil Biology & Biochemistry, 41, 1433-1441. |
18 | Gebauer RLE, Strain BR, Reynolds JF (1998). The effect of elevated CO2 and N availability on tissue concentrations and whole plant pools of carbon-based secondary compounds in loblolly pine (Pinus taeda).Oecologia, 113, 29-36. |
19 | Graça MAS, Bärlocher F, Gessner MO (2005). Methods to Study Litter Decomposition: A Practical Guide. Springer, The Netherlands. 97-120. |
20 | Gray AN, Spies TA, Easter MJ (2002). Microclimatic and soil moisture responses to gap formation in coastal Douglas-fir forests.Canadian Journal of Forest Research, 32, 332-343. |
21 | Godoy O, Castro-Díez P, van Logtestijn RSP, Cornelissen JHC, Valladares F (2010). Leaf litter traits of invasive species slow down decomposition compared to Spanish natives: A broad phylogenetic comparison.Oecologia, 162, 781-790. |
22 | Guo W, Zhang J, Huang YM, Liu X, Wang W, Xue L (2009). Research progress on the influencing factors of forest litter.Journal of Anhui Agricultural Sciences, 37, 1544-1546.(in Chinese with English abstract) |
[郭伟, 张健, 黄玉梅, 刘旭, 王伟, 薛林 (2009). 森林凋落物影响因子研究进展. 安徽农业科学, 37, 1544-1546.] | |
23 | Hatakka A (2001). Biodegradation of lignin. In: Steinbüchel A, Hofrichter M eds. Biopolymers: Biology, Chemistry, Biotechnology, Applications, Vol. 1. Lignin, Humic Substances and Coal. Wiley-VCH, Weinheim,Germany. 129-180. |
24 | He YT, Li GC, Cao M, Tang Y (2003). Regeneration in gaps of the middle-mountain moist evergreen broad-leaved forest of Ailao Mountains.Chinese Journal of Applied Ecology, 14, 1399-1404.(in Chinese with English abstract) |
[何永涛, 李贵才, 曹敏, 唐勇 (2003). 哀牢山中山湿性常绿阔叶林林窗更新研究. 应用生态学报, 14, 1399-1404.] | |
25 | He ZS, Liu JF, Wu CT, Zheng SQ, Hong W, Su SJ, Wu CZ (2012). Effects of forest gaps on some microclimate variables in Castanopsis kawakamii natural forest.Journal of Mountain Science, 9, 706-714. |
26 | He ZS, Liu JF, Zheng SQ, Su SJ, Hong W, Wu ZY, Xu DW, Wu CZ (2012). Studies on the seeds dispersal and seedlings regeneration in gaps and understory of Castanopsis kawakamii natural forest.Journal of Tropical and Subtropical Botany, 20, 506-512.(in Chinese with English abstract) |
[何中声, 刘金福, 郑世群, 苏松锦, 洪伟, 吴则焰, 徐道炜, 吴承祯 (2012). 格氏栲天然林林窗和林下种子散布及幼苗更新研究. 热带亚热带植物学报, 20, 506-512.] | |
27 | Hu FJ, Zhang J, Yang WQ, Wu FZ, Liu Y, Liu K, Yan BG, Huang X (2012). Effects of Pb stress on the growth, development and Pb enrichment properties of Toona ciliata Roem saplings.Journal of Agro-Environment Science, 31, 284-291. |
(in Chinese with English abstract) [胡方洁, 张健, 杨万勤, 吴福忠, 刘洋, 刘凯, 闫邦国, 黄旭 (2012). Pb胁迫对红椿(Toona ciliata Roem)生长发育及Pb富集特性的影响 . 农业环境科学学报,31, 284-291.] | |
28 | Hu R, Lin B, Liu Q (2011). Effects of forest gaps and litter on the early regeneration of Picea asperata plantations.Scientia Silvae Sinicae, 47(6), 23-29. |
(in Chinese with English abstract) [胡蓉, 林波, 刘庆 (2011). 林窗与凋落物对人工云杉林早期更新的影响. 林业科学, 47(6), 23-29.] | |
29 | Jackson FS, Barry TN, Lascano C, Palmer B (1996). The extractable and bound condensed tannin content of leaves from tropical tree, shrub and forage legumes.Journal of the Science of Food and Agriculture, 71, 103-110. |
30 | Kähkönen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M (1999). Antioxidant activity of plant extracts containing phenolic compounds.Journal of Agricultural and Food Chemistry, 47, 3954-3962. |
31 | Klotzbücher T, Kaiser K, Guggenberger G, Gatzek C, Kalbitz K (2011). A new conceptual model for the fate of lignin in decomposing plant litter.Ecology, 92, 1052-1062. |
32 | Landsberg JJ (1987). A theory of forest dynamics, the ecological implications of forest succession models.Forest Ecology and Management, 18, 161-163. |
33 | Li H, Wu FZ, Yang WQ, Xu LY, Ni XY, He J, Chang CH (2015). Effects of the snow cover on acid-soluble extractive and acid-insoluble residue during foliar litter decomposition in an alpine forest.Acta Ecologica Sinica, 35, 1-15.(in Chinese with English abstract) |
[李晗, 吴福忠, 杨万勤, 徐李亚, 倪祥银, 何洁, 常晨晖 (2015). 不同厚度雪被对高山森林6种凋落物分解过程中酸溶性和酸不溶性组分的影响. 生态学报, 35, 1-15.] | |
34 | Lin B, Liu Q, Wu Y, He H (2004). Advances in the studies of forest litter.Chinese Journal of Ecology, 23, 60-64.(in Chinese with English abstract) |
[林波, 刘庆, 吴彦, 何海 (2004). 森林凋落物研究进展. 生态学杂志, 23, 60-64.] | |
35 | Lin YM, Liu JW, Xiang P, Lin P, Ye GF, Da Sternberg LSL (2006). Tannin dynamics of propagules and leaves of Kandelia candel and Bruguiera gymnorrhiza in the Jiulong River Estuary, Fujian, China.Biogeochemistry, 78, 343-359. |
36 | Li Q, Cheng X, Jiang T, Xu ZQ (2012). Review on studies of forest litter decomposition.Hebei Journal of Forestry and Orchard Research, 27, 396-401.(in Chinese with English abstract) |
[李强, 程旭, 姜韬, 许中旗 (2012). 森林凋落物分解研究进展. 河北林果研究, 27, 396-401.] | |
37 | Liu Q, Wu Y (2002). Effects of gap size on regeneration of subalpine coniferous forests in northwest Yunnan.Chinese Journal of Applied and Environmental Biology, 8, 453-459.(in Chinese with English abstract) |
[刘庆, 吴彦 (2002). 滇西北亚高山针叶林林窗大小与更新的初步分析. 应用与环境生物学报, 8, 453-459.] | |
38 | Liu RL, Yang WQ, Wu FZ, Tan B, Wang WJ (2014). Soil fauna community structure and diversity during foliar litter decomposition in the subalpine/alpine forests of western Sichuan.Chinese Journal of Applied and Environmental Biology, 20, 499-507.(in Chinese with English abstract) |
[刘瑞龙, 杨万勤, 吴福忠, 谭波, 王文君 (2014). 川西亚高山/高山森林凋落物分解过程中土壤动物群落结构及其多样性动态. 应用与环境生物学报, 20, 499-507.] | |
39 | Liu WJ, Li QJ, Zhang GM, Shi JP, Bai KJ, Wang CM (2000). The microclimatic differences between and within canopy gaps in the dry-hot season in Shorea chinensis forest.Acta Ecologica Sinica, 20, 932-937.(in Chinese with English abstract) |
[刘文杰, 李庆军, 张光明, 施季普, 白坤甲, 王昌命 (2000). 西双版纳望天树林干热季不同林窗间的小气候差异. 生态学报, 20, 932-937.] | |
40 | Li ZY, Wang YH, Yu PT, Zhang ZJ (2007). A comparative study of resistance to soil acidification and growth of fine roots between pure stands of Pinus massoniana and Cinnamomum camphora.Acta Ecologica Sinica, 27, 5245-5253.(in Chinese with English abstract) |
[李志勇, 王彦辉, 于澎涛, 张治军 (2007). 马尾松和香樟的抗土壤酸化能力及细根生长的差异. 生态学报, 27, 5245-5253.] | |
41 | McClaugherty CA (1983). Soluble polyphenols and carbohydrates in throughfall and leaf litter decomposition.Acta Oecologica Oecologia Generalis, 4, 375-385. |
42 | Muscolo A, Sidari M, Mercurio R (2007). Influence of gap size on organic matter decomposition, microbial biomass and nutrient cycle in Calabrian pine (Pinus laricio, Poiret) stands.Forest Ecology and Management, 242, 412-418. |
43 | Parfitt RL, Newman RH (2000). 13C NMR study of pine needle decomposition.Plant and Soil, 219, 273-278. |
44 | Polyakova O, Billor N (2007). Impact of deciduous tree species on litterfall quality, decomposition rates and nutrient circulation in pine stands.Forest Ecology and Management, 253, 11-18. |
45 | Qi DH, Li XG, Wang ZP, Shi SY, He ZM, Xu WW, Deng XB (2001). Preliminary research on species diversity change of the regeneration layer in gap gradient in a coniferous- broadleaved forest in Jinyun Mountain.Biodiversity Science, 9, 51-55.(in Chinese with English abstract) |
[齐代华, 李旭光, 王周平, 石胜友, 何正明, 许文蔚, 邓先宝 (2001). 缙云山针阔混交林更新层物种多样性林隙梯度变化初探. 生物多样性, 9, 51-55.] | |
46 | Rahman MM, Tsukamoto J, Rahman M, Yoneyama A, Mostafa KM (2013). Lignin and its effects on litter decomposition in forest ecosystems.Chemistry and Ecology, 29, 540-553. |
47 | Ritter E (2005). Litter decomposition and nitrogen mineralization in newly formed gaps in a Danish beech (Fagus sylvatica) forest.Soil Biology & Biochemistry, 37, 1237-1247. |
48 | Rong L, Li SJ, Li XW, Zhang J, Wang P (2011). Carbon dynamics of fine root (grass root) decomposition and active soil organic carbon in various models of land use conversion from agricultural lands into forest lands.Acta Ecologica Sinica, 31, 137-144.(in Chinese with English abstract) |
[荣丽, 李守剑, 李贤伟, 张健, 王鹏 (2011). 不同退耕模式细根(草根)分解过程中C动态及土壤活性有机碳的变化. 生态学报, 31, 137-144.] | |
49 | Schlesinger WH, Hasey MM (1981). Decomposition of chaparral shrub foliage: Losses of organic and inorganic constituents from deciduous and evergreen leaves.Ecology, 62, 762-774. |
50 | Shure DJ, Mooreside PD, Ogle SM (1998). Rainfall effects on plant-herbivore processes in an upland oak forest.Ecology, 79, 604-617. |
51 | Swift MJ, Heal OW, Anderson JM (1979). Decomposition in Terrestrial Ecosystems. University of California Press, Berkeley, USA. |
52 | Tan H, Zhu JJ, Kang HZ, Hu LL (2007). A research review on forest gap disturbance.Chinese Journal of Ecology, 26, 587-594.(in Chinese with English abstract) |
[谭辉, 朱教君, 康宏樟, 胡理乐 (2007). 林窗干扰研究. 生态学杂志, 26, 587-594.] | |
53 | Taylor BR, Parkinson D, Parsons WFJ (1989). Nitrogen and lignin content as predictors of litter decay rates: A microcosm test.Ecology, 70, 97-104. |
54 | Tian XJ, Takeishi T (2002). Relative roles of microorganisms and soil animals on needle litter decomposition in a subalpine coniferous forest.Acta Phytoecologica Sinica, 26, 257-263.(in Chinese with English abstract) |
[田兴军, 立石贵浩 (2002). 亚高山针叶林土壤动物和土壤微生物对针叶分解的作用. 植物生态学报, 26, 257-263.] | |
55 | Wang C, Pang XY, Bao WK (2010). Short term effects of low intensity thinning simulated by gap on ground microclimate and soil nutrients of pure spruce plantation.Chinese Journal of Applied Ecology, 21, 541-548.(in Chinese with English abstract) |
[王成, 庞学勇, 包维楷 (2010). 低强度林窗式疏伐对云杉人工纯林地表微气候和土壤养分的短期影响. 应用生态学报, 21, 541-548.] | |
56 | Wang JH, Li JD (2006). Advances in study on forest gaps.World Forestry Research, 19(1), 27-30.(in Chinese with English abstract) |
[王家华, 李建东 (2006). 林窗研究进展. 世界林业研究, 19(1), 27-30.] | |
57 | Wang YK, Fang SZ, Qu HH, Tang LZ, Song H (2012). The influence factors of forest litter decomposition.China Forestry Science and Technology, 26, 5-9.(in Chinese with English abstract) |
[王意锟, 方升佐, 曲宏辉, 唐罗忠, 宋浩 (2012). 森林凋落物分解的影响因素. 林业科技开发, 26, 5-9.] | |
58 | Wu YQ, Guo YY (2000). Determination of tannin in cotton plant.Chinese Journal of Applied Ecology, 11, 243-245.(in Chinese with English abstract) |
[武予清, 郭予元 (2000). 棉花植株中的单宁测定方法研究. 应用生态学报, 11, 243-245.] | |
59 | Xu LY, Yang WQ, Li H, Ni XY, He J, Wu FZ (2014). Effects of forest gap on soluble nitrogen and soluble phosphorus of foliar litter decomposition in an alpine forest.Journal of Soil and Water Conservation, 28, 214-221.(in Chinese with English abstract) |
[徐李亚, 杨万勤, 李晗, 倪祥银, 何洁, 吴福忠 (2014). 高山森林林窗对凋落物分解过程中水溶性氮和磷的影响. 水土保持学报, 28, 214-221.] | |
60 | Yang HX, Xie HS (1994). Study on the reconstruction of disturbance history of Pinus koraiensis mixed forest Changbai Mountain.Acta Phytoecologica Sinica, 18, 201-208.(in Chinese with English abstract) |
[阳含熙, 谢海生 (1994). 长白山红松混交林干扰历史的重构研究. 植物生态学报, 18, 201-208.] |
[1] | 宋思梦, 张丹桔, 张健, 杨万勤, 张艳, 周扬, 李勋. 马尾松人工林林窗边缘效应对油樟化学计量特征的影响[J]. 植物生态学报, 2017, 41(10): 1081-1090. |
[2] | 汪沁, 杨万勤, 吴福忠, 张健, 谭波, 张玺涛. 马尾松人工林伐桩储量与分解特征[J]. 植物生态学报, 2016, 40(5): 458-468. |
[3] | 崔宁洁,张丹桔,刘洋,张健,杨万勤,欧江,张捷,宋小艳,殷睿. 马尾松人工林不同大小林窗植物多样性及其季节动态[J]. 植物生态学报, 2014, 38(5): 477-490. |
[4] | 莫江明, 郁梦德, 孔国辉. 鼎湖山马尾松人工林土壤硝态氮和铵态氨动态研究[J]. 植物生态学报, 1997, 21(4): 335-341. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19